
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Science, Medicine and Health - 
Papers: part A Faculty of Science, Medicine and Health 

25-3-2013 

Five practical uses of spatial autocorrelation for studies of coral reef Five practical uses of spatial autocorrelation for studies of coral reef 

ecology ecology 

S Hamylton 
University of Wollongong, shamylto@uow.edu.au 

Follow this and additional works at: https://ro.uow.edu.au/smhpapers 

 Part of the Medicine and Health Sciences Commons, and the Social and Behavioral Sciences 

Commons 

Recommended Citation Recommended Citation 
Hamylton, S, "Five practical uses of spatial autocorrelation for studies of coral reef ecology" (2013). 
Faculty of Science, Medicine and Health - Papers: part A. 404. 
https://ro.uow.edu.au/smhpapers/404 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

https://ro.uow.edu.au/
https://ro.uow.edu.au/smhpapers
https://ro.uow.edu.au/smhpapers
https://ro.uow.edu.au/smh
https://ro.uow.edu.au/smhpapers?utm_source=ro.uow.edu.au%2Fsmhpapers%2F404&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=ro.uow.edu.au%2Fsmhpapers%2F404&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=ro.uow.edu.au%2Fsmhpapers%2F404&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=ro.uow.edu.au%2Fsmhpapers%2F404&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/smhpapers/404?utm_source=ro.uow.edu.au%2Fsmhpapers%2F404&utm_medium=PDF&utm_campaign=PDFCoverPages


Five practical uses of spatial autocorrelation for studies of coral reef ecology Five practical uses of spatial autocorrelation for studies of coral reef ecology 

Abstract Abstract 
The organisation of benthic communities across coral reefs is underpinned by spatially structured 
ecological processes and neighbourhood interactions such as larval dispersal, migration, competition and 
the spread of disease. These give rise to spatial autocorrelation in reef communities. This paper 
demonstrates how the measurement of spatial autocorrelation can profitably be incorporated into studies 
of coral reef ecology through a series of 5 simple statistical exercises: for the generation of maps 
depicting the strength of spatial relationships between ecological communities, as an indicator of optimal 
dimensions for sampling ecological communities on coral reefs, as a diagnostic tool for model 
misspecification, as an indicator of a spatial process underpinning the distribution of an observed 
community pattern and as a surrogate for missing variables in a model. The benefits of incorporating 
spatial autocorrelation include (1) quantifying the extent and pattern of autocorrelation across reefs, (2) 
signifying the presence of redundant information in field datasets, (3) indexing the nature and degree to 
which fundamental assumptions of classic (i.e. non-spatial) statistical techniques are violated, (4) 
indicating the nature (spatial versus non-spatial) of an observable pattern to be modelled, and (5) offering 
an opportunity to partition out and utilise the spatially structured component of model error as a 
surrogate for a missing variable. Collectively, the statistical exercises presented here provide a persuasive 
case for the measurement and interrogation of spatial autocorrelation in studies of coral reef ecology. 

Keywords Keywords 
practical, uses, spatial, five, autocorrelation, ecology, studies, coral, reef 

Disciplines Disciplines 
Medicine and Health Sciences | Social and Behavioral Sciences 

Publication Details Publication Details 
Hamylton, S. (2013). Five practical uses of spatial autocorrelation for studies of coral reef ecology. Marine 
Ecology: Progress Series, 478 (N/A), 15-25. 

This journal article is available at Research Online: https://ro.uow.edu.au/smhpapers/404 

https://ro.uow.edu.au/smhpapers/404


1 
 

 

 

Why use spatial statistics in coral reef ecology? Five practical reasons to measure spatial 
autocorrelation 

S. Hamylton and V.Harwood 

School of Earth and Environmental Sciences, University of Wollongong, Australia, NSW2522. 

Email: sarah_hamylton@uow.edu.au 

Tel: +61 42213589 

Abstract 

The organisation of benthic communities across coral reefs is underpinned by spatially structured 

ecological processes and neighbourhood interactions such as larval dispersal, migration, 

competition and the spread of disease. These give rise to spatial autocorrelation in reef 

communities. This paper demonstrates how the measurement of spatial autocorrelation can 

profitably be incorporated into studies of coral reef ecology through a series of five simple 

statistical exercises: for the generation of maps depicting the strength of spatial relationships 

between ecological communities, as an indicator of optimal dimensions for sampling ecological 

communities on coral reefs, as a diagnostic tool for model misspecification, as an indicator of a 

spatial process underpinning the distribution of an observed community pattern and as a surrogate 

for missing variables in a model. The benefits of incorporating spatial autocorrelation include i. 

