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Abstract 

Uranium isotope ratios have been determined for the fine-grained detrital fraction of Pleistocene 

Wilkawillina valley-fill sediments, four local Proterozoic bedrock samples and fine-grained aeolian 

material from a sand dune deposit of the Flinders Ranges, South Australia. The aim was to quantify 

the comminution age, i.e. the time elapsed since physical weathering of the bedrock, and residence 

time of the valley-fill sediments and to place tighter constraints on input parameters for the 

comminution age calculation. Despite using two independent approaches for determination of the 

recoil lost fraction of 234U from the sediment (weighted geometric and surface area estimates), 

samples fail to produce realistic comminution ages and hence, residence times. The issues involved 

in the ability to determine sediment comminution ages are discussed. The (234U/238U) activity ratio 

of the local bedrock is not in secular equilibrium, despite the bedrock being much older than 1 Ma, 

i.e. the timeframe for 234U and 238U to reach secular equilibrium in a closed system. Using the 

average Flinders Ranges bedrock (234U/238U) ratio instead of an assumed (234U/238U) activity ratio of 

unity for the source would significantly reduce calculated residence times. This result warrants 

concern for future studies using the comminution approach for which a secular equilibrium source 

(234U/238U) activity ratio is assumed. Significant input of aeolian material may modify the measured 

(234U/238U) activity ratios. Such input may be more tightly constrained in future studies using rare 

earth element and radiogenic isotopic data. Future comminution studies would benefit from further 

consideration of the importance of 1) leaching lost 234U from source rock and bulk sediment 

samples, 2) wind deposition of fine-grained material and 3) the appropriateness and robustness of 

sample pre-treatment procedures. 

 

Keywords: uranium isotopes; timescale; sediment transport; Flinders Ranges 

 

1. Introduction 

In order to quantify how fast a landscape responds to tectonic, climatic and human factors, accurate 

weathering rates and soil and/or sediment ages are required. The uranium-series (U-series) isotopes 

are a valuable tool for deriving the timescales of weathering and erosion processes (e.g., Plater et 

al., 1992; Scott et al., 1992; Vigier et al., 2001; Dequincey et al., 2002; Chabaux et al., 2003; Granet 

et al., 2007; Dosseto et al., 2008a; Dosseto et al., 2008b; Chabaux et al., 2008; Vigier and Bourdon, 

2011). Recently, DePaolo et al. (2006) developed a method for dating the formation age of fine-

grained sediments, in other words, the time elapsed to present day since physical weathering of 

source rock to a threshold grain size (≤ ~50 µm), termed the ‘comminution age’ (DePaolo et al., 

2006; Lee et al., 2010; Dosseto et al., 2010; Handley et al., in press). The comminution dating 

approach utilises 234U-238U disequilibrium in fine-grained sediments attributed to recoil loss of 234U 
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(see Section 2 for details). U-series recoil-loss dating has yielded reasonable timescale estimates 

when compared to independently constrained ages (e.g., Aciego et al., 2011), but can be offset by 

several 100 ka (Lee et al., 2010). Therefore, further testing and consideration of the methodology is 

required to improve the accuracy of ages produced and prove its value as a dating technique. 

Here we present a comminution study on Pleistocene alluvial deposits in the Flinders 

Ranges, South Australia. The uranium isotopes of local Proterozoic bedrock samples have also been 

determined to test whether the source material is in (234U/238U) secular equilibrium prior to the onset 

of physical weathering. We also constrain the potential (234U/238U) activity ratio of local aeolian 

material to examine the influence of external inputs on sediment residence time. We show that the 

bedrock samples have significant 234U-238U disequilibria. This has major implications for the 

comminution approach and the general assumption that the comminution chronometer does not start 

until the commencement of physical weathering of bedrock. We suggest that this is due to the 

preferential removal of 234U from the source material via leaching from recoil-damaged sites.  

 

2.  Comminution age theory 

The energy associated with the alpha decay of 238U (half-life, t1/2, = 4.5 Ga) to 234Th (t1/2 = 24 days) 

results in the recoil (physical displacement) of the daughter 234Th nuclide from the initial parent 

location within a mineral. This recoil distance varies depending on mineralogy but is estimated to 

range between 20 and 50 nm in common silicate minerals (see Maher et al., 2006 and references 

therein). 234Th then decays to 234U (t1/2 = 245 ka) via the intermediate 234Pa nuclide (t1/2 = 7 hours). 

If recoil takes place within recoil-length distance of the grain edge then 234Th may be physically 

ejected from the grain. In large grains (sand-size and larger) the recoil loss of 234Th (hence 234U) is 

insignificant due to the large volume to surface ratio of the grains. However in fine-grained material 

(~ 50 µm or less) the recoil loss of 234Th creates a measurable disequilibrium between the parent, 
238U, and ‘great-granddaughter’, 234U, nuclides, i.e. (234U/238U) ratios < 1 (where the parenthesis 

denotes an activity ratio). In comminution age theory, the magnitude of 238U-234U disequilibrium in 

fine-grained sediment is therefore related to the timescale of radioactive decay and proportion of 

recoil loss of 234Th. A detailed description of the U-series comminution theory and methodology 

can be found in DePaolo et al. (2006) and Lee et al. (2010). The calculated comminution age of 

sediment is defined as the period of time elapsed since weathering of bedrock into fine-grained 

material to present day (Fig. 1). This includes the time a grain has spent in temporary storage e.g., 

in soils and floodplains and in transport prior to final deposition. To quantify the length of time that 

the sediment has resided in the catchment since mechanical weathering, prior to final deposition 

(Tres) (Fig. 1), the U-series comminution equation of DePaolo et al. (2006) can be utilised: 
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where λ234 is the 234U decay constant (2.82629 x 10-6 a-1; using t1/2(234U) of 245,250 a, Bourdon et  

al., 2003), Ameas is the measured (234U/238U) activity ratio of the sediment, fα is the recoil loss factor,  

defined as the fraction of 238U decays that result in the recoil loss of the intermediate nuclide 234Th  

from the grain, and A0 is the initial (234U/238U) of the source rock. The sediment residence, or  

transport time (Tres), can then be calculated if the deposition age (tdep) of the sediment is known, by  

simply subtracting the deposition age from the comminution age (Fig. 1).  

