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Preface 

Tumour expression of the urokinase plasminogen activator correlates with invasive 

capacity. Consequently, inhibition of this serine protease by physiological inhibitors 

should decrease invasion and metastasis. However, of the two main urokinase 

inhibitors, high tumour levels of the type-1 inhibitor actually promote tumour 

progression, whereas high levels of the type-2 inhibitor decrease tumour growth and 

metastasis. We propose that the basis of this apparently paradoxical action of two 

similar serine protease inhibitors lies in key structural differences controlling 

interactions with components of the extracellular matrix and endocytosis/signalling 

co-receptors. 

 

Metastasis is intrinsically linked to the ability of tumour cells to escape the 

constraining extracellular matrix (ECM)1. The broad spectrum serine-protease plasmin 

facilitates this process by degrading components of the ECM2. Plasmin is generated by 

the plasminogen activation system, a tightly regulated network of protease activators, 

receptors and inhibitors (Figure 1) that becomes dysregulated during tumour 

progression2. Accordingly, components of this system are potent biomarkers for cancer 

progression and patient survival. Numerous studies have identified co-expression of the 

serine protease urokinase plasminogen activator (uPA) and one of its inhibitors, 

plasminogen activator inhibitor type-1 (PAI-1, SerpinE1, see Box 1), as an independent 

marker of poor prognosis in many cancer types3. Significantly, uPA and PAI-1 were 

recently included in the 2007 update of the American Society of Clinical Oncology 

recommendations for prognosis of node negative breast cancer4.  
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The link between PAI-1 and poor patient prognosis may reflect dynamic 

interactions with ECM components and endocytosis/signalling co-receptors that 

ultimately promote tumour growth and metastasis, which are supplementary to its 

classical biochemical activity as a uPA inhibitor. Paradoxically, tumour-associated 

expression of another classical uPA inhibitor, plasminogen activator inhibitor type-2 

(PAI-2, SerpinB2), is associated with increased survival in breast cancer patients3,5, and 

recent novel data have highlighted key structural and functional differences between 

these serpins6,7. These differences suggest that PAI-2 does not possess the additional 

functions attributed to PAI-1 and acts predominantly as a protease inhibitor in vivo. In 

this Perspective, we incorporate these novel structural and functional data with a 

thorough review of the available prognostic data for PAI-2 in multiple cancer types, and 

propose a hypothesis for the mechanism underlying differential prognosis of high PAI-1 

versus PAI-2 levels in cancer. 

 

Cellular and tissue expression of PAI-2 

As receptor bound plasmin is protected from inhibition by α2-antiplasmin8, direct 

inhibition of uPA and tissue plasminogen activator (tPA) by PAI-1 and PAI-2 are key 

regulatory mechanisms of pericellular plasminogen activation (Figure 1). In comparison 

to PAI-2, the role of PAI-1 in the plasminogen activation system has been studied in 

depth9,10. In vivo, PAI-1 expression can be highly induced in both endothelial cells and 

activated platelets9 and its role in inhibiting thrombolysis through the rapid inhibition of 

tPA is especially well documented11. PAI-1 is also an established regulator of diverse 

plasmin-dependent and independent physiological processes involving vascular 

remodelling and angiogenesis12. This includes effects on cell adhesion and migration via 

an interaction with the ECM protein vitronectin, and subsequent modulation of integrin–

uPAR–uPA interactions with the ECM12. In addition, inhibition of uPA by PAI-1 induces 

secondary high affinity interactions with the low density lipoprotein receptor (LDLR) 

family of endocytosis receptors13-17, with further effects on migration, adhesion and 

proliferation. These processes will be addressed in detail below.  

PAI-2 can be considered a stress protein as it is one of the most up-regulated 

proteins of activated monocyte/macrophages and differentiating keratinocytes, and its 
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expression is also highly inducible in fibroblasts and endothelial cells10,18. PAI-2 gene 

expression is stimulated by a variety of inflammatory mediators, and by viral or bacterial 

infection18,  so biological roles in the regulation of inflammation and wound healing have 

been proposed18. However, attempts at defining the precise physiological functions of 

PAI-2 have been somewhat confounded by its bi-topological existence in both a 

predominant cytosolic (47 kDa) form and an extracellular, glycosylated (60 kDa) 

form10,19-21. The reason for the intracellular accumulation of PAI-2 is not entirely clear 

but may be linked to an inefficient, mildly hydrophobic internal signal peptide19,21-24, as 

increasing the hydrophobicity of the signal peptide results in enhanced PAI-2 secretion22. 

The prevalence of the cytosolic form of PAI-2 has fostered some debate in the 

field regarding potential extra/pericellular patho-physiological role(s), and more recent 

research has focussed on the somewhat contentious intracellular functions of PAI-2. 

Nevertheless, extracellular PAI-2 does exist in vivo and mediates important serpin-related 

biological functions.  

Extracellular roles for PAI-2 and the serpin inhibitory mechanism. 