quantifying the extent and pattern of autocorrelation across reefs, ii. signifying the presence of 

redundant information in field datasets, iii. indexing the nature and degree to which fundamental 

assumptions of classic (i.e. non-spatial) statistical techniques are violated, iv. indicating the nature 

(spatial vs. non-spatial) of an observable pattern to be modelled, and v. offering an opportunity to 

partition out and utilise spatially structured components of model error as a surrogate for a missing 

This article was originally published as: 
Hamylton, S. (2013). Five practical uses of spatial autocorrelation for studies of 

coral reef ecology. Marine Ecology: Progress Series, 478, 15-25. 
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variable. Collectively, the statistical exercises presented here provide a persuasive case for the 

measurement and interrogation of spatial autocorrelation in studies of coral reef ecology. 

Spatial statistics, Autocorrelation, Moran, Geary 

1.0 Introduction 

It has long been established that coral reefs and the benthic communities they support, including 

hard and soft corals, sponge populations, algae and seagrasses, are structured in space (Vaughan, 

1915; Done, 1983). This structure arises from contemporary environmental influences such as water 

depth, exposure to incident waves, ambient light availability, hurricane activity and terrestrial input 

from rivers (Geister, 1977; Sheppard, 1982; Kleypas 1999; Harmelin-Vivien, 1994; Fabricius, 

2005a), biological influences such as competition, larval dispersal and the spread of disease (Paris-

Limouzy, 2012; Porter et al., 2001) and geological influences, such as the configuration of 

antecedent Pleistocene platform and availability of suitable substrate for the settlement of coral 

larvae (Hopley et al. 2007; Hubbard, 1997). These factors, which often act in synergy across the reef 

seas, lead to the presence of spatial autocorrelation in coral reef communities. Spatial 

autocorrelation refers to the correlation of a single reef characteristic as a function of its position in 

geographic space, such that characteristics at proximate locations tend to be related. This is a 

fundamental property of most ecological datasets collected on coral reefs. It arises because of 

ecological processes that abide by Tobler’s First Law of Geography: “everything is related to 

everything else, but near things are more related than distant things” (Tobler, 1970). 

 

Positive spatial autocorrelation means that geographically nearby reef characteristics, such as 

percentage live coral cover, tend to be similar because of spatially structured processes and 

neighbourhood interactions (Hamylton, 2012a). The presence of spatial autocorrelation introduces 

numerous deviations from the assumptions of classical statistics that warrant attention in studies of 
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coral reef ecology. These deviations can be addressed through the application of spatial statistics, a 

collection of analytical techniques and models in which a clear association is maintained and 

exploited between quantitative data and the spatial coordinates that locate them (Chorley 1972). The 

breadth of disciplinary interest in spatial analysis is evidenced by several review papers, books and 

edited collections on the subject, spanning ecology marine metapopulations, rainforest ecology, 

urban ecology and reserve design (Legendre, 1993; Lichstein et al., 2002; Fortin and Dale, 2005 

McIntire and Fajardo, 2009)). The development of geospatial technology in the form of 

geographical information systems, geographical positioning systems and remote sensing instruments 

over the last fifty years has provided exciting opportunities for the analysis of spatial patterns on 

coral reefs. Yet many studies of marine ecology, in particular those of coral reefs, fail to adequately 

address spatial autocorrelation (but for examples of spatially explicit studies of coral reef ecology, 

see Table 1 of Hamylton et al., 2012b; of the 11 studies listed, only 1 explicitly incorporates spatial 

autocorrelation).  

 

This paper demonstrates the practical value of incorporating spatial autocorrelation into coral reef 

ecological studies through a series of five simple statistical exercises:  

(1) to depict the strength of spatial relationships between ecological communities across a given 

geographical area,  

(2) as an indicator of optimal dimensions for sampling ecological communities on coral reefs,  

(3) as a tool for diagnosing model misspecification,  

(4) as an indicator of a spatial process underpinning the distribution of an observed community 

pattern, and  

(5) as a surrogate for missing variables in a model.  
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In relation to the first exercise, coral reef ecologists often wish to detect and characterise spatial 

patterns across a reef platform to ascertain how community assemblages are organised along 

gradients (Bak and Newland, 1995; Fabricius et al. 2005b). To achieve this, spatial autocorrelation 

is measured at both the global and local scales to provide information on the nature of spatial 

relationships between benthic communities across a complete reef platform.   