 Previous authors (DePaolo et al., 2006, Lee et al., 2010, Handley et al., in press) have shown  

that comminution ages are highly dependant on the value used for the recoil lost fraction (fα).  

Estimates of fα can be produced using a number of different methods (see Maher et al., 2006 and  

Lee et al., 2010 for summaries of the different approaches). The most commonly employed methods  

are at present based upon either a weighted geometric estimation (DePaolo et al., 2006) using  

sample grain size distributions and assumptions for surface roughness and grain aspect ratio, or  

measurements of specific surface area (e.g., Brunauer-Emmett-Teller (BET) gas adsorption  

measurements) with an incorporated fractal correction (Semkow, 1991; Bourdon et al., 2009;  

Aciego et al., 2011) to account for the significant difference between the size of the adsorbed gas  

molecule (commonly N2: 0.354 nm) and the recoil length scale (~20-50 nm; Hashimoto et al., 1985;  

Ziegler, 1996) (see the appendix for fα calculation equations and input parameter details). As  

pointed out by previous authors of the few comminution studies undertaken so far (e.g., DePaolo et  

al., 2006; Lee et al., 2010; Handley et al., in press) the technique holds significant potential, but  

much more work is required before it can be considered as an accurate dating tool.  

  

3. Study area   

The Flinders Ranges of South Australia (Fig. 2a) are a series of north-south striking ridges of  

folded, uplifted and dissected, largely sedimentary, Proterozoic and Cambrian rocks (Preiss, 1987).  

The relatively softer siltstones and shales have been eroded to form valleys and lower elevation  

rounded hills, while the more weathering-resistant quartzites and sandstones form prominent ridges  

and peaks as well as a small number of largely enclosed draining basins such as Wilpena Pound and  

Wilson’s Pound (Fig. 2a). The ranges are flanked by several low elevation, internally draining playa  

lakes such as Lake Torrens, Lake Frome and Lake Callabona (e.g., Fig. 2a) that act as sediment  

sinks for eroded, fluvial material from the Flinders Ranges. The ranges are one of the most  

tectonically active regions of Australia and a significant proportion of the present day relief above  

the piedmont surface (up to 600-1000 m) is attributed to late Miocene to Recent tectonic uplift (e.g.,  

Sandiford, 2003; Quigley et al., 2006). 10Be cosmogenic isotope studies at sites in the Flinders  
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Ranges suggest that the present relief between valley floors and range summits may have been 

generated in as little as approximately 4 Ma (Quigley, et al. 2007a). The present day climate is arid 

to semi-arid with mean annual precipitation between < 200 mm (east and far north) to > 400 mm 

(range ridges) and annual evaporation exceeding 2000 mm. 

 Significant (up to 18 m thick) Late Pleistocene silt- and clay-rich valley fill deposits, now 

heavily incised, are documented in both the western and eastern draining catchments of the Flinders 

Ranges (e.g., Williams et al., 2001; Williams and Nitschke, 2005; Haberlah et al., 2010a; 2010b). 

Such fine-grained fluvial deposits are not accumulating today. The deposits were initially 

considered to be lake sediments (Cock et al., 1999) but are more recently described as slope wash 

deposits, dominated by aeolian sourced-material accumulated in either a ‘fluvial wetland’ or 

resulting from flood events (Williams et al., 2001; Haberlah et al., 2010a; 2010b; Haberlah and 

McTainsh, 2011). Some individual beds, only a few centimetres thick, can be traced for over a 100 

m (Williams et al., 2001). The aeolian material is thought to be sourced predominantly from Lake 

Torrens to the west of the Flinders Ranges (Fig. 2a; Williams and Nitschke, 2005). This lake 

remained dry to ephemeral during the Quaternary and has accumulated more than 300 m of 

sediment since the Eocene (Williams and Nitschke, 2005). Based on the prominence of a dated 

travertine structure, which lies above the present playa surface, the floor of Lake Torrens is inferred 

to have been lowered by ~ 2.5 m by wind erosion during the last glacial (Schmid, 1990). The 

elevated Flinders Ranges act as a dust trap for wind-blown sediment travelling eastwards across the 

continent (Bowler, 1976; Hesse and McTainsh, 2003). Discontinuous shallow mantles of red-brown 

very fine sandy or silty clay, that outcrop on the summits and ridges of the Flinders Ranges 

(irrespective of the underlying lithology), are remnants of past dust activity (Nitschke, 2002; 

Williams and Nitschke, 2005). The Flinders Ranges themselves are a major source of sediment for 

Lake Torrens (Williams and Nitschke, 2005). The upper 75 m of the lake comprise sediments of 

Quaternary age (Schmid, 1985; 1989). The dominance of young, Flinders Rangers derived sediment 

in Lake Torrens is supported by moderate to high 10Be in situ bedrock erosion rate estimates (5-123 

m Ma-1) determined by Quigley et al. (2007b) for summit surfaces, hill slope crests, hill slopes and 

stream bottoms in the central Flinders Ranges. Slightly further north, around the gorges of Brachina 

and Parachilna Creeks, in situ 10Be measurements on quartzite and sandstone bedrock indicate 

erosion rates of 2-11 m Ma-1 and 7-22 m Ma-1, respectively (Heimsath et al., 2010). 