Under physiological conditions PAI-2 is not usually detectable in human plasma, 

except during pregnancy when trophoblasts produce high levels of PAI-210,25. As 

decreased plasma levels of PAI-2 correlate with intrauterine growth retardation and 

preeclampsia in humans, a role for PAI-2 in human placental maintenance and foetal 

development has been suggested25. However, PAI-2 is not required for normal murine 

development, survival, or fertility26, though a phenotype for adipose tissue development 

in PAI-2-/- mice was recently reported27. Dougherty et al26 suggested that as PAI-2 

mRNA is only detected at significant levels in the murine placenta very late in 

gestation28, the lack of obvious developmental phenotypes in PAI-2-/- mice does not 

preclude a role for PAI-2 in human development. Unfortunately, studies investigating 

spontaneous or xenograft tumour growth and metastasis in PAI-2-/- mice have not been 

performed to date, but such experiments would yield invaluable data on the role of PAI-2 

in these processes. 

PAI-2 is also detectable in other human bodily fluids, including; gingival fluid29, 

saliva30, peritoneal fluid31 and infectious pleural effusions32. Furthermore, the ratio of 

intracellular:extracellular PAI-2 can be altered by various factors in vitro33,34. These 
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findings suggest that the secretion of PAI-2 is a highly regulated event that is not solely 

controlled by an inefficient secretion signal. Additionally, non-glycosylated PAI-2 has 

been observed in plasma taken from pregnant women, amniotic fluid and cord blood, and 

in the conditioned medium of U-937 cells exposed to phorbol ester10. As phorbol esters 

induce PAI-2 expression and the presence of cytosolic proteins in the extracellular 

environment is often predicated by cell death, it has been suggested that cell death (tissue 

necrosis or apoptosis) may be one route enabling non-glycosylated PAI-2 to reach the 

extracellular environment10. There is also evidence of non-glycosylated PAI-2 secretion 

by viable primary human monocytes via an ER–Golgi-independent pathway33. Hence, the 

normally low circulating levels of PAI-2 in the blood are not necessarily reflective of 

locally secreted PAI-2 levels in tissues. Finally, despite PAI-2 being approximately 10- 

and 50-fold slower than PAI-1 at inhibiting uPA and tPA, respectively, in vitro35, tPA–

PAI-2 complexes have been detected in both saliva30 and gingival crevicular fluid36, 

while uPA–PAI-2 complexes have been detected in human gestational tissues37. These 

observations provide clear evidence of uPA and tPA inhibition by PAI-2 in vivo.  

Extracellular PAI-2 inhibits uPA through the unique serpin ‘suicide’ trapping 

mechanism. Serpins form covalent complexes with their target proteases, distinct from the 

classical ‘lock and key’ mechanism utilized by other small molecule protease inhibitors. 

The reactive centre loop (RCL) of the serpin acts as a bait for the protease active site but 

before completion of the proteolysis reaction can occur, cleavage of the RCL induces a 

large conformational change in the serpin. This so-called stressed (S) to relaxed (R) 

transition is critical to the inhibitory activity of serpins, involving insertion of the RCL 

into the body of the serpin molecule (as an extra strand of β-sheet A) and a dramatic 

increase in the stability of the molecule. Elegant structural studies (such as Huntington et 

al 2000 Nature38) have been performed on this transition showing that the protease, which 

is still covalently bound to the RCL, moves some 70 angstroms to the opposite pole of the 

serpin molecule during the S to R transition. This effectively crushes the protease, 

distorting the active site and preventing hydrolysis of the acyl-enzyme intermediate, 

effectively trapping the protease in a stable serpin-protease complex (such as uPA–PAI-2). 

Further, the structural transitions associated with the inhibitory action of serpins form the 

basis for selective recognition by cellular receptors such as by members of the LDLR 
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family of endocytosis receptors, with important implications for functions in cell signaling 

and migration (see below and Figures 2 and 3). 

Potential functions of intracellular PAI-2. 

Several novel functions of the intracellular form of PAI-2 have been proposed18, 

which appear to be independent of serpin function. Interactions with a variety of cytosolic 

proteins have been implicated in these functions, including retinoblastoma protein (Rb)39, 

interferon regulatory factor–340, proteasome subunit beta type 141, pre-mRNA processing 

factor 842, annexins (I, II, IV and V)43, and fusion kinase ZNF198/FGFR144. Furthermore, 

intranuclear expression of PAI-2 has been observed39,45,46, where it is thought to interact 

with Rb, preventing Rb degradation39, in addition to modulating its own expression46. An 

emerging theme in these studies is resistance to apoptosis (induced, for example, by 

TNF-α) following over-expression of PAI-244,47-50. These effects appear, however, to be 

cell type or context dependant as PAI-2 knockdown in monocytes had no effect on 

apoptosis induced by serum withdrawal, hydrogen peroxide or a monoclonal antibody to 

CD9551. Additionally, a recent study reported that while TNF-α stimulation increased 

PAI-2 expression in HT-1080 and Isreco-1 cells, over-expression of PAI-2 in these and 

other cells lines conferred no protection against TNF-α induced apoptosis52. Importantly, 

this study used lentiviral-mediated delivery of PAI-2 to maintain heterogeneity of PAI-2 

overexpressing cell lines and thereby avoid any potential clonal bias introduced by 

selection of transfected cells. A role for intracellular PAI-2 in regulation of papilloma 

virus replication and cytopathic effect has also been reported39. These effects were linked 

to the ability of PAI-2 to inhibit papilloma virus induced degradation of Rb and so 

maintain Rb levels39. However, in addition to affording no protection from apoptosis, 

lentiviral-mediated overexpression of PAI-252 affected Rb levels in only one of the three 

cell lines tested and this effect was independent of its protease inhibitory activity.  