 

In relation to the second exercise, the collection of community composition information in the field 

relies on an appropriate sampling strategy given the inherent spatial variability of the community 

(Fortin and Dale, 2005). This may vary across reef zones and attempts have been made to define 

optimal sampling approaches for coral reef fishes (Houk et al., 2006), hard corals (English et al., 

1997; Murdoch and Aronson, 1999) and soft sediment benthic communities (Schlacher et al., 1998). 

In accordance with Tobler’s First Law of Geography, if two points on a coral reef are close together 

in space, it follows that they will be similar in character. Depending on distance between samples, 

the presence of spatial autocorrelation can therefore indicate information redundancy where a field 

campaign has sampled points that are close together. The second exercise derives a semivariogram 

from multiple measures of autocorrelation to specify the distance between two field locations at 

which the variance between two points is no longer distance-dependent and they can be considered 

independent of each other.  

 

The third, fourth and fifth exercises draw links between community patterns and environmental 

processes, which is a common objective for marine ecologists (Vellend, 2010). As large-scale 

georeferenced datasets, sophisticated statistical methods and adequate computing power have 

become increasingly available, coral reef studies more frequently employ model-based statistical 

inference to determine whether spatial variation in community composition can be explained by 



5 
 

environmental factors (Harborne et al., 2006; Mellin et al., 2010; Arias-Gonzalez et al., 2011; 

Pittman and Brown, 2011). Spatial autocorrelation can be usefully employed in such studies (for 

example, see Mellin et al. 2010). This utility is demonstrated in the third exercise, where 

autocorrelation is used to diagnose model misspecification for a common modelling scenario that 

utilises a classic statistical approach (e.g. ordinary least squares regression) as opposed to spatial 

statistical approach.  

 

The presence of interactive (or neighbourhood-context) effects in ecological communities suggests a 

need for a model with a spatially dependent covariance structure (Cliff and Ord 1981). The fourth 

exercise achieves this by introducing an spatially explicit autoregressive term to the ordinary least 

dquares equation. This has the effect of regressing the dependent variable against values of itself at a 

given distance away (or spatial lag). The fifth exercise subdivides the error term associated with the 

regression equation into spatially structured unexplained and unexplained components. This enables 

the spatial structure of error to be built into the model without the cause necessarily being known. 

The approaches outlined in these latter exercises avoid statistical pitfalls associated with failing to 

account for autocorrelation in ecological datasets and draw on the inherent spatial structure of the 

data to enhance model performance. 

 

1.1 Study Site and Datasets employed 

The study site selected for these exercises was Central Bommie, a lagoonal platform reef at One 

Tree island on the Great Barrier Reef (Figure 1). This reef platform (area 7066 m2) sits in 

approximately 2.5 m water depth, the shallow surface of central platform becomes explosed at low 

tide and is topped by a matrix of unconsolidated carbonate, algae and sparse corals. The deeper 

platform periphery and sides remain submerged throughout the tidal cycle and are composed of a 
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concentric ring of live coral, soft corals and dead coral on which calcified algae have encrusted. This 

configuration is typical of many intertidal lagoonal reefs, both on the Great Barrier Reef and 

elsewhere in the reef seas due to the differing degrees of aerial exposure of platform surfaces 

(Hopley et al. 2007). Figure 1  illustrates the associated datasets utilized for the statistical exercises 

in the present study, which include a satellite image, a digital elevation model and a detailed record 

of the benthic community in the form of an underwater phototransect across the reef platform.    

 

 
Figure 1. A Location of Central Bommie (152o4’43.20”E; 23o29’48.68”S), the case study site at 
One Tree Island and B-D the datasets associated with the present study. B A transect profile of 47 
underwater photographs across the reef platform, C WorldView-2 satellite image of Central 
Bommie, D A digital elevation model of Central Bommie. 

 

Table 1 and Figure 1 summarise the datasets collected to support the statistical exercise on Central 

Bommie. These include a WorldView-2 satellite image covering the entire island and reef system, a 

collection of detailed underwater photographs along a transect profile across the reef platform from 
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which data on community assemblages were derived, and two datasets of bathymetric point 

measurements of water depth from which a detailed bathymetric model of the reef platform structure 

was derived. 

 
 

Dataset Description 
WorldView-2 satellite image of One Tree 
Island and reef system acquired in October 
2011 

Satellite image composed of 8 wavebands, 
spatial resolution 2 m. Image was processed to 
retrieve benthic community reflectance through
the application of atmospheric and water 
column correction (see section 2.1). 

Detailed underwater photographs taken in 
October 2011 

42 underwater photographs taken in-situ 
across a transect traversing the reef platform 
with a Nikon D7000 digital SLR camera in a 
Nauticam housing. Photographs were taken 
approximately 1 m apart, 50 cm above the 
ground such that each image covered a field 
of view of approximately 1 m2 with an 
overlap of approximately 20% on either side 
of the image. 

