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Abstract. Studies of long-term vegetation changes are critical for enhancing our understanding of successional dynamics
in natural ecosystems.Bycomparing forest inventory data from the1940s againstfield data from2005,wedocument changes
in stand structure over 60 years in forests co-dominated byCallitris glaucophylla J.Thompson & L.Johnson, Allocasuarina
luehmannii (R.Baker) L.Johnson and Eucalyptus crebra F.Muell., in central Pilliga, New South Wales (NSW), Australia.
Sampling was stratified across two forest types and across a 1951 wildfire boundary, to assess the effects of initial stand
structure and early disturbance on stand dynamics. Stems in the size range tallied in the 1940s (>8.9 cmDBH forCallitris and
>11.4 cm forAllocasuarina andEucalyptus) of each genus increased about three-fold in density and about four-fold in basal
area over 60 years, with similar trends in both forest types and fire zones. On average, there were 3638 stems ha–1 in 2010, of
which 86% were small Allocasuarina and Callitris (<11.4-cm and <8.9-cm diameter at breast height, DBH, respectively).
These results illustrate a continuation of forest encroachment that was initially documented in the late 1800s. However,
increases in Allocasuarina have received little attention compared with Callitris recruitment. In the absence of disturbance,
ongoing increases in stand stocking may be expected.
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Introduction

In Australia, as elsewhere in the world, great advances have
been made in the past 20–30 years in mapping vegetation
patterns and relating these patterns to underlying biophysical
gradients (e.g. Specht and Specht 1999; Keith 2004). However,
our understanding of how ecosystems have changed over long
periods of time is often very crude, largely because of the
paucity of accurate historical information (Lunt 2002).
Consequently, vigorous debates often occur in public and
ecological circles about the putative nature and causes of
poorly defined ecosystem changes (e.g. Benson and Redpath
1997; Fensham 2008). As evidenced by climate politics, when
scientific uncertainty is high, there is little reason to expect
congruence between the political acceptability and ecological
plausibility of competing scenarios. Consequently, studies that
accurately document long-term and large-scale changes in
ecosystem structure and disturbance regimes play a pivotal
role in enhancing environmental literacy, influencing land-use
policies and informing ecosystem management (e.g. Woinarski
and Catterall 2004; Fensham et al. 2005; Brook and Bowman
2006; Lunt et al. 2006; Fensham 2008).

Many Australian studies of long-term vegetation dynamics
compare current conditions against those at (or shortly after)
European colonisation, thereby highlighting the dramatic

impact of European land uses (Lunt 2002). However,
ecosystems change continually, and large changes in structure
and composition can occur over decadal periods in response to
recent changes to global climate and disturbance regimes,
including land clearance, timber harvesting, burning, grazing
and reservation (McDougall 2003; Woinarski et al. 2006;
Mac Nally et al. 2009). Arguably, ecosystem responses to
current and recent management are more relevant to
contemporary land management than changes that occurred
over a century ago.

The ecological history of Callitris–Eucalyptus woodlands in
eastern Australia has received considerable attention and been
greatly debated (Rolls 1981, 2000; Mitchell 1991; Norris et al.
1991; Benson and Redpath 1997; van Kempen 1997; Griffiths
2002; Lunt et al. 2006). In many regions, Callitris recruited
abundantly in the late 1800s, before rabbit infestations, livestock
grazing and drought conditions caused a recruitment hiatus until
the 1950s, when wetter conditions returned, the myxomatosis
virus was introduced, and rabbits no longer suppressed Callitris
regeneration (Lacey 1972, 1973; Noble 1997; Fensham et al.
2005). However, standswere originally heterogeneous, and often
well stockedwith other species (Lunt et al. 2006), and this generic
history is not universal (Fensham 2008; Prior et al. 2011). The
Pilliga region in north-eastern NSW has received considerable
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attention in debates about Callitris encroachment, following
responses to Rolls’ (1981) environmental history of the region
(e.g.Mitchell 1991;Norris et al. 1991;Benson andRedpath1997;
van Kempen 1997). However, as in much environmental history,
debates have largely focussed on forest dynamics in the late
1800s, with little consideration of more recent forest dynamics
(Lunt and Spooner 2005).