Due to these conflicting results, the exact function of intracellular PAI-2 remains 

unclear. Given the observations of non-glycosylated PAI-2 in the extracellular milieu, it 

is possible that intracellular non-glycosylated PAI-2 is released under inflammatory or 

other conditions that result in acute cell death/damage. This, and/or conditions that 

enhance locally secreted glycosylated PAI-2 in tissues could thereby limit 

peri/extracellular proteolysis during tissue remodelling processes. 
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Structural and functional differences between PAI-1 and PAI-2  

Differential vitronectin binding 

At supraphysiological levels, PAI-1 interacts with the ECM component 

vitronectin, and completely blocks the interaction of vitronectin with uPAR and 

integrins53. However, at physiological levels of PAI-1 a more dynamic process takes 

place, in which PAI-1 acts as a ‘molecular switch’, switching its affinity between 

vitronectin and endocytosis receptors following uPA inhibition54. Vitronectin binding 

also stabilises the active (S) conformation of PAI-1 (Refer to Box 1 and 2), preventing it 

from adopting a latent, non-inhibitory conformation55. Consequently, inhibition of uPA 

by vitronectin-bound PAI-1 stimulates directed cell migration partially via facilitation of 

an interaction between vitronectin and co-localised uPAR–integrins (Figure 2A)12. The 

ability of PAI-1 to direct vitronectin-dependent cell adhesion and migration is not 

emulated by PAI-2 as it does not bind to vitronectin56 (Figure 2B). Additionally, despite 

high (but still physiological) PAI-1 levels in metastatic breast tumours, uPA activity is 

still detectable57 and available for inhibition and/or targeting by exogenous inhibitors 

such as recombinant PAI-258-62. So, although PAI-1 and PAI-2 have similar inhibitory 

biochemical properties, these additional interactions of PAI-1 in the pericellular 

environment may have a large influence on its actual inhibitory capability. Thus, in the 

context of the tumour microenvironment, it is likely that secreted/released PAI-2 may be 

the bona fide uPA inhibitor, a hypothesis supported by other researchers63-68.  

Structural differences affecting interactions with endocytosis receptors 

Following inhibition of uPA at the cell surface, uPA–PAI-1 complexes are 

internalised via interactions with at least three members of the LDLR family of 

endocytosis receptors; LRP6,69,70, VLDLr7,71-73 and LRP-274. Internalisation of uPA–PAI-

2 complexes by LRP6 and VLDLr7 has been demonstrated, but PAI-2 endocytosis by 

LRP-2 has not yet been addressed. Importantly, unlike PAI-175, PAI-2 is unable to bind 

directly to these endocytosis receptors6,7 (Figure 2B). Consequently, uPA–PAI-2 binds 

with lower affinity than uPA-PAI-1 to both LRP and VLDLr as determined by surface 

plasmon resonance6,7, a method of direct, real-time measurement of protein-protein 

interactions. Comparison of structural characteristics of PAI-1 and PAI-2 in their relaxed 
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conformations provides a clear explanation for the differential binding of PAI-1 and PAI-

2 to VLDLr and LRP (Figure 3)7. Structural studies have previously identified positively 

charged residues within the helix D of PAI-1 that contribute significantly to the high 

affinity binding of the uPA–PAI-1 complex with LDLR family members76-79. 

Accordingly, these residues conform with the proposed common binding motif for high 

affinity LDLR family ligands of two basic residues separated by 2-5 residues and N-

terminally flanked by hydrophobic residues80. Interestingly, this motif is not conserved 

within the helix D of PAI-27 (Figure 3E), explaining the lower affinity of uPA–PAI-2 for 

this receptor family. Whilst these biochemical differences may seem trivial, the 

biological consequences of this differential receptor binding are quite striking. 

PAI-2 does not mediate cell signaling 

As uPAR is a GPI-anchored protein, with no transmembrane region, signaling 

events initiated by uPAR are mediated via integrins and co-receptors (such as epidermal 

growth factor receptor (EGFR) and FPRL1) that interact with uPAR or the uPAR 

signaling complex17,81-83. The binding of uPA to uPAR induces a variety of cell type 

specific responses, including the activation of p56/p59hck84, the Jak-Stat pathway85,86, 

focal adhesion kinase87-89, protein kinase Cε90, casein kinase 285 and extracellular signal-

regulated kinases 1/2 (ERK)91-93. The interaction of components of the plasminogen 

activation system with members of the LDLR family can indirectly effect signaling 

activity by regulating levels of uPA–uPAR on the cell surface94 and also by directly 

transmitting signals through adaptor proteins attached to the cytoplasmic domains of the 

LDLRs95,96. On MCF-7 breast cancer cells, the ligation of uPA to uPAR stimulates 

transient ERK phosphorylation and vitronectin dependent cell migration17,97. The 

inhibition of uPA by PAI-1 sustains the phosphorylation of ERK, stimulating enhanced 

cell proliferation7,17. These events are facilitated by an interaction with VLDLr (Figure 