Community composition data Each underwater photograph was visually 
assessed and the presence and % cover of the 
following community components were 
recorded: live branching coral, live encrusting 
coral, dead coral, carbonate sand, rubble, 
macroalgae, calcified algae, sponges and 
invertebrates. These multivariate measures of 
community composition were then reduced to 
a single variable using the ordination 
technique of correspondence analysis. 

Laser Airborne Depth Sounder (LADS) 
bathymetric point measurements 

52 water depth points acquired using an 
airborne Laser Airborne Depth Sounder 
(LADS)  

Ceeducer Pro echosounder bathymetric point 
measurements 

105 water depth points measured with a 
Ceeducer Pro single beam echosounder 
mounted to the hull of a boat. All depth 
measurements across the reef platform were 
taken during October 2011 and corrected to 
mean sea level using data from a tide gauge 
installed nearby at Shark Alley in the One 
Tree Island lagoon. The tide gauge was 
composed of a pressure transducer and 
Campbell 21X datalogger. 

Digital bathymetric model A synoptic digital bathymetric model of the 
reef platform was derived by interpolating the 
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157 water depth points to a continuous raster 
surface of 1m spatial resolution. This was 
achieved by applying an inverse distance 
weighting algorithm to the shapefile dataset of 
157 bathymetric point measurements. 

 Table 1. The datasets employed by the case studies presented. 

2.0 Methodology 

2.1 A map depicting the strength of spatial relationships between ecological communities 
across a study area 

 

To quantify spatial autocorrelation it was necessary to regress the correspondence for multiple 

measures of reef community character against the distance between point locations for which that 

character was measured in space. The satellite image was pre-processed to correct for the influence 

of the atmosphere and water column on light transfer using standard image processing algorithms 

(Cooley et al. 2002; Lee et al. 1998, 1999). Reflectance values could then be interpreted as 

indicative of benthic community character. The Moran’s I statistic was used to capture the extent to 

which the reflectance in the blue band of the Worldview2 image (450-500 nm wavelength) covaried 

with itself across space.  This was calculated as the cross product for a given reflectance value, z ,at 

location i across a defined neighbourhood, N: 

 

I (d) = 

1
W

wij (z(i)  z)(z( j )  z)
jN (i)


(i)


1
n

(z(i)  z)2

jN (i)


                Equation 1 

where  d = distance class on which Moran’s I is calculated  

zi = benthic community reflectance at location i 

N = the neighbourhood within which reflectance values are sampled 

˜ z  =  the mean of the z values 

W= the sum of the weights wij for the given distance class. 
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Moran’s I takes the value of 1 when sites i and j are at or within a distance d and 0 otherwise. In this 

way, only the pairs of sites (i,j) within the stated distance class (d) of each point location were taken 

into account. This yielded a large and positive statistic in the presence of positive spatial 

dependence, a large and negative statistic in the presence of negative spatial dependence and was 

close to zero with a random map pattern.  

The statistic was calculated at both the local and global scale for benthic reflectance values 

represented in a raster grid using the Spatial Autocorrelation (Moran’s I) tool in ArcGIS 10. For 

the local scale calculation, a neighbourhood of 20 m was defined around each pixel in the raster 

grid and comparisons were drawn against all pixels falling inside this. At the global scale, each 

pixel location was systematically compared to every other pixel location in the dataset.  

2.2 An indicator of optimal dimensions for sampling ecological communities on coral reefs 

A semivariogram was generated using the exploratory function within the Geostatisical Analyst 

tools of ArcGIS10. This was generated using values from the preprocessed raster grid file that 

corresponded to benthic community reflectance (see section 2.1). The semivariogram was based 

on the Geary’s c statistic, which measured correspondence for a given distance class d, on the 

basis of the squared difference of a particular characteristic between two point locations zi and zj: 

c(d) 

1
2W

wij (z(i)  z( j ) )
2

jN (i)


(i)


1

n1
(z(i)  z( j ) )

2

jN (i)


                Equation 2 

 
 
This measure ranged from 0 to some unspecified value larger than 1. It was small and positive if 

the map pattern has positive spatial dependence, large and positive if the map pattern had negative 

spatial dependence and intermediate between these extremes if the map pattern was random, with a 

value of 1 under the null hypothesis of no spatial correlation. The corresponding semivariogram 



10 
 

went beyond immediate neighbours to decompose and describe spatial structure for a given series 

of spatial lag (distance) classes (through first, second and third order neighbours) as follows: 

2

)),((
)()( )()(

1
)(  











i hjidj
ji zzh

N
h         Equation 3 

where h = the order of neighbours defined (e.g. third order). 