 

4. Sample details 

Valley-fill sediments (samples WL07-FPa-f), within the Wilkawillina catchment on the eastern side 

of the Flinders Ranges (Fig. 2b), were collected at the same sampling points as samples taken by 

Haberlah et al. (2010a), for which optically stimulated luminescence (OSL) and accelerator mass 
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spectrometer (AMS) charcoal deposition ages have been previously determined (profile WL07-FP 

of Haberlah et al., 2010a). The deposition ages of these sediments range from 17.1 ± 1.6 ka to 45.5 

± 3.9 ka (Fig. 1b). The ~15 m WL07-FP section is located at the downstream end of the largest 

interfluve of the Wilkawillina floodplain and is fully described in Haberlah et al. (2010a). Fine-

grained silts with intermittent gravel bands/lenses and infrequent sand sheets dominate the section.   

In order to be able to place tighter constraints on the (234U/238U) activity ratio of the source 

rocks, four Proterozoic Flinders Ranges bedrock samples were collected (Fig. 1a): two fine-grained 

sedimentary rocks (BRA-SS1 and GS-S1) and two quartzites (HK-Q1 and WP-Q1). WP-Q1 was 

taken from the prominent quartzite ridge of Wilson’s Pound (Fig. 1a), a relatively enclosed drainage 

basin featuring a small, dry lakebed. A sand dune sample from within Wilson’s Pound (WP-DS1), 

just to northeast of the dry lakebed was also sampled on the premise that the fine material within the 

sand dune deposit may represent the in-blown dust component, which is distinguishable from the 

weathering products of quartzite. 

 

5. Methods and analytical techniques 

Prior to sampling the valley-fill deposits, approximately 5-10 cm of the exposed profile surface was 

scraped away to ensure that ‘fresh’ material was collected. Half of the sediment collected (~500 g to 

1 kg in total per sample) was dry sieved at 500 µm and 200 µm and then wet-sieved at 53 µm using 

deionised water. Approximately 4 g of the retained and dried < 53 µm fraction then underwent a 

sequential extraction procedure to remove organic and exchangeable material, carbonate and Fe-, 

Mn-oxide secondary minerals following a methodology modified from Schultz et al. (1998). 

Removal of the clay-sized (< 2 µm) fraction was then carried out by controlled centrifugation, 

following the United States Geological Survey centrifugation method (Open-File Report 01-041). 

Full details of the extraction procedure are given in the appendix. 56-64 % of initial pre-

sequentially processed sample weight was lost during the procedure, most visibly during removal of 

the < 2 µm size fraction. 

 The sand dune (aeolian) sample was dry sieved at 500 µm and 200 µm and then wet-sieved 

at 53 µm using deionised water. Approximately 4 g of the retained and dried 0-53 µm fraction was 

ashed at 550 °C for 8 hours to remove organic material prior to sample digestion. 

The bedrock samples (~1.5 kg of material per sample) were sawn to remove any visibly 

weathered edges and then approximately a third of the sample was crushed and then milled to a fine 

powder using an agate rotary ball mill. 

Uranium elemental concentrations and (234U/238U) activity ratios were determined on the 

post-leached valley-fill 2-53 µm fraction, ashed ‘aeolian’ sample and bedrock samples using the 

procedure employed at the Macquarie University U‐series Research Laboratory for sedimentary 
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samples. Approximately 0.1 g of sample was spiked with a 236U-229Th tracer and digested in a 

mixture of concentrated acids (HClO4-HF-HNO3-HCl). Separation of U followed standard anionic 

resin chromatography detailed in Turner et al. (2011). Uranium concentrations, determined by 

isotope dilution, and U isotope ratios were measured on a Nu Instruments Multi-Collector ICP-MS 

at Macquarie University following the approach described by Turner et al. (2011). The New 

Brunswick Laboratory (NBL) U010 synthetic standard was used to carry out linear drift correction 

and normalisation of samples for U isotopes, using the certified atomic ratios of 5.47 x 10-5, 1.01 x 

10-2 and 6.88 x 10-5 for 234U/238U, 235U/238U and 236U/238U, respectively. The NBL synthetic 

standard U005-A was run as an unknown at regular intervals throughout the analytical session to 

assess the robustness of instrumental corrections. The average corrected U005-A 234U/238U, 
235U/238U and 236U/238U ratios (n = 6) were 3.43 ± 0.01 x 10-5 (2SD), 5.093 ± 0.004 x 10-3 (2 

standard deviations (SD)) and 1.19 ± 0.02 x 10-5 (2SD), which are within error of the NBL 

published values of 3.42 x 10-5, 5.09 x 10-3 and 1.19 x 10-5, respectively. BHVO-2 and TML-3, 

secular equilibrium rock standards, digested alongside the samples gave (234U/238U) very close to or 

within error (2 standard errors (SE)) of secular equilibrium (Table 1). The U total procedural blank 

for the phase extraction, digestion and column separation procedure is < 60 pg. Note that the 

reagents in the sequential extraction procedure are discarded at the end of each step and that the 

sample is then rinsed with Milli-Q water. 