2A) and mediated through the high affinity binding site within PAI-117 (Figure 3), via an 

ill-defined mechanism that possibly involves an interaction with β3-integrin17 and trans-

activation of EGFR98. PAI-1 is also capable of stimulating cell migration independently 

of uPA, tPA and vitronectin, as the direct interaction between PAI-1 and LRP increases 

motility through activation of the Jak-Stat pathway99 (Figure 2A).  
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The absence of a high affinity LDLR binding site within PAI-2 precludes binding 

of uPA–PAI-2 to VLDLr with sufficient affinity to induce sustained mitogenic cell 

signaling events in MCF-7 cells7 (Figure 2B). Furthermore, PAI-2 is not able to bind LRP 

independently of uPA6 and is therefore unlikely to activate the Jak-Stat pathway and 

stimulate cell migration mediated by direct binding of PAI-1 to LRP99. Together, these 

data suggest that PAI-2 may be able to inhibit and clear cell surface uPA, and therefore 

inhibit plasmin formation in vivo, without initiating the cell signaling events and 

subsequent increased metastatic potential associated with PAI-1 (Figure 2). Indeed, an 

anti-proliferative effect mediated by the protease inhibitory capacity of extracellular PAI-

2 has been observed with the THP-1 monocyte cell line, though the mechanism 

underlying this effect was not determined100. Direct in vivo experimental evidence of 

these effects would provide a simple explanation for the disparate relationships observed 

between PAI-1 and PAI-2 expression and disease outcome in various cancers. 

 

Prognostic significance of PAI-2 expression in cancer 

Experimental tumour model systems 

The contribution of PAI-2 to improved patient outcome by decreasing tumour 

growth and metastasis is supported by several experimental tumour models. For example, 

PAI-2 has been shown to modulate xenograft metastasis in rodent models using uPA-

expressing cell lines transfected with a PAI-2 expression vector101-103. Both intra- and 

extracellular expression of PAI-2 was observed in these cells, along with the complete 

inhibition of cell surface uPA and significantly decreased ECM degradation in vitro101,102. 

In all cases, xenograft tumours were formed in the presence of PAI-2, but were 

consistently surrounded by a dense collagenous capsule, and metastases were reduced or 

completely absent. In separate studies, intraperitoneal or intratumoural injection of 

recombinant PAI-2 also resulted in decreased tumour size10. The comparable 

physiological outcomes obtained by administration of exogenous PAI-2 and transfection 

of implanted tumour cells with PAI-2 cDNA, suggest that the inhibition of extracellular 

uPA activity is the mechanism underlying this reduction in tumour size and metastasis. 

Additionally, there are multiple in vitro studies that correlate anti-tumourigenic 

phenomena (such as the expression of tumour suppressor genes, anti-angiogenic factors 
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or infection with a tumour suppressing E1A adenovirus) with an increase in PAI-2 

expression104-107, or pro-tumorigenic stimuli (such as oncogene expression or treatment 

with phorbol esters) with a subsequent decrease in PAI-2 levels108,109. 

Overview of clinicopathological evidence 

Concurrent increased protein expression of uPA and PAI-1 is a powerful marker 

of poor prognosis in many different types of solid tumour3,110-112. For breast cancer 

patients, uPA–PAI-1 is predictive of outcome independent of the classical prognostic 

factors and outperforms other biological markers such as estrogen receptors, ERBB2 

(also known as HER-2), p53 and cathepsin D113. In this context, and in light of 

experimental evidence for PAI-2 mediated inhibition of tumour growth and metastasis, 

the prognostic relevance of PAI-2 expression is of significant interest. To this end, we 

have collated the findings of all published data investigating the prognostic value of PAI-

2 expression, which encompasses 50 separate studies covering 15 tumour types (Table 1 

and Table S1). Of those studies that analysed tumour samples against matched normal 

tissue, all found that PAI-2 expression was increased in the tumour over normal tissue, as 

was expression of uPA, uPAR, PAI-1, and occasionally tPA (though the role of tPA in 

cancer is less clear than that of uPA). It is important to note that the arbitrarily assigned 

levels of ‘high expression’ for PAI-2 are consistently much lower than those defined for 

PAI-1 [PAI-1, mean = 32.2 ± 32.1 ng/mg  (n = 7 studies), median = 9.0 ± 6.3 ng/mg (n = 

5 studies); PAI-2, mean = 7.4 ± 9.6 ng/mg (n = 9 studies), median = 2.5 ± 1.1 ng/mg (n = 

8 studies)]5,64,65,114-125, suggesting that a small increase in PAI-1 expression may be able 

to overwhelm the effects of a concurrent increase in PAI-2 levels. However, it must also 

be noted that a proportion of PAI-1 may be in the inactive, latent form and that these 

values reflect antigen levels (as measured by ELISA), which may or may not relate to 

protease inhibitory capacity.  