2.3 A tool for diagnosing model misspecification 

An ordinary least squares model was run to regress community composition as a response variable 

against water depth as an independent variable using the freely available spatial analysis software 

GeoDa (Anselin, 2003). Community composition was estimated as a dependent variable for each 

of 42 underwater photographs taken along transect across the reef platform and represented in a 

spatial dataset as a point shapefile (Table 1). Photographs were taken approximately 1 m apart, 50 

cm above the ground such that each image covered a field of view of approximately 1 m2 with an 

overlap of approximately 20% on either side of the image. Each photograph was visually 

interpreted and the percentage area covered was estimated for the following categories: live 

branching coral, live encrusting coral, dead coral, carbonate sand, rubble, macroalgae, calcified 

algae, sponges and invertebrates. This generated a multivariate dataset that captured a wide range 

of reef community types. The ordination technique of correspondence analysis (Legendre and 

Legendre, 1998) was then used to reduce the multivariate dataset in a manner that best represented 

the multi-dimensional nature of ecological data (Dray et al. 2012). Values from the first 

correspondence axis, which explained 88% of the variability in the dataset, were taken as a 

measure of community composition and treated as the response variable.  

The average water depth of the area of reef platform covered by each underwater photograph was 

extracted from the digital bathymetric model (Table 1). This information was added to the point 

shapefile using the Add Surface Information tool within the 3d Analyst tools of ArcGIS10. The 
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ordinary least squares regression was therefore run using GeoDa on a shapefile composed of 42 

points along with their corresponding community and water depth information across the reef 

platform. Residuals of the ordinary least squares model were calculated for each point and to 

diagnose the presence or absence of spatial autocorrelation, the Moran’s I statistic of the model 

residuals was calculated.  

2.4 An indicator of a spatial process underpinning the distribution of an observed 

community pattern 

 
The ordinary least squares regression model described in section 2.3 was respecified as an 

autoregressive model to incorporate a neighbourhood context effect operating through a spatially 

lagged expression of the response variable itself: 

 

(i)  0  1X1(i)   wijY ( j)  e(i) i 1, ... , n
jN (i)

               Equation 4 

 

where      ρ = a parameter associated with the interaction effect,  

n = the number of sample locations, 

X1(i) is the independent variable (in this case, water depth) at location i,  

Y(j) is the community composition at location j 

e(i) = independent, normally distributed error term,  

β0 and β1  = coefficients estimated using the model.  

To introduce a spatially lagged autoregressive term, it was necessary to construct a spatial weights 

matrix (wij), to express for each case those locations that belonged to its neighbourhood, such that 

wij=1 when i and j were neighbours and wij=0 otherwise (Anselin and Bera 1998). A range of 

different weights matrices can be constructed to incorporate varying definitions of the 

neighbourhood surrounding a point (e.g. within a user-defined Euclidean distance band, or 
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selecting a specified number of nearest neighbours). The spatial weights matrix and the spatially 

lagged autoregressive model were constructed in GeoDa using the shapefile of 47 points with 

corresponding coral cover and water depth information described in section 2.3.  

 

2.5 A surrogate for a missing model variable  

Finally, a spatial error model was constructed using the same community dataset as that described 

in sections 2.3 and 2.4. It assumed that the unexplained variation was normally distributed and 

partitioned out the spatially structured component of model error, which was expressed alongside a 

spatial autoregressive component as follows: 

Y(i)= β0 + β1X1(i) + u(i)         Equation 5 

 

u(i)= ρΣjєN(i) w(i,j)u(j) + e(i)        Equation 6 

 

where  u(i) = sum error of the linear regression model for case i,.  

u(j) = sum error of the linear regression model for case j,  

e(j) = unexplained random error.  

 

As with the autoregressive model described in section 2.4, the spatial weights matrix and the 

spatial error model were constructed in GeoDa using the shapefile of 47 points with corresponding 

community composition and water depth information. 
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3.0 Results 

 

3.1 A map depicting the strength of spatial relationships between ecological communities 

across a study area 

 

Figure 2 illustrates the Moran’s I statistic of spatial autocorrelation, calculated locally around each 

point for a neighbourhood radius of 20 m (plotted across the raster grid) and also calculated globally 

(inset univariate Moran scatterplot). At the local scale, low values indicated negative spatial 

autocorrelation was apparent in a concentric ring around the reef platform periphery, with higher 

values across the upper platform surface. At the global (i.e. reef platform) scale, positive spatial 

autocorrelation was apparent (Moran’s I = 0.90).  