The Pilliga forests (30�460S, 149�180E) vary across a south-
east–north-west gradient. Average annual rainfall varies from
450mm year–1 in the north-west to 700mm year–1 in the south-
east (Forestry Commission of NSW 1986). C. glaucophylla and
various Eucalyptus species dominate the central and western
Pilliga, whereas C. endlicheri is abundant in heathy forests on
poorer soils in the east (Binns et al. 2001). Much of the forest
(including the areas surveyed) has been harvested for timber
since European settlement, especially for C. glaucophylla and
Eucalyptus crebra. More recently, large areas were declared as
conservation reserves (NSWParks andWildlife ServiceWestern
Directorate 2000). Sparse understoreys in the western Pilliga
do not support major wildfires, but many large fires have burnt
the eastern shrubby forests since the 1950s (Brookhouse et al.
1999; State Forests of New South Wales, Curby 2000). The
largest wildfire burnt 917 000 ha, including 350 000 ha of State
Forest land, under extremeweather conditions inNovember 1951
(Forestry Commission of NSW 1952; Brookhouse et al. 1999).
The extent to which recent (post-1950s) disturbances, including
widespread timber harvesting, have affected stand dynamics in
the Pilliga is unknown.

In the present study, we use historical forest-management
data to ask, how have the Pilliga forests changed over the
past 60 years? Are stands stable or still changing greatly? We
aimed to assess the relative contributions of initial stand structure
and early disturbances on subsequent stand development by
documenting structural changes across forest types and across
the boundary of a major wildfire in 1951. We hypothesised that
the three dominant genera (Allocasuarina, Callitris and
Eucalyptus) would respond differently to disturbance history.
Because Callitris and Allocasuarina species can recruit densely
in undisturbed stands (Lacey 1972, 1973; Lunt 1998), we
expected major increases in the density of both genera,
particularly Callitris. Dense Callitris recruitment in the mid-
1950s is well documented (Lacey 1972, 1973; Thompson and
Eldridge2005), but little is knownofAllocasuarinadynamics.By
contrast, Eucalyptus recruitment is commonly triggered by fires
or soil disturbance (Wellington and Noble 1985; Gill 1997; Vesk
and Dorrough 2006), so we hypothesised that eucalypt density
would remain relatively stable in unburnt areas but would
increase in the burnt area. The findings from the present study
will provide a firm foundation for predicting how these forests
may continue to change in the future.

Materials and methods
1940s survey
Changes in stand structure were documented by resampling
transects that were surveyed in the 1940s. The survey methods
of the 1940s are described by Whipp et al. (2009). In the mid-
1940s, treeswere tallied in 1-acre (0.404 ha) plots (2� 5 chains or
~40� 100m) along continuous, 40-m-wide strip transects.

In each plot, surveyors counted (1) the number of Callitris in
each 10-diameter class for all Callitris >3.50 (8.9-cm)-diameter
DBH, and (2) the number of E. crebra and A. luehmannii stems
>4.50 DBH in the following four DBH classes: 5–90

(11.4–24.0 cm), 10–160 (24.1–41.8 cm), 17–200 (41.9–52.1 cm)
and 200+ (>52.1 cm). Hereafter, these trees are referred to as
‘tallied trees’. To assess ‘small’, untalliedCallitris (<3.50, 8.9-cm
DBH) and E. crebra (<4.50, 11.4-cm DBH), surveyors counted
the number of units (each 1/40th acre, 100m2) that were
‘effectively stocked’ in each 1-acre plot (stocking rates of
small A. luehmannii were not recorded). Effective stocking
was defined as more than four to seven stems per unit, or
420–748 stems ha–1 (Lindsay 1946). Stands were classified
into forest types on the basis of the basal area of the dominant
species (Lindsay 1967). Thus, forest type COPwas dominated by
E. crebra (C), Allocasuarina luehmannii (O) andCallitris (P), in
order of decreasing basal area. However, the major timber
species, Callitris, was listed first (e.g. PCO) wherever it was
dense enough to be managed as a commercial stand (Lindsay
1967; Baur 1988).