Sr-Nd isotope cuts (from the same sample digestion as for U isotopes) were prepared and 
analysed for the Wilson’s Pound quartzite and dune sediment at the Geochemical Analytical Unit 
(GAU) at Macquarie University following the methods described in Handley et al. (2008). The Sr 
and Nd fractions were loaded onto degassed single Re filaments and analyzed in static mode on a 
ThermoFinnigan Triton TIMS. Mass fractionation was corrected by normalising Sr to 86Sr/88Sr = 
0.1194 and Nd to 146Nd/144Nd = 0.7219. NIST SRM-987 and BHVO2 gave 87Sr/86Sr ratios of 
0.710241 ± 8 (2SE) and 0.703438 ± 7 (2SE), respectively. BHVO2 gave a 144Nd/143Nd ratio of 
0.512975 ± 6 (2SE). Total analytical blanks for Sr and Nd are < 100 pg. 

BET surface area measurements of the valley-fill samples, including a replicate analysis of 

WL07-FPa (same leached sample, different aliquot), determined by N2 gas adsorption on 

sequentially leached and clay-removed samples, were carried out at the Particle and Surface 

Sciences laboratory in Gosford, Australia using a Micromeritics Gemini VII 2390. A replicate 

analysis of WL07-FPa carried out using a Micromeritics ASAP 2020 at Stanford University (on one 

of the same sample aliquots as that carried out at Gosford) lies within the range of surface area 

given by the two WL07-FPa Gosford measurements (Table 2).  

Particle size distributions of the 2-53 µm processed bulk sediments were obtained using a 

Micromeritics SediGraph III 5120 at Macquarie University. 
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6. Results 

U concentrations and (234U/238U) activity ratios of the Wilkawillina valley-fill sediments, quartzite 

and fine-grained bedrock samples and a representative dust sample are listed in Table 1 and 

presented on Fig. 3. The uppermost Wilkawillina sample (WL07-FPa) has a (234U/238U) ratio > 1 

(Fig. 3). The remaining valley-fill sediments (WL07-FPb-f) possess (234U/238U) ratios < 1, 

consistent with alpha-recoil loss of 234Th (parent of 234U) in fine-grained primary detrital grains 

(DePaolo et al., 2006). They also display a general decrease in (234U/238U) with decreasing 

depositional age and sample depth (Table 1, Fig. 3a). The Wilkawillina samples show greater U 

isotopic disequilibria than (clay-free) semi-arid Australian palaeochannel sediments from the 

Cooper Creek, which have (234U/238U) ratios between 1.019 and 0.974 (Handley et al., in press). 

The (234U/238U) activity ratios of the Proterozoic quartzites and fine-grained sedimentary 

bedrock samples are not in secular equilibrium, as would typically be assumed (see later 

discussion), but have (234U/238U) ratios that range from 0.912 to 0.971 (Fig. 3b). In fact, the fine-

grained bedrock samples show a similar degree of depletion in 234U relative to 238U and similar U 

concentration to the Quaternary Wilkawillina valley-fill sediments. Both quartzite samples display 

slightly less 234U-238U disequilibria relative to the Wilkawillina sediments and lower U 

concentrations. The dust sample is also out of secular equilibrium and possesses a higher U 

concentration, slighter lower (234U/238U) ratio (Fig. 3b), less radiogenic 87Sr/86Sr ratio and higher 
144Nd/143Nd ratio than the quartzite bedrock basin it was enclosed within (see footnote to Table 1). 

 

7. Discussion  

As we now discuss, an unexpected outcome of this study was the inability of the method to produce 

comminution ages and hence, sediment residence times using reasonable input parameter values. 

 

7.1. Comminution age and sediment residence time  

One issue with the comminution approach is the ability to adequately constrain the key inputs to the 

age equation. Below we first summarise the qualitative implications of the data before exploring 

some of the key issues with comminution assumptions in detail. 

 

7.1.1. Wilkawillina sediment 234U-238U disequilibria 

Sample WL07-FPa cannot be used in the comminution calculation because it has a higher 

(234U/238U) than secular equilibrium (i.e. the assumed maximum starting ratio). This elevated ratio, 

in the stratigraphically uppermost sample, may be a result of the uptake of U from 234U enriched 

surficial pore water or significant 234Th adsorption (e.g. Plater et al., 1992; Osmond and Ivanovich, 

1992; Vigier et al., 2005). Another possibility is the incomplete removal of secondary clay or other 
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secondary minerals during sample processing. However, as WL07-FPa was processed in the same 

manner as the other clay-rich samples (see section 5 and the appendix) and a similar percentage of 

material was removed (62 %) compared to the other samples (56-64 %), it is unlikely that the latter 

explanation can account for the significantly elevated (234U/238U) ratio. 

For the remaining samples, the general trend of decreasing (234U/238U), i.e. increasing 

disequilibria, with decreasing deposition age of the Wilkawillina sediments (Fig. 3a) suggests, on 

face value, that the comminution age of the sediments increases, and therefore, the sediment 

residence time increases up section from 45 ka towards the time of the last glacial maximum 

(LGM) (17-20 ka, Barrows et al., 2002). Before attempting to calculate absolute comminution ages 

and hence residence times of the Wilkawillina sediments using the comminution approach, it is first 

important to consider the assumptions inherent in the method.  