14 
 

 

Figure 2. Spatial autocorrelation (Moran’s I) of the reflectance values that comprise the satellite 
image of the reef platform at One Tree Island (spatial resolution 1 m). A. Measured locally for each 
point in the raster grid (within a neighbourhood of 20 m), and B. Measured globally by comparing 
each point systematically to every other point in the dataset. The univariate Moran scatterplot  
shows the spatial lag of the variable (reflectance) on the y-axis (WR1)  and the original variable (R1) 
on the x-axis . 
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3.2 An indicator of optimal dimensions for sampling ecological communities on coral reefs 

Figure 3 illustrates a plot of the spatial lag between two point locations against the Geary statistic, 

which yielded a curve with a sill point, a nugget and a range. The sill point represented the point at 

which Geary’s c levelled off and no further increase in the statistic was observed as the distance 

between point pairs increased. This corresponded to a given distance range beyond which benthic 

community components no longer influenced each other. The nugget represented the value of the 

Geary statistic at distance = 0 m. In the case of the reflectance values of the reef platform satellite 

image, the semivariogram was best described (that is, with minimal residuals) by a Gaussian 

function with a sill at γ =1.217x103 and a range of approximately 20 m.  

 

Figure 3. Semivariogram for the reflectance values of the reef platform satellite image, best 
described with a Gaussian function with a range of approximately 20 m (distance between which the 
characteristics associated with point locations on the reef platform no longer influence each other), a 
nugget of 0.06 x 10-3 and a sill at γ =1.217 x 10-3. 
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3.3 A tool for diagnosing model misspecification, an indicator of a spatial process 

underpinning the distribution of an observed community pattern and a surrogate for a 

missing model variable 

Table 2 summarises the results of three regression models of community composition across 

Central Bommie against water depth across the reef platform. In the first instance, an ordinary least 

squares regression was run, in the second instance, a spatially lagged autoregressive model was run 

and in the third instance, a spatial error model was run. In the second and third models, 

incorporation of the autoregressive terms enhanced model performance (R2 increased from 0.87 for 

the ordinary least squares model to 0.93 and 0.91 respectively for the spatially lagged 

autoregressive model and the spatial error model). In addition to this, the presence of spatial 

dependence in the model residuals was reduced (Moran’s I reduced from 0.93 to -0.07 and -0.01). 

ORDINARY LEAST SQUARES REGRESSION 
Adjusted R2  0.87  
N (degrees freedom) 42 (40) 
Moran’s I (residuals) 0.93 
β Coefficient -8.64 
β Water depth -93.50 
T-statistic Coefficient (p value) -3.44 (p < 0.002) 
T-statistic Water depth (p value) -16.33 (p<0.001) 

SPATIALLY LAGGED AUTOREGRESSION 
Adjusted R2  0.93 
Moran’s I (residuals) -0.07 
β Coefficient -4.28 
β Water depth -42.28 
Ρ interaction parameter 0.57 

SPATIAL ERROR REGRESSION 
Adjusted R2  0.91 
Moran’s I (residuals) -0.01 
β Coefficient -7.21 
β Water depth -86.83 
Ρ interaction parameter 0.44 

 

Table 2.  Results of a classic ordinary least squares regression (section 2.3), spatially lagged 
autoregression (section 2.4) and spatial error regression (section 2.5) between the reef community 
composition on the reef platform and water depth. R2 indicates proportion of variation observed in 
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the dataset explained by the regression equations, β corresponds to the coefficient applied in the 
regression equation and the p-values associated with the T-test indicate the probability of attaining 
the result observed under the null hypothesis. 

 

4.0 Discussion 

The magnitude and spatial configuration of locally- measured autocorrelation plotted across the map 

in Figure 2 indicated the variable extent to which Tobler’s Law is being played out across the reef 

surface (Haining, 2003). As has been observed in terrestrial ecosystems, the measures of Moran’s I 

indicated contradictory processes, i.e. both positive and negative autocorrelation, at different 

locations and scales (Van de Koppel et al. 2006). The observed pattern indicated that proximity 

between two points on the reef surface was likely to induce similarity between the positively 

autocorrelated areas of carbonate sand deposition on the platform surface, and dissimilarity between 

the negatively autocorrelated hard and soft coral and algal communities around the platform rim. 

This negative autocorrelation could result from self organisation of community components into a 

pattern that could reflect, for example, competition for light (Lang, 1990). In contrast to the raw 

reflectance values depicted in the satellite image, this statistic is informative on the nature (attractive 

vs repulsive) of relationships between the benthic community at each location and that within its 

neighbourhood across the reef platform. 