2005 sampling
Stands co-dominated by C. glaucophylla, E. crebra and
A. luehmannii in the central Pilliga were selected for
resampling in 2005, using the following criteria: 1940s data
existed and transects could be relocated; stands supported
PCO or COP forest types in the 1940s; and stands were within
10 kmof the boundary of the 1951wildfire and had not been burnt
since. In total, 61 stands were selected (Fig. 1). Approximately
half were in each forest type (PCO and COP), and half of the
patches in each forest typewere burnt in 1951.A400-m section of
a 1940s transect was selected near the centre of each selected
forest patch. Three 10� 10m plots were spaced 100m apart
along each 400-m strip. In each plot, the species and DBH of all
live trees was recorded. EachCallitriswas allocated to one of the
following two cohorts: pre-1905 (hereafter termed ‘1800s
Callitris’) and 1950s or more recent (‘post-1950s Callitris’) on
the basis of size and growth-form. Whereas forest types were
randomised, the sampling strategy was pseudo-replicated with
respect to fire, because only one fire (1951) was examined.
Thus, results document species responses to the 1951 fire in
the surveyed area, and are not necessarily representative of
potential responses to other fire events in different areas
(Oksanen 2001; Cottenie and De Meester 2003).

Data analysis
Data collected in 2005 from the three plots at each site were
pooled, and density data were converted to per hectare values,
for comparisons against the 1940s data. Basal area in the 1940s
was calculated using the midpoint of each DBH class, with 130

(33 cm) being arbitrarily used for the largest (120+) size class
for Callitris and 220 (55.9 cm) for the largest (200+) class for
eucalypts. Wilcoxon rank-sum tests with Bonferroni corrections
were then used to compare the mean density and basal area of
tallied trees of each species between the 1940s and 2005.

Changes in the density and basal area of tallied trees of each
species were also analysed using repeated-measures general
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linear models (GLMs) in SPSS 16.0 for Windows (SPSS Inc.
2008). Where necessary, data were transformed to meet
assumptions of equality of covariance matrices as measured by
Box’sM test, and homoscedasticity asmeasured byLevene’s test
of equality of error variances. The density and basal area in 2005
of each Callitris cohort (1800s and post-1950s) were compared
between the two forest types and two fire zones using two-way
ANOVA tests for unequal sample sizes (Kutner et al. 2005;
Insightful Corporation 2007). In 2005, plots that contained�4–7
saplings of Callitris and E. crebra were defined as ‘effectively
stocked’, following Lindsay’s (1946) definition. A linear
regression was used to examine the relationship between the
density of post-1950s Callitris regeneration and the basal area of
1800s Callitris at each site.

Results

In 2005, stands consisted of sparse large eucalypts amidst dense,
predominantly small Allocasuarina and Callitris (Fig. 2a). The
mean density of all species was 3638 stems ha–1 (�311 s.e.), of
which 86% were small Allocasuarina (<4.50, 11.4-cm DBH) or
Callitris (<3.50, 8.9-cm DBH). E. crebra made up only 5%, and
‘other species’ 1% of total stems. However, average basal area
was almost equally distributed among Allocasuarina, Callitris
and E. crebra, with the remaining 10% contributed by other
species, most of which were eucalypts (Fig. 2b). The high basal
area of E. crebra and ‘other species’ reflected the large size of
eucalypt stems compared with those of Allocasuarina and
Callitris.

The average density of tallied stems of all species increased
significantly from 188 stems ha–1 (�11 s.e.) in the 1940s to
537 stems ha–1 (�26 s.e.) in 2005; almost a three-fold increase
over ~60 years. Contrary to our expectations, the density of each
species (Allocasuarina, Callitris and E. crebra) increased by a

similar magnitude, and the proportion of stems of each species
was similar in both periods (Fig. 3a). The mean basal area of
tallied stem sizes increased almost four-fold from 4.2m2 ha–1 to
15.9m2 ha–1, and basal area of Allocasuarina, Callitris and
E. crebra increased significantly (Fig. 3b). The increase in
density and basal area of ‘other species’ was not significant
(P> 0.05), probably because of their sparseness.

The proportion of each site that was recorded as ‘effectively
stocked’with smallCallitris increased from an average of 12% in
the 1940s to 48–65% in 2005. Small E. crebra stems were very
sparse in both periods. On average, 1% of plots were ‘effectively
stocked’with small E. crebra in the 1940s, compared with 3–6%

Fig. 1. Localityof sample areas andfire boundaries in thePilliga forests,NewSouthWales.Sample siteswereplaced in eachStudyCompartment (compartments
burnt in 1951 shown in black, unburnt compartments shown in stippled white).
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Fig. 2. Mean (a) density and (b) basal area of stems of all sizes in 2005. Error
bars show standard error of the mean.
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of plots in 2005. Stocking levels for smallAllocasuarinawere not
recorded in the 1940s.