 

7.1.2. Recoil loss factor 

As stated in the introduction, the recoil loss factor, fα, has been identified as a major factor of 

uncertainty in the U-series comminution methodology (e.g., DePaolo et al., 2006; Handley et al., in 

press) therefore, recoil loss factors for the Wilkawillina valley-fill sediments have been determined 

by two independent methods: 1) the weighted geometric method based on grain size distribution 

data; assuming surface roughness and aspect ratio vary between 1-2 and 10-1, respectively, 

following a similar assumption by DePaolo et al. (2006) and Dosseto et al. (2010), and 2) using 

BET surface area data, with and without an applied fractal correction (Bourdon et al., 2009). Full 

details of the calculations for each of these methods are given in the appendix.  

By setting Ameas to the measured (234U/238U) of the sample and A0, the (234U/238U) ratio of the 

source, equal to 1 (or 0.95), in order to satisfy the comminution equation a minimum value of fα is 

defined by 1-Ameas (Table 3). The minimum value of fα is the lowest possible value that will yield a 

positive comminution age upon solving the equation. Note it is not possible to determine the 

theoretical minimum value for WL07-FPa because the measured (234U/238U) ratio is greater than 

unity. The calculated recoil loss values are displayed on Fig. 4 and listed in Table 3. Recoil loss 

factors estimated by both the weighted geometric method and BET surface area data with an 

applied fractal correction yield fα values that lie between 0.009-0.010 and 0.040-0.082, respectively. 

Unfortunately, all these fα values are lower than the minimum permissible fα required to solve the 

comminution equation (dashed line in Fig. 4; Table 3). As a result, comminution ages or residence 

times cannot be attained for the Wilkawillina samples using reasonable parameterisations for 

surface roughness, aspect ratio and recoil length scale (DePaolo et al. 2006; Handley et al., in 

press). The BET surface area estimations of fα without the applied fractal correction lie above the 

minimum value of fα (Table 3) and produce sediment residence ages. However, this method of 



 10 

calculation is believed to grossly overestimate the true fα due to the large difference in size between 

the adhering gas molecule and the length of α-recoil as noted in section 2. Therefore, these ages are 

likely to be younger than the true ages. 

 

7.1.3. Activity ratio of the source, A0 

The (234U/238U) activity ratio of the source material, i.e. bedrock, is also a source of uncertainty 

within the comminution equation. Most studies (e.g., DePaolo et al., 2006; Lee et al., 2010; Dosseto 

et al., 2010) assume that prior to physical weathering, fractionation of 234U-238U is negligible and 

therefore, the (234U/238U) ratio of the source will be in secular equilibrium (equal to 1). However, it 

has been shown in a detailed U-series isotope study of crystalline rocks by Rosholt (1983) that 

recoil loss of 234U, and preferential leaching of 234U relative to 238U, can occur in surface and near-

surface crystalline rocks and also in some un-fractured crystalline rocks from drill cores. Also, U 

assimilation and 234U recoil gain were measured in fractured rocks from some drill cores. Therefore, 

tighter constraints on the (234U/238U) variability of the source rock are required to improve the 

accuracy of the comminution age. Allowances for chemical weathering and preferential leaching of 
234U from the source rock prior to physical weathering are not presently incorporated into the 

comminution equation. Unfortunately, placing tighter constraints on the (234U/238U) of the source 

will prove challenging if sediment provenance is unknown or the sediment deposits of interest are 

located within large catchment areas that drain a wide variety of lithology (e.g., Lake Eyre Basin, 

Australia).  

To help reduce the uncertainty on the (234U/238U) ratio of the source for this study, four 

local, Proterozoic bedrock samples (two quartzites and two fine-grained sedimentary rocks) were 

analysed (Table 1). All bedrock samples show moderate to significant disequilibrium between 234U 

and 238U, with (234U/238U) < 1 and with an average value of 0.95 (Fig. 3b). The (234U/238U) ratio of 

the fine-grained sedimentary rocks (shale and siltstone) lie within the range observed for the 

Wilkawillina valley-fill sediments themselves, necessitating minimal residence time if they are the 

predominant bedrock source. Despite being unable to obtain residence times for the Wilkawillina 

sediments it is possible to illustrate the effect such non-secular equilibrium source rocks have on 

calculated residence times using the BET (non-fractal corrected) timescale results (Fig. 4) for which 

fα was sufficiently high to satisfy the comminution equation (noting that these fα values are likely to 

be overestimates of the true values). Using the average value of the four local bedrock sediments 

(0.95), instead of an assumed value of 1, reduces the apparent residence time of the samples by up 

to an order of magnitude (Table 4). The implications of non-secular equilibrium bedrock (234U/238U) 

activity ratios are discussed in more detail below. 
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7.2. Limitations of the comminution approach  

For the Wilkawillina samples, the inability to produce residence timescales using a reasonable 

range of input parameter values for fα and A0 may reflect: 1) analytical issues during sample 

preparation, 2) the inability to produce suitable fα values, or 3) that the source rocks were not in 

secular equilibrium and the appropriate (234U/238U) values are unknown. Interpretation of measured 

(234U/238U) ratios may also be hindered by the complex nature of the samples i.e., that they are not 

simply the product of physical weathering within the catchment. Further considerations and 

improvements are therefore required before the comminution method can be applied to all fluvial 

systems. All three hypotheses and sample complexity are discussed below. 

 

7.2.1. Analytical issues and fα values 

The Wilkawillina sediments were processed in the same way to those of previous comminution 

studies (Dosseto et al., 2010; Handley et al., in press), noting that Dosseto et al. did not remove the 

clay-sized fraction. Therefore, it seems unlikely that sample processing issues are responsible for 

the inability to produce comminution ages. However, significantly more material was lost during 

the sequential extraction procedure (56-64% of the initial starting material) than is usual (~20%) 

due to the high abundance of clay-sized material in the deposits. If primary minerals were removed 

along with secondary clay material during the extraction of the < 2 µm fraction, this may explain 

the lower fα values obtained (due to the higher surface to volume ratio in finer grains, which enables 

greater loss of 234Th via α-recoil). The question of whether the clay-sized fraction should be 

removed or not needs to be considered further in future studies as this component likely contains a 

mixture of undesired secondary clay material but also desired, clay-sized detrital grains. 