 

It should be noted that the value of the Moran’s I statistic depends on the size of the spatial units 

employed for its calculation. While too fine sampling units may result in noisy spatial correlation 

patterns, too large units may exaggeratedly smooth out spatial structures. Where possible, the size of 

sampling units should be selected with a priori regard for the spatial scales at which potential 

underlying influences on benthic community structure are manifest (Fortin and Dale, 2005). The 

semivariogram (section 2.2, Figure 3) gives an indication of suitable dimensions for this purpose. In 

cases where it is not possible to compute this, cross scale analysis provides a useful guide to the 
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appropriate spatial scales for studying ecological phenomena, both in terrestrial systems (Dray et al. 

2012; Kiel et al. 2012) and on coral reefs (Gust et al. 2001). This approach is particularly useful 

given the scale-dependent spatial variability of coral reef assemblages, such as hard coral 

communities (Murdoch and Aronson, 1999). 

 
In accordance with the sill point in the semivariogram (Figure 3), a sampling scheme devised to 

optimise information capture and reduce redundancy across this coral reef platform would space 

sample points at least 20 m apart. This was identified as the distance between two field locations at 

which the variance between two points was no longer distance-dependent and they could be 

considered independent of each other. Such an observation has important implications when 

considering whether to collect field data from a boat-based platform, SCUBA or snorkel survey. 

Furthermore, the relative remoteness of many reefs and the logistical challenges associated with 

sampling the benthic communities inhabiting them, in particular the need to utilise SCUBA 

equipment, often leads to the geographical concentration of field data collection effort. This 

observation is also therefore useful for identifying information redundancy in sample points that are 

close together and consequently similar. Observed patterns of spatial variability have been found to 

be scale-dependent on coral reefs because of the interaction of multiple forces operating at different 

scales (Edmunds and Bruno, 1996; Hughes et al. 1999). Extrapolation across scales that were not 

sampled can therefore be problematic because observations made for a given sample scale may not 

hold at other scales. In relation to this issue, the semivariogram approach outlined here can be 

thought of as spanning spatial scales that range from the greatest to the smallest distance between 

points sampled (i.e. from 1 to 33 m). The transferability of this approach is also contingent on 

consistency in large scale influences on coral reef ecology such as hurricane influence (Edmunds 

and Bruno, 1996).  
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It would appear at first sight that there is a strong inverse relationship between the community 

composition on the reef and water depth (R2 = 0.87), which may be underpinned by the inability of 

many reef community components such as coral to tolerate aerial exposure during low phases of the 

tidal cycle (Anthony and Kerswell, 2007). However, the Moran’s I value of 0.93 computed on the 

residuals is diagnostic of spatial dependence, which violates assumptions of classic ordinary least 

squares regression. The first assumption is that observations are independent of each other and the 

second is that residuals are both normally distributed and randomly located. In the presence of 

spatial dependence, the effective number of degrees of freedom in the sample is smaller than the one 

estimated from the number of observations. This is because proximate observations are not 

independent of each other and cannot be freely permuted at random to create the reference (null) 

distribution of the test statistic. As a consequence, statistical tests of model significance generate 

narrow confidence limits. Regressing autocorrelated data cases in an ordinary least squares model 

may therefore increase the likelihood of a Type I error, inflate the goodness of fit measure and 

underestimate the standard error as a result of allocating some of the effect due to interaction to the 

existing dependent variables (Cliff and Ord 1981). Many reef studies that employ regression 

analysis do not report any assessment of residuals, leaving these assumptions untested. This 

warrants scrutiny because of the spatial structure observable on reefs due to contemporary 

environmental, biological and geological influences (Done, 2012). 

  

While the presence of autocorrelation in model residuals is indicative of a statistical pitfall, spatially 

referenced residuals can be mapped to provide a useful clue as to the distribution and underlying 

nature of missing covariates. Where positive residuals cluster together on the map, the tendency for 

the model to overestimate community characteristics may indicate the need for an additional 

covariate that has the overall effect of reducing the predicted characteristic in this geographic area, 
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and vice versa. Hamylton and Spencer (2011) provide an example of this spatially explicit technique 

for exploring model performance. 

 

Improvements in model performance and reductions in spatial dependence of residuals with the 

incorporation of the autoregressive term (section 2.4) suggested that the assumptions of 

observation independence and random error were being held in a more robust manner (Lichstein et 

al. 2002). Where there is reason to specify neighbourhood interaction, spatial regression is 

preferable to classic regression and easily achievable using freely available software such as 

GeoDa (or alternatively, R or Spatial Analysis in Macroecology). 