Regression analysis showed a weak, but significant, negative
relationship between the density of post-1950s Callitris and the
basal area of 1800s Callitris, as assessed in 2005 (r= 0.407,
F = 11.496,P = 0.001). Post-1950s regenerationwas consistently
low where the basal area of 1800s Callitris was high, but was
highly variable where the basal area of 1800s Callitris was low
(Fig. 4).

Repeated-measures GLM analyses showed no significant
three-way interactions (time� fire history� forest type) or

interactions between fire history and forest type for density or
basal area (Tables 1, 2). Consequently, the effects of forest type
and fire history are considered separately. Tallied Callitris were
significantly denser in PCOstands andE. crebra inCOP stands in
both periods (Table 1). The density of tallied Allocasuarina did
notdiffer significantlybetween forest types.Thedensity andbasal
area of tallied trees of all three species increased significantly
over time (Tables 1, 2), and a significant forest type� time
interaction indicated that the density of tallied Callitris
increased more substantially in COP than in PCO stands
(Table 1). The number of tallied Callitris trees approximately
doubled in PCO stands, and increasedmore thanfive-fold in COP
stands, although the actual number of new tallied stems was very
similar in both forest types (+170 v. +190 stems ha–1). The basal
area of tallied stems of all three species also increased over time
(Table 2). Callitris basal area was significantly greater in PCO
than in COP stands in both periods, but the basal area of other
species did not differ between forest types.

Contrary to expectations, there were no significant
relationships between fire history and the density of tallied
stems for any species, although a greater density of tallied
Callitris at burnt than at unburnt sites in both time periods
approached statistical significance (P= 0.09; Table 1).
Surprisingly, Callitris basal area was also significantly greater
in burnt than unburnt areas in both periods (Table 2). There were
no significant time�fire history interactions; however, near-
significant interactions for E. crebra and Allocasuarina basal
area (P = 0.08 and 0.07, respectively) suggest that basal area of
both species may have increased more at unburnt than at burnt
sites (Table 2).

In 2005, there were over three times as many 1800s Callitris
in PCO than in COP stands, and over twice as many post-1950
Callitris in COP than in PCO stands (both P < 0.05; Table 3).
Basal area followed a similar pattern but the difference was not
quite significant for 1800s Callitris (P= 0.07; Table 3). In 2005,
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post-1950 Callitriswas 1.8 times denser in burnt than in unburnt
areas (P= 0.02;Table 3).Bycontrast, the density andbasal area of
1800s Callitriswas not significantly different between burnt and
unburnt areas (Table 3).

Discussion
In summary, these results illustrate a three- to four-fold increase
in the density and basal area of all three genera over 60 years.
The increase in the density and basal area of Callitris and

Table 1. Changes in density (stems ha–1) of each species from the 1940s to 2005 in each forest type and fire zone
Mean values above are untransformed. P-values refer to transformed data as follows: loge(x+1) for Callitris glaucophylla, square root for Eucalytpus crebra
and not transformed for Allocasuarina luehmannii. P-values for main effect refer to variables that were significantly different at both dates. P-values for
interact� time indicate changes over time in the relationship between stem density and fire history or forest type. See text for definition of PCO and

COP. Significant P-values are in bold

Variable C. glaucophylla stems >8.9-cm DBH E. crebra stems >11.4-cm DBH A. luehmannii stems >11.4-cm DBH
1940s
mean
(s.e.)

2005
mean
(s.e.)

Main-
effect
P

Interact�
time P

1940s
mean
(s.e.)

2005
mean
(s.e.)

Main-
effect
P

Interact�
time
P

1940s
mean
(s.e.)

2005
mean
(s.e.)

Main-
effect
P

Interact�
time
P

Time 96 (11) 276 (22) <0.001 39 (3) 106 (15) 0.001 49 (4) 135 (17) <0.001
Forest type
PCO 147 (16) 317 (26) <0.001 0.01 33 (3) 73 (14) 0.04 0.08 50 (6) 152 (24) 0.35 0.33
COP 43 (5) 233 (23) 45 (5) 140 (26) 48 (5) 118 (25)

Fire history
Burnt in 1951 102 (16) 303 (37) 0.09 0.43 43 (5) 103 (19) 0.66 0.69 59 (7) 133 (23) 0.68 0.50
Unburnt 90 (15) 249 (24) 35 (4) 109 (24) 40 (4) 137 (26)

Forest type� fire 0.27 0.99 0.35 0.47 0.51 0.71

Table 2. Changes in basal area (m2 ha–1) of each species from the 1940s to 2005 in each forest type and fire zone
Mean values above are untransformed. P-values refer to square-root-transformed data for all three genera. P-values for main effect refer to variables that were
significantly different at both dates.P-values for interact� time indicate changes over time in the relationship between stem density and fire history or forest type.