Furthermore, the disparate leaching methodologies presently employed by each author/research 

group need to be tested thoroughly to ensure that they do not fractionate (234U/238U) ratios. 

Standardisation of an accepted leaching protocol for comminution studies would help to circumvent 

this issue. Nevertheless, the calculated fα values of the Wilkawillina sediments produce similar fα 

values when compared to fα estimates for other Australian fine-grained samples (< 53 µm fraction) 

shown on the y-axis of Fig. 4. The Wilkawillina weighted geometric and surface area (fractal 

corrected) fα values also lie within the typical parameter range of fα (0.01-0.1) given by Bourdon et 

al. (2009). Noting that the study of Bourdon et al. (2009) focused mainly on carbonates/carbonate 

rich rocks as opposed to silicates. 

 

7.2.2. Non-secular equilibrium source rocks 

Of greatest pertinence to this, and other studies using the comminution methodology to calculate 

sediment residence times, is that the source rocks (A0) may be out of secular equilibrium and 
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therefore (234U/238U) cannot be assumed to be ‘1’ within the comminution age equation. Changing  

this input parameter from unity to a measured average of 0.95 for the Wilkawillina catchment  

results in a reduction of the calculated apparent residence time by an order of magnitude (section  

7.1.3). The non-secular equilibrium of (234U/238U) in bedrock identified in this study is corroborated  

and supported by a previous U-series study of crystalline bedrock from surface, near surface and  

drill core sites in the USA (Rosholt, 1983). Rosholt identified both 234U gain and loss within the  

sample suites analysed, which translates to a wide range of potential (234U/238U) starting activity  

ratios; both less than and greater than unity depending on the degree of U mobility and the nuclide  

redistribution process involved. The three different bedrock lithologies sampled in the Flinders  

Ranges in this study all show (234U/238U) activity ratios less than one, suggesting that the rocks have  

experienced in situ depletion of 234U relative to 238U. Recoil loss of 234U and/or preferential leaching  

of 234U from bedrock during incipient chemical weathering can explain such loss (Rosholt, 1983;  

Andersen et al., 2009). The fractured and jointed nature of much of the Flinders Ranges bedrock  

(e.g. Quigley et al., 2007a) enhances the opportunity for recoil loss and leaching of 234U. The  

greatest 234U-238U disequilibria was observed in the more friable shale and siltstones compared to  

the quartzites, supporting such a theory (Fig. 3b). The moderate to high 10Be erosion rates published  

for the Flinders ranges (Quigley et al., 2007b; Heimsath et al., 2010) detailed in section 3 suggest  

that disequilibrium persists to some depth within the bedrock. The inference is that users of the  

comminution method cannot assume (as is common at present) that the source (A0) (234U/238U) ratio  

is 1. This assumption probably needs to be assessed for each catchment studied. The degree of 234U- 
238U disequilibria of the source may be dependant on the lithology, extent of chemical  

weathering/leaching loss of 234U from recoil damage tracks and tectonic history (e.g., the degree of  

rock micro-fracturing) of the bedrock of interest, as young, fresh volcanic rocks typically show  

(234U/238U) ratios within error of secular equilibrium (e.g., Sims et al., 2002; Handley et al., 2011;  

Turner et al., 2012).  

  

7.2.3. Complex sedimentary systems  

Of additional consideration for the Wilkawillina samples is the complex nature of the sediments  

themselves. Williams and Nitschke (2005) suggest that the fine-grained late-Pleistocene valley-fill  

sediments in the central Flinders Ranges contain a mixture of locally weathered argillite material  

and reworked aeolian material that was blown in as dust, predominantly from the adjacent Lake  

Torrens. Therefore, the sediment residence time of Flinders Ranges valley-fill sediments is likely to  

encompass sediment recycling between the Flinders Ranges and Lake Torrens whereby products of  

the erosion of the Flinders Ranges (at least during the Quaternary) are transported to, and  

temporarily stored within Lake Torrens, before being blown back to Flinders. Additional aeolian  
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input to the Ranges from further west (e.g., Arcoona Plateau) could not be ruled out by Williams 

and Nitschke (2005). In such a scenario, the measured (234U/238U) ratios of the valley-fill deposits 

would reflect a mixture between higher (234U/238U), ‘shorter’ comminution age fluvial material and 

lower (234U/238U), ‘longer’ comminution age recycled sediment. The trend of increasing 

disequilibria with decreasing depositional age is consistent with an increasing contribution of 

‘older’ recycled aeolian sediment in the younger deposits and would be expected if relative aridity 

and dust flux increased towards the LGM (e.g., Bowler, 1976; Hesse et al., 2004). Furthermore, if 

the floor of Lake Torrens has been lowered by ~ 2.5 m during the last glacial period due to wind 

erosion, the most recent contribution of dust from the lake bed would be of greater depositional age 

and therefore, potentially of older comminution age, amplifying the effect of lower (234U/238U) in 

the more recently deposited Wilkawillina valley-fill deposits. This hypothesis is conditional on 

minimal etching and chipping of grain edges during aeolian transport, which would remove the 

greatest (234U/238U) disequilibria edges, during the relatively short transport of material between 

Lake Torrens and the Flinders Ranges (40-100 km). If the Wilkawillina valley-fill deposits are 

composed of a mixture of fluvial sediment and increasing amounts of dust with decreasing age of 

the deposits, a mixing relationship may be expected between ‘fluvial sediment’ and ‘dust’. 