 

The practical value of fitting a spatial error model (section 2.5) is that the spatially structured 

component of the error can effectively be partitioned out and eliminated from the residuals, 

thereby patching the model so that valid inferences can be drawn from the predictors (Haining, 

2003). This draws explicitly on the information held in the residuals about the behaviour of the 

response variable. By adopting this approach, the analyst maintains faith with the original set of 

predictors and keeps these in the model, whilst partitioning out the residuals into stochastic and 

spatially correlated components. Although the spatially correlated components can be modelled 

and explained in a statistical sense, their identity remains unknown. It is possible, however, to 

infer that they arise from neighbourhood-context interactions (Cliff and Ord, 1981). This approach 

to model development originates from a simple, well defined initial model and progresses toward a 

more general model by adding autocorrelation parameters. As is evident from the comparison with 

the ordinary least squares model, this enhances the power of the regression (on this occasion, R2 

increased from 0.87 for the ordinary least squares model to 0.91). This is valuable for applications 

that seek to derive continuous predictions of coral reef community characteristics across large 
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areas (e.g. Hamylton et al. 2012b) to assist with the spatial planning of marine reserves (Roberts et 

al., 2003; Sobel and Dahlgren, 2004; Almany et al., 2009).  

 

The approaches outlined in 2.4 (invoking a spatially lagged autoregressive component) and 2.5 

(modelling the spatially structured component of the unexplained model variation) both add a 

spatially explicit term to the regression equation. The decision of whether to select an 

autoregressive model or a spatial error model lies largely with the modelling scenario that faces the 

analyst. Autoregression provides a statistically robust approach where there is reason to believe 

that the response variable might influence itself through a neighbourhood context effect. For 

example, the characteristic of hard coral cover might be positively spatially autocorrelated because 

the location of a spawning coral might influence the settlement site of its offspring because of the 

interconnected dynamics of larval dispersal (Paris-Limouzy, 2012). In contrast, a spatial error 

model may be more appropriate in a modelling scenario where the analyst wishes to retain the 

original set of predictors without adding additional independent variables. This situation might 

occur when all known theoretical influences, or at least those that can in practice be conceptualised 

and represented digitally, have been accounted for and incorporated into the model specification. 

 

5.0 Concluding remarks 

Studies of coral reef ecology frequently employ statistical inference, the dependability of which is 

based upon the validity of assumptions about how ecological processes play out across reefs. 

While the statistical techniques demonstrated in this paper have been widely applied by ecologists 

in other environments (Dray et al. 2012), evidence of their application to coral reefs is limited (but 

see Mellin et al. 2010, Hamylton 2012a, Hamylton et al. 2012b). The collective statistical 

exercises presented here provide a persuasive case for the measurement and interrogation of spatial 
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autocorrelation in coral reef studies. Firstly, spatial autocorrelation enables us to quantify the 

extent and spatial patterning realised by the application of Tobler’s First Law of Geography to 

coral reefs. It provides information on the benthic community at a given location on a reef 

platform is related to its neighbourhood. This is particularly useful when combined with remotely 

sensed datasets that provide synoptic information on community reflectance in an accurate and 

consistent manner. Secondly, spatial autocorrelation identifies and quantifies the extent of 

redundant information in field datasets, indicating the optimal dimensions of sampling schemes.  

Third, spatial autocorrelation indexes the nature and degree to which a fundamental statistical 

assumption is violated, and, in turn, indicates the extent to which conventional statistical 

inferences are compromised when non-zero spatial autocorrelation is overlooked. Autocorrelation 

complicates statistical analysis by altering the variance of spatially distributed information, 

increasing the risk of making incorrect statistical decisions (e.g., positive spatial autocorrelation 

results in an increased tendency to reject the null hypothesis when it is true). With the proliferation 

of modelling exercises that seek to explain and predict aspects of marine ecology, this warrants 

scrutiny if our understanding of the processes we study is to develop correctly. Fourth, the 

incorporation of a spatially explicit component to regression models is instructive on the nature of 

an observable spatial pattern to be modelled, suggesting the appropriate approach to be used 

(spatial vs. non-spatial). Fifth, spatial autocorrelation draws on explainable components of model 

error as a surrogate for a missing variable, enabling us to enhance model performance. This is 

achieved by partitioning out and utilising structured components of model error as a surrogate for a 

missing variable. Without spatial autocorrelation, the ecological character of coral reefs would 

exhibit a limited geographic expression and appear completely random; with it, it exhibits spatial 

organization, which is the hallmark of many shallow benthic coral reef communities.  
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