See text for definition of PCO and COP. Significant P-values are in bold

Variable Callitris glaucophylla stems >11.4-cmDBH Eucalyptus crebra stems >11.4-cm DBH Allocasuarina luehmannii stems
>11.4-cm DBH

1940s
mean
(s.e.)

2005
mean
(s.e.)

Main-
effect
P

Interact�
time
P

1940s
mean
(s.e.)

2005
mean
(s.e.)

Main-
effect
P

Interact�
time
P

1940s
mean
(s.e.)

2005
mean
(s.e.)

Main-
effect
P

Interact�
time
P

Time 1.1 (0.1) 4.9 (0.4) <0.001 1.8 (0.1) 5.3 (0.7) 0.004 1.0 (0.1) 3.7 (0.5) <0.001
Forest type
PCO 1.6 (0.2) 5.6 (0.5) 0.001 0.50 1.8 (0.1) 6.5 (1.0) 0.45 0.44 1.0 (0.1) 3.6 (0.8) 0.48 0.44
COP 0.7 (0.2) 4.2 (0.4) 1.8 (0.1) 4.2 (0.9) 1.0 (0.1) 3.8 (0.6)

Fire history
Burnt in 1951 1.3 (0.2) 5.6 (0.5) 0.03 0.39 2.0 (0.1) 5.3 (0.9) 0.34 0.08 1.3 (0.1) 3.2 (0.6) 0.98 0.07
Unburnt 1.1 (0.1) 4.3 (0.5) 1.6 (0.1) 5.4 (1.0) 0.7 (0.3) 4.2 (0.8)

Forest type� fire 0.38 0.16 0.49 0.15 0.58 0.94

Table 3. Density (stems ha–1) and basal area (m2 ha–1) of pre-1900s and post-1950s cohorts ofCallitris glaucophylla in each forest type and fire zone in
2005

See text for definition of PCO and COP. Significant P-values are in bold

Variable Callitris density (stems ha–1) Callitris basal area (m2 ha–1)
Pre-1900 cohorts Post-1950 cohorts Pre-1900 cohorts Post-1950 cohorts

Mean (s.e.) P Mean (s.e.) P Mean (s.e.) P Mean (s.e.) P

Fire history
Burnt in 1951 233 (52) 0.98 1801 (429) 0.02 4.4 (0.6) 0.12 3.5 (0.6) 0.11
Unburnt 288 (59) 1020 (290) 3.9 (0.4) 2.1 (0.5)

Forest type
PCO 398 (65) 0.03 832 (251) <0.01 5.5 (0.5) 0.07 1.7 (0.5) 0.01
COP 120 (25) 1996 (440) 2.7 (0.4) 3.9 (0.6)

Fire� forest type 0.33 0.66 0.16 0.87
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Allocasuarina was consistent with hypotheses, but the large
increase in Eucalyptus density and basal area was not
expected. Similar changes occurred in both forest types,
although post-1950s Callitris saplings are now more than
twice as dense in the forest type in which Callitris was
initially least abundant. Few legacies of the 1951 fire could be
detected in 2005.

The documented increase in tree densities since the 1940s is
consistent with many accounts of dense Callitris regeneration
in the 1950s, 1970s and more recently, in the Pilliga and other
regions (Curby 1997; Allen 1998; Thompson and Eldridge
2005). The three-fold increase in the density of Callitris
>8.9-cm DBH recorded here is largely due to the 1950s
regeneration pulse, because many more recent recruits are still
smaller than 8.9 cm. In addition to an increased density and basal
area of Callitris >8.9-cm DBH, stocking levels of small Callitris
saplings (<8.9-cm DBH) have also increased greatly, following
major recruitment events in the 1950s, 1970s and more recently.