However, no clear mixing trend is observed (i.e. straight line) on a plot of 1/U concentration versus 

(234U/238U) (not shown). Further analysis of the U isotopic ratio of present day and past aeolian 

material is required to place greater constraints on the effect of such inputs and on the implication 

for calculated timescales. Rare earth element and Sr-Nd isotopic data of both sediment samples and 

potential source inputs (local bedrock and dust) would help to further constrain sediment 

provenance and the contribution of aeolian material. The radiogenic isotope data of the dust and 

quartzite bedrock (Table 1 footnote) are distinct from one another, suggesting that the fine-grained 

fraction of the sand dune deposit is of different provenance to the bedrock and is likely to be aeolian 

derived but the Sr-Nd isotopic ratios of the valley-fill sediments were not determined in this study. 

 The preferential loss of 234U relative to 238U via leaching of loosely bound, recoiled 234U 

from damaged lattice sites (e.g., Fleischer, 1980; Andersen et al., 2009) is not considered in the 

comminution method and it has been argued that recoil alone account for observed sediment sample 
234U-238U disequilibria (DePaolo et al., 2006; Maher et al., 2006). However this effect needs to be 

considered in further studies as it could lead to overestimation of calculated ages. 

 

8. Summary and conclusions 

Fine-grained detrital sediments from Pleistocene valley-fill deposits from the Wilkawillina 

catchment within the Flinders Ranges have (234U/238U) activity ratios less than unity (except for the 

uppermost sample in the profile). Local Proterozoic bedrock and a ‘dust’ sample also display 
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(234U/238U) ratios < 1. The Wilkawillina U isotope data, combined with estimates of recoil loss 

factor for each sample (the latter of which were determined by two independent methods), are 

unable to produce residence ages using the comminution equation. This suggests that the 

comminution approach is not amenable to all sediments. In the case of the Wilkawilina valley-fill 

sediments, interpretation of the measured (234U/238U) ratios is complicated by the potential mixed 

provenance of the sediments. If the samples are a mixture of local Flinders Rangers argillite 

material and aeolian material sourced from Lake Torrens (Nitschke, 2002; Williams and Nitschke, 

2005), the measured (234U/238U) ratios do not simply represent the time the sediment has resided 

within the Wilkawillina catchment. The general decrease in (234U/238U) with decreasing deposition 

age (from 44 ka to 22 ka) may be explained by the increasing involvement of an aeolian component 

as aridity and dust flux expectedly increase towards the LGM - providing that the aeolian 

component has larger 234U-238U disequilibria than the local bedrock, as is the case for the quartzite, 

but not the fine-grained bedrock, investigated here. U-series analysis of true aeolian material is 

required to advance our understanding of the impact the dust on the measured (234U/238U) ratios of 

Flinders Ranges valley-fill deposits. Most importantly, the Proterozoic bedrock samples show that 

the (234U/238U) ratio of the source, or starting ratio (A0), within the comminution equation, cannot be 

assumed to be unity. Using a (234U/238U) ratio of 0.95 (the average of the four bedrock samples 

analysed) rather than 1, would translate to a reduction in calculated residence times on the scale of 

an order of magnitude. The bedrock U isotope data indicate that fractionation of 234U from 238U 

occurs prior to physical weathering, most likely due to preferential leaching of 234U from recoil-

damaged lattice sites within minerals. Considering the erosion rates constrained by 10Be (Quigley et 

al., 2007b; Heimsath et al., 2010) and the half-life of 234U, we propose that U isotope disequilibrium 

persists to some depth in the bedrock in the Flinders Ranges. The implication of this for the 

comminution approach is that the comminution ‘clock’ may start much earlier than is consistent 

with the theory of this method, i.e. the clock will begin before grains are mechanically weathered to 

the critical threshold size of ~50 µm, such that the magnitude of disequilibria measured in 

sediments (relative to secular equilibrium) does not correlate simply to sediment residence time. 

Further constraints on bedrock (234U/238U) ratios for different lithologies and tectonic settings (e.g. 

active ranges versus stable plateaus) may help to address this issue. At present, the comminution 

method appears to yield relatively trustworthy absolute ages where sediment provenance is 

relatively simple, fine-grained sediment is formed rapidly and where sediment transport and storage 

are limited (e.g., glacially produced sediment deposited in the Kings River Fan, California; Lee et 

al., 2010) or where the sediments are subject to minimal post-depositional weathering (e.g., dust 

trapped in ice sheets; Aciego et al., 2011). However, this study suggests that the comminution 

approach has, at present, limited applicability and accuracy for sediment deposited within 
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catchments involving of multiple sediment sources and proven non-secular equilibrium source 

material. Further tests of the methodology are required on sediments for which independent age 

constraints are able to be obtained. 
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Figure Captions 

Fig. 1. Schematic diagram showing the relationship between comminution age, deposition age and 

sediment residence time. Modified from Dosseto et al. (2010). OSL, optically stimulated 

luminescence.  

 

Fig. 2. a) Map showing the locations of samples and sampling sites within the Flinders Ranges, 

South Australia. Inset shows the location of the study area within Australia (modified from 

Haberlah et al., 2010a). b) Stratigraphic profile of the Wilkawillina valley-fill deposits (section 

WL07-FP of Haberlah et al., 2010a). Samples WL07-FPa-f were collected at the same localities for 

which the sediment deposition ages are indicated on the profile (see Table 1 for the specific depths 

at which samples were taken relative to present day surface and corresponding deposition ages). See 

Haberlah et al. (2010a) for a detailed section description.  