Whether these observed increases in uPA, uPAR and PAI-1 expression are 

predominantly due to specific polymorphisms or tumour-specific effects of various 

growth factors have not been determined126-129. To our knowledge no tumour-specific 

polymorphisms causing changes in expression of PAI-2 have been identified. As PAI-2 

expression is strongly up-regulated by many inflammatory and/or stress related 

mediators10, increases in tumour-associated PAI-2 may reflect a host response to a 
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rapidly growing and/or invasive tumour and not necessarily increased expression by 

tumour cells. Indeed, where analysed, PAI-2 (as well as uPA, uPAR and PAI-1) within 

tumour sections are often localised to tumour associated stromal cells such as fibroblasts, 

macrophages and endothelial cells63,66,130-139 (Table 1 and Table S1). In some cases 

differential cell type expression of PAI-1 and PAI-2 may potentially contribute to the 

opposing prognoses associated with these two serpins. For example, in one lung cancer 

study PAI-2 expression by the fibroblasts correlated with the absence of lymph node 

involvement, while uPA and PAI-1 in the tumour cells and fibroblasts correlated with 

lymph node involvement139. Additionally, PAI-2 expression in esophageal squamous cell 

carcinoma associated fibroblasts correlated with increased patient survival time137. 

However, in a separate bladder cancer study, no association between stromal PAI-2 and 

patient outcome was found, although only a very small proportion of samples contained 

PAI-2 positive stroma132.  

Breast cancer 

Breast cancer is the most frequently studied cancer type in which the prognostic 

value of PAI-2 expression has been assessed. Strikingly, all of the studies published 

(Table 1) demonstrate a significant association between PAI-2 expression and prognosis.  

Specifically, relatively high tumour-associated PAI-2 expression is linked with prolonged 

survival, decreased metastasis, or decreased tumour size. Conversely, relatively low PAI-

2 expression was associated with the opposite effect. Two studies which found high PAI-

2 expression to be favourable, also found that very low PAI-2 expression was associated 

with a favourable outcome64,140, although these findings may actually reflect the 

concomitant low expression of uPA and PAI-1 in these tumours. Another study suggested 

that high PAI-2 expression was associated with increased sensitivity to tamoxifen 

treatment, in contrast to uPA–PAI-1 expression 122. However, in this study, no link was 

found between estrogen receptor and uPA, PAI-1 or PAI-2 expression, so the mechanism 

of this modulation in tamoxifen resistance is unknown. 

Importantly, multivariate analysis from several studies revealed further sub-

groups of tumours where the combination of high PAI-1 and low PAI-2 had increased 

significance for poor prognosis and vice versa5,65,115,141,142. Furthermore, in a study of 

2780 patients, high PAI-2 expression was an indicator of positive prognosis only in 
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primary invasive tumours that also expressed uPA and PAI-1, and was independent of all 

other clinicopathological parameters5. This study is also corroborated by others in 

breast5,65, head and neck137,143, oral63 and lung144 cancer which demonstrate the 

importance of uPA expression for the significance of PAI-2 expression (Table S1). These 

findings are supported by experimental evidence described above for a role for PAI-2 in 

the inhibition of tumour-associated uPA in vivo. 

Other cancer types 

The results of the relatively few studies conducted into the prognostic value and 

functional role of PAI-2 expression in other cancer types (head and neck, oral, colorectal, 

gastric, lung and pancreatic carcinomas) are not as clear compared with breast cancer, 

however the general trend is towards a positive or neutral outcome associated with PAI-2 

expression (Table S1). Interestingly, all three studies conducted into endometrial cancer 

concluded that increased PAI-2 expression was associated with increased disease 

recurrence, local invasion, or more aggressive tumour stage. These differences may 

reflect functional disparity in the biochemistry of progression and metastasis of other 

tumour types. Ovarian cancer provides an illustration of this concept, where the ability of 

colony stimulating factor-1 (CSF-1) to induce secretion of PAI-2 has been investigated 

with respect to the poor prognosis associated with the high levels of soluble PAI-2 in 

ascites, and the good prognosis associated with high levels of cell associated 

(intracellular) PAI-234,130. As CSF-1 is also known to up-regulate the expression of both 

uPA and PAI-1131 and stimulate tumour cell invasion in a uPA-dependent manner145, it 

seems likely that this effect of CSF-1 is responsible for the poor outcome, and not the 

presence of high levels of secreted PAI-2. Indeed, in these studies, high PAI-1 levels 

were significantly associated with CSF-1 expression by the tumour epithelium131. It is 

also worth noting that CSF-1 is often over-expressed in endometrial tumours145 and this 

may be related to the observation of consistently high PAI-2 expression in more invasive 

endometrial tumours and the shorter survival time for these patients. This observation is 

also consistent with the significant link between high PAI-1 and PAI-2 expression 

observed in the largest study of endometrial cancer patients146. 

In summary, it appears that the significance of PAI-2 expression on prognosis in 

other cancer types is heavily context dependant, generally relies upon uPA expression, and 
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is inversely related to PAI-1 levels. Whilst a possible role for intracellular PAI-2 in 

regulating apoptosis cannot be excluded, any extracellular PAI-2 found in the tumour 

microenvironment may be able to compete for the binding of PAI-1 to uPA. Extracellular 

PAI-2 could thus limit plasmin generation while possibly neutralizing the alternative 

actions of PAI-1. 