Whereas dense regeneration of Callitris was expected, the
level of regeneration by Allocasuarina and Eucalyptus was
unexpected. Regeneration of these species has received
comparatively little attention (Morcom and Westbrooke 1998).
Dense Allocasuarina regeneration has been described
anecdotally in forestry reports (Lindsay 1967; Baur 1988),
although levels have not been quantified previously.
A. luehmannii can regenerate from seed and by root suckering,
with suckers forming from damaged roots (Murdoch 2005).
However, the relative abundance of seedlings and root suckers
in the Pilliga is unknown.

Compared with Callitris, very little information is available
on rates of eucalypt recruitment in drywoodlands in south-eastern
Australia. Eucalyptus recruitment is commonly promoted by
fire or soil disturbance (Wellington and Noble 1985; Gill
1997; Vesk and Dorrough 2006), but can occur during high-
rainfall periods, provided that competition from ground plants
is low (Vesk and Dorrough 2006). The extent to which
Allocasuarina and Eucalyptus recruitment in the study area
has occurred in pulses or continually is also unknown. Other
studies have documented ongoing increases in density of
Allocasuarina species in the absence of fire (Lunt 1998;
Kirkpatrick 2004). Because seedling recruitment by both
genera is likely to be promoted by high rainfall in this dry
climate (Chesterfield and Parsons 1985; Fensham et al. 2005;
Westbrooke and Florentine 2005), we assume that all three
genera may have recruited during similar periods of high
rainfall. Even though drought conditions prevailed in the
2000s, there was no evidence of widespread, drought-induced
tree mortality, as has been observed in semiarid, savanna
woodlands in Queensland (Fensham et al. 2009).

Effects of 1951 fire

The 1951 Pilliga wildfire burnt 917 000 ha, including 350 000 ha
of State Forest land, under extreme-fire weather conditions
(Forestry Commission of NSW 1952; Brookhouse et al.
1999). We expected that the density of 1800s Callitris would
be low in the burnt area in 2005, becauseCallitris is readily killed
in high-intensity fires (Lacey 1973; Cohn et al. 2011). However,
in 2005 we recorded a mean number of 1800s Callitris trees as

233 ha–1 in thearea thatwasburnt in1951,which suggests thatfire
intensity in the areas sampled was far lower than expected. Low
fire severity is the most parsimonious explanation for the paucity
of differences in stand structure between areas thatwere burnt and
unburnt in 1951. Unfortunately, fire intensity was not mapped in
1951. The lack of spatially explicit records of fire intensity
highlights the challenges inherent in attempting to deduce the
mechanisms that underlie past stand dynamics by using archival
records (Swetnam et al. 1999).

Differences between forest types

Forests were mapped in the 1940s to identify areas supporting
merchantable timber, and the two sampled forest types (PCO and
COP) occurred in similar environmental conditions, but were
differentiated on the basis of the amount ofmerchantableCallitris
(Lindsay 1967). In 2005, PCO stands contained significantly
more pre-1900s Callitris trees than did COP stands, as expected.
However, many sites in each (former) forest type exceeded the
1940s stem-density threshold, and therefore could now be
mapped as PCO stands, if the 1940s mapping methods were
repeated. In termsof the basal area of all three species, PCOstands
in the 1940s were more similar to COP stands in the 1940s than
they were to PCO or COP stands in 2005. Thus, changes in stand
structure over time far exceed differences in stand structure
between forest types at either point in time.

Although both forest types underwent similar changes over
time, the density ofCallitris regeneration was over twice as great
in the forest type in which Callitris was initially least abundant
(COP). This reflected the broader pattern for greater recruitment
of Callitris in stands with less competition from existing trees.
The high density ofCallitris saplings in both forest types suggests
that stand structure may change greatly in the future, depending
on disturbance regimes. Unless thinned mechanically or by fire,
locked stands of dense, small Callitris are likely to form in both
forest types (Lacey 1973; Horne 1990a, 1990b; Ross et al. 2008),
and earlier differences between the two forest types are likely to
disappear.

Conclusions

In summary, the present results demonstrate major changes in
forest structure over a 60-year period. All dominant tree genera
have increased in density and basal area since the 1940s.Whereas
increases in Callitris are well documented, concurrent increases
in co-dominant species have been largely over-looked in the
ecological literature. The magnitude of the changes that have
occurred over time far exceed the differences between mapped
forest types time at any point in time. These long-term changes
can be documented only because of the existence of detailed
forest-survey information from the 1940s (Whipp et al. 2009).
Such long-term inventory data are immeasurably valuable for
understanding the long-term impacts of forest succession and
ecological disturbances on Australian ecosystems.
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