 

Concluding remarks  

 Even though PAI-1 can inhibit receptor bound uPA in vivo and in vitro, the 

mechanism/s linking PAI-1 expression to tumour malignancy may be distinct from a 

direct role in inhibition of cell surface plasminogen activation. These mechanisms 

promote cell proliferation, migration and/or de-adhesion and involve interactions between 

PAI-1 and vitronectin or integrins–uPAR–uPA–PAI-1 and LDLRs (Figure 2). Critical 

structural differences in PAI-2 preclude direct high affinity binding to vitronectin or 

members of the LDLR family6,7 and hence PAI-2 does not possess the capability to 

induce these additional cellular responses. Rather, high levels of PAI-2 in the tumour 

microenvironment would facilitate cell surface uPA inhibition and clearance and may 

also counteract PAI-1 stimulatory actions on tumour invasion and metastasis (Figure 2). 

From a clinicopathological perspective, these structural and functional differences may 

thus explain, at least in part, the paradoxical biomarker data for PAI-1 versus PAI-2 in 

cancer prognosis. Therefore, inclusion of PAI-2 expression in clinical analyses would be 

expected to increase the prognostic power of measuring uPA–PAI-1 expression. Further 

animal model studies aimed at directly measuring the relative contributions of PAI-1 and 

PAI-2 to tumour progression are also needed (e.g. measurement of growth and metastasis 

of spontaneous or xenografted tumours in PAI-2 or PAI-1/PAI-2 knockout mice). 

Detailed understanding of the functional differences between PAI-1 and PAI-2 will 

facilitate improved design of uPA-targeted therapies aimed at specifically inhibiting uPA 

activity while avoiding mitogenic and motogenic signaling through LDLRs.  

Only two studies on the prognostic impact of PAI-2 have attempted to distinguish 

between the two topological localizations of PAI-2130,132, and none have determined the 

effect of glycosylation. In the tumour microenvironment, conditions such as hypoxia and 

inflammation can lead to phenotypic changes of the tumour associated stroma, (e.g. 
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cancer associated fibroblasts147) potentially inducing PAI-2 expression and secretion or 

release of PAI-2 protein. It is also possible that the contentious role of intracellular PAI-2 

in the regulation of apoptosis may be of some prognostic influence, but this process is 

currently poorly understood. Hence, it is clear that further studies need to discriminate 

between the functions of the two topologically different forms of PAI-2. 

In conclusion, the emerging evidence for the existence of peri/extracellular PAI-2 

and the clear anti-tumour benefits of inhibition of uPA by PAI-2, as opposed to PAI-1, all 

suggest that PAI-2 plays an important role as an inhibitory serpin in the tumour 

microenvironment. 
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Table 1: PAI-2 expression and breast cancer prognosis. 
Sample 

Size 
Detection 
System Prognostic Impact Ref 

80 ELISA - PAI-2 expression was higher in carcinomas without lymph node involvement, in 
contrast to PAI-1 which was higher in carcinomas with node involvement. 

125 

314 ELISA 

- Low levels of PAI-2 correlated with shorter disease free survival in overall 
population, menopausal women and node-negative patients. 
- Poor prognosis associated with a high PAI-1/low PAI-2 subgroup in the overall 
population and node-negative patients.  
- High uPA/low PAI-2 also indicative of poor prognosis in menopausal women. 

65 

1012 ELISA 
- No association between PAI-2 expression and prognosis in the overall population. 
- Concurrently high uPA/PAI-2 expression associated with prolonged relapse free 
survival, metastasis free survival and overall survival. 

116 

50 RT-PCR - Low PAI-2 expression was associated with lymph node involvement and 
correlated with high uPA/uPAR and PAI-1 levels. 

142 

170 ELISA, 
ICC 

- PAI-2 expression was higher in carcinoma tissue than benign tissue. 
- High levels of PAI-2 expression were associated with prolonged disease free 
survival and overall survival. 
- PAI-2 expressed in both stromal and tumour cells. 

134 

73 ISH, IHC 

- PAI-2 mRNA and protein expressed by tumour cells, fibroblasts, macrophages and 
lymphocytes.  
- PAI-2 (and PAI-1) positive cells predominantly located at the periphery of the 
invasive front of the tumour.  
- The presence of PAI-2 positive cancer cells was associated with prolonged overall 
survival. 
- PAI-2 expression in fibroblasts was associated with decreased lymph-node 
involvement but not associated with overall survival.  

66 

499 ELISA 

- Correlation between PAI-2 expression and increased clinical tumour size, MSBR 
tumour grade and progesterone receptor expression. 
- High or very low PAI-2 expression was linked to prolonged disease free survival. 
- A dissemination risk index based on the opposing influences of PAI-1 and PAI-2 
on uPA demonstrated the shorter disease free survival associated with the increasing 
ratio of PAI-1:PAI-2. 

64 

2780 ELISA 

- PAI-2 expression associated with decreased lymph-node involvement and tumour 
size. 
- High PAI-2 expression is associated with prolonged relapse free survival and 
overall survival. 
- In multivariate analysis, PAI-2 is not associated with improved prognosis unless 
combined with uPA and PAI-1. 

5 

332 ELISA 
- Low PAI-2 expression was associated with shorter relapse free survival in 
multivariate analysis.  
- Worst prognosis was associated with high PAI-1/low PAI-2 expression levels 
whilst low PAI-1/high PAI-2 was associated with favourable prognosis.  

115 

460 ELISA 
- High levels of PAI-2 expression were associated with prolonged disease free 
survival.  
- Prognostic significance was increased when expression of PAI-1 and PAI-2 was 
combined.  

141 

130 RT-PCR, 
ELISA 

- Low and very high levels of PAI-2 mRNA tended to be associated with prolonged 
disease free survival. 
- Levels of PAI-2 mRNA positively correlated with PAI-2 protein. 

140 

691 ELISA - PAI-2 expression was associated with increased sensitivity to tamoxifen treatment, 
in contrast to uPA/uPAR/PAI-1, 

122 

148 ELISA PAI-2 expression correlated with prolonged overall and disease free survival. 113 
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Figure 1. Proteolytic cascade regulating plasminogen activation at the cell surface. 
Schematic representation of the classical role of uPA, showing the assembly and 
regulation of the plasminogen activation proteolytic cascade via interactions with various 
cell surface co-receptors, inhibitors and ECM molecules. The serine protease uPA, bound 
to its specific cell surface receptor (uPAR), efficiently cleaves cell surface bound 
plasminogen zymogen at the Arg580-Val581 amide bond, activating the broad spectrum 
serine protease plasmin148,149. Multiple plasmin/ogen receptor proteins have been 
identified148 and uPAR is anchored to the plasma membrane outer leaflet via a glycosyl-
phosphatidylinositol (GPI) moiety. In a feed-forward loop, activation of uPAR-bound 
pro-uPA to two-chain uPA via plasmin-mediated proteolytic cleavage facilitates further 
activation of additional co-localised plasminogen to plasmin. As receptor bound plasmin 
is refractory to inhibition by its circulating inhibitor α2-antiplasmin (α2-AP), this cyclical 
positive feedback mechanism is highly effective in amplifying plasmin production149,150. 
Plasmin promotes tissue degradation and remodelling of the local extracellular 
environment directly, by degrading extracellular matrix molecules and 
activating/releasing latent growth factors148,149. Plasmin also potentially activates a 
limited sub-set of pro-matrix metalloproteinases (pro-MMPs) such as pro-MMP-2 and -9,  
though other activation mechanisms may be more relevant in vivo151.The proteolytic 
activity of both soluble and receptor-bound uPA is efficiently inhibited by plasminogen 
activator inhibitors type-1 and -2 (PAI-1 and PAI-2)10,152,153. Upon uPA inhibition and 
formation of uPA-PAI complexes, uPAR/uPA-PAI associates with low-density 
lipoprotein receptor (LDLR) proteins, leading to endocytosis degradation of uPA-PAI 
complexes, and partial recycling of unoccupied uPAR to the cell surface153. 
Not shown: Plasminogen is also activated by plasma kallikrein154 and tissue-type 
plasminogen activator (tPA)10. The activation of tPA is potentiated by co-binding to 
fibrin and several cell surface receptors/binding moieties10,155,156. 
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Figure 2: The proposed mechanism of improved patient prognosis associated with 
high PAI-2 expression. Differing cell surface interactions may explain the disparity 
between PAI-1 and PAI-2 in cancer prognosis. (A) In tumours with low PAI-2 levels, 
PAI-1 contributes to poor patient prognosis through the stimulation of tumour 
vascularization, growth and metastasis. This is achieved through various complex 
interactions that increase both cell proliferation and migration. PAI-1 bound to 
vitronectin prevents cellular attachment via uPAR and integrins. However upon uPA 
inhibition, PAI-1 loses its affinity for vitronectin, freeing up vitronectin for binding by 
the now co-localised uPAR and integrins - initiating the rounds of cell attachment and de-
attachment required for efficient cell migration12. Following uPA inhibition, uPA-PAI-1 
binds with high affinity to members of the LDLR family, stimulating endocytosis, 
degradation of uPA-PAI-1, and partial recycling of the receptors. However, this 
interaction also generates other cell type- and receptor-specific responses. The interaction 
of uPA-PAI-1 with LRP causes a decrease in ERK phosphorylation and cell migration94, 
although it may also cause a loss in cell adhesion due to the removal of integrins from the 
plasma membrane13. The interaction of uPA-PAI-1 with VLDLr stimulates sustained 
ERK phosphorylation and increases cell proliferation17. Additionally, PAI-1 can bind 
directly to LRP, inducing activation of the Jak/Stat pathway, leading to increased cell 
motility99. 
(B) High PAI-2 levels in tumours may contribute to good patient outcome solely via 
inhibition of uPA, which ultimately reduces invasive capacity by preventing plasmin-
mediated ECM degradation and growth factor activation. While uPA-PAI-2 is cleared 
from the cell surface via interactions with both LRP and VLDLr, these are of lower 
affinity than uPA-PAI-1 due to the lack of a complete LDLR binding motif in PAI-27. 
Therefore, unlike uPA-PAI-1, endocytosis of uPA-PAI-2 via VLDLr does not induce 
signaling events leading to cell proliferation7. Additionally, PAI-2 does not bind directly 
to LRP6, therefore it is unable to induce cell migration through binding of this receptor.   
High PAI-2 levels also potentially compete with vitronectin-bound PAI-1 for uPA 
binding, preventing the removal of PAI-1 from vitronectin, and therefore decreasing 
vitronectin dependent cell migration. 
 Nb: Some interactions not directly involving PAI-1 or PAI-2 have been omitted for the 
sake of clarity. 
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Figure 3. Structural comparison of PAI-1 and PAI-2 receptor-binding interfaces 
showing position of key receptor binding residues. Comparison of structural 
characteristics of PAI-1 (PDB code 9PAI157) and PAI-2 (PDB code 1JRR158) in their 
relaxed conformations (i.e. mimicking the conformation in uPA–serpin complexes). 
Arg76, Lys80 and Lys88 within and adjacent to helix D, along with Arg118 and/or Lys122 
mediate binding of uPA:PAI-1 to LRP and VLDLr77,78, with Arg76 forming part of a 
cryptic high-affinity binding site for LRP exposed by complex formation with uPA79. 
These residues conform with the proposed common binding motif for LRP ligands80 but 
this motif is not conserved in PAI-2. The corresponding residue to Arg76 in PAI-1 is 
conserved in PAI-2 (Arg108) but the residue corresponding to Lys80 is replaced by Ser112 
in PAI-2 and the adjacent hydrophobic residue is not conserved. Further, there are clear 
differences in the surface topography and overall electrostatic charge between PAI-1 and 
PAI-2. (A and B) Ribbon diagram showing secondary structure and key binding residues 
around α-helix D of PAI-1 and PAI-2. (C and D) Surface representation showing regions 
of positive electrostatic potential in blue, negative potential in red, and neutral regions in 
white. (E) Alignment of helix D amino acid sequence from PAI-1 and PAI-2. The 
putative minimal binding motif80 in PAI-1 is underlined with basic and hydrophobic 
residues highlighted in yellow and blue respectively. 
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Box 1. Nomenclature and structure of serpin genes and proteins. 

The serpins are a large, broadly distributed family of structurally similar but 
functionally diverse proteins, with over 1500 members in many phyla (including animals, 
plants, bacteria and virus). A comprehensive review and phylogenetic analysis of the 
serpin gene family led to the identification of 16 clades (A-P) and construction of a 
systematic nomenclature that is now becoming more widely used159. 

Most serpins function as inhibitors of serine proteases but some have activity 
against cysteine proteases and there are rare examples of non-inhibitory functions 
including hormone transport, molecular chaperone activity and chromatin condensation. 
Demonstrated physiological roles of serpins are diverse and include regulation of 
fibrinolysis, apoptosis, tumour suppression, inflammation, development, and blood 
pressure regulation. Numerous examples of mutation or altered expression of serpins have 
been described with various pathological consequences (so-called “serpinopathies”), 
including emphysema, hypertension, thrombosis, liver disease, metastasis, and dementia. 
A comprehensive database1 of serpin mutations is available at the Structural Medicine 
Lab at the Cambridge Institute for Medical Research. 

The structural biology of serpins is quite unique (refer Figure 3) and has been 
studied intensely (over 70 solved structures in the RCSB Protein Data Bank2). The native 
structure of serpins is highly conserved (consisting of 3 β-sheets and 7-9 α-helices) 
(Smart:SM000933, Pfam:PF000794) and instead of folding into the most stable 
conformation, serpins folding into a metastable state that has been likened to a form of 
“molecular mousetrap” (refer Box 2). In this state, the flexible reactive centre loop (RCL) 
is extended as a kind of “bait” for the target protease. Many of the pathological serpin 
mutations have been shown to render the inhibitors inactive by causing misfolding or 
polymerization of mutant proteins (for detailed review see Whisstock and Bottomley, 
2006 Current Opinion in Structural Biology55). For a more detailed overview of serpin 
biology, refer to Law et al 2006 Genome Biology160 and the Whisstock Lab serpin page5 

                                                 
1 http://www-structmed.cimr.cam.ac.uk/Serpins/serp_regions/table2.html 
2 http://www.pdb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/pdb53_report.html 
3 http://smart.embl.de/smart/do_annotation.pl?DOMAIN=SM00093 
4 http://pfam.sanger.ac.uk/family?acc=PF00079 
5 http://en.wikipedia.org/wiki/Serpin 

http://www-structmed.cimr.cam.ac.uk/Serpins/serp_regions/table2.html
http://www.pdb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/pdb53_report.html
http://smart.embl.de/smart/do_annotation.pl?DOMAIN=SM00093
http://pfam.sanger.ac.uk/family?acc=PF00079
http://en.wikipedia.org/wiki/Serpin
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Box 2.  
For a detailed description of the serpin inhibitory mechanism refer to Huntington et 

al 2000 Nature38; Whisstock & Bottomley 2000 Current Opinion in Structural Biology55) 
and this Movie6 of serpin inhibitory mechanism from the Structural Medicine Lab at the 
Cambridge Institute for Medical Research. 
 
 
 
 
 
  

                                                 
6 http://huntingtonlab.cimr.cam.ac.uk/Movies/serpin_mech05.mov 

http://huntingtonlab.cimr.cam.ac.uk/Movies/serpin_mech05.mov
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