 

Fig. 3. (234U/238U) versus a) deposition age and b) U concentration (determined by isotope dilution) 

for Wilkawillina valley-fill sediments, local bedrock and Flinders Ranges ‘dust’. 2SE for U 

concentration and (234U/238U) are smaller than or equal to symbol size. Errors on deposition ages are 

from Haberlah et al. (2010a). 
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Fig. 4. Calculated recoil loss factors (fα) for Wilkawillina valley-fill sediments by weighted 

geometric and surface area measurements with (fα BETfract) and without (fα BET) an applied fractal 

correction (see the appendix for equation and input parameter details). The weighted geometric 

model uses sample grain size data, an alpha-recoil length of 30 nm, surface roughness values 

ranging from 1-2 (increasing with increasing grain diameter) and aspect ratio ranging between 1 for 

the largest grain and 10 for smallest grain (Appendix Table A1). Symbols on the y-axis exemplify 

published ranges in recoil loss factor for Australian palaeochannel sediments: Murrumbidgee River 

palaeochannel sediments, southeast Australia (0-53µm fraction) (Dosseto et al., 2010); Cooper 

Creek palaeochannel sediments for both clay-included and clay-excluded samples using weighted 

geometric and surface area (BETfract) estimations (Handley et al., in press). It is not possible to 

calculate the theoretical range of fα or Tres for samples where measured sample (234U/238U) ratios are 

greater than that assumed for A0 (Tables 3 and 4). 
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Table 1. Sample details, U-isotope composition and U concentration of Wilkawillina valley-fill sediments, local bedrock and Flinders Ranges ‘dust’

Sample Location Grid Reference Depth Sample type Deposition (234U/238U) 2SE [U] ppm 2SE
S E (cm) age (ka)/rock age

WL07-FPa Wilkawillina floodplain 31°16'10.56" 138°52'4.19" 85 valley-fill 17.1±1.6a 1.069 0.002 2.203 0.002
WL07-FPb Wilkawillina floodplain 31°16'10.56" 138°52'4.19" 255 valley-fill 24.9±1.4b 0.891 0.002 2.129 0.003
WL07-FPc Wilkawillina floodplain 31°16'10.56" 138°52'4.19" 465 valley-fill 29.3±0.4c 0.908 0.003 2.442 0.004
WL07-FPd Wilkawillina floodplain 31°16'10.56" 138°52'4.19" 750 valley-fill 36.7±0.9c 0.899 0.002 2.654 0.004
WL07-FPe Wilkawillina floodplain 31°16'10.56" 138°52'4.19" 855 valley-fill 38.9±2.9b 0.903 0.002 2.550 0.004
WL07-FPf Wilkawillina floodplain 31°16'10.4" 138°52'03.9 1320 valley-fill 45.5±3.9b 0.944 0.003 2.815 0.005
WP-DS1 Wilson's Pound 31°52'58.3" 138°20'35.0" < 15 dune (0-53µm) unknown 0.956 0.002 2.096 0.002
WP-Q1 Wilson's Pound 31°54'24.9" 138°21'49.1" quartzite Proterozoic 0.971 0.003 0.220 0.000
HK-Q1 Hookina Creek 31°47'52.9" 138°15'47.8" quartzite Proterozoic 0.966 0.002 0.493 0.000
GS-S1 Brachina Catchment 31°19'54.7" 138°37'56.0" shale Proterozoic 0.940 0.002 3.363 0.005

BRA-SS1 Brachina Catchment 31°20'17.6" 138°36'23.9" siltstone Proterozoic 0.912 0.002 2.303 0.003
BHVO-2 rock standard 1.003 0.003 0.363 0.001

TML rock standard 1.005 0.003 10.897 0.021

Wilkawillina valley-fill sediments (WL07-FPa-f) from locality WL07-FP of Haberlah et al. (2010a).
Deposition ages determined by Haberlah et al. (2010a): aOSL (single grain), bOSL (smalll aliquot), cAMS (charcoal).
Depth in cm from present day surface.
Dune deposit taken from upper 15 cm of a vegetated dune in centre of Wilson's Pound (< 53 µm fraction analysed).
87Sr/86Sr and 143Nd/144Nd ratios of WP-Q1 and WP-DS1 are 0.738311 ± 9 (2SE) and 0.511737 ± 7 (2SE) and 0.724147 ± 6 (2SE) and 
0.512013 ± 10 (2SE), respectively.



Table 2. BET surface area measurements of Wilkwillina valley-fill sediments

Sample Lab BET surface area m²/g Error m²/g
WL07-FPa Gosford 33.67 0.25
WL07-FPaa Stanford 30.25 0.61
WL07-FPab Gosford 28.55 0.15
WL07-FPb Gosford 12.83 0.02
WL07-FPc Gosford 16.08 0.04
WL07-FPd Gosford 15.11 0.06
WL07-FPe Gosford 20.43 0.10
WL07-FPf Gosford 17.31 0.05

a repeated BET analysis on same sample aliquot at a different laboratory
b repeated BET analysis same sequentially processed sample, different aliquot



Table 3. Calculated recoil loss factors for Wilkawillina valley-fill sediments

fα sample minimum geometric geometric BET BET BETfract BETfract
(1-Ameas) A0 = 1 A0 = 0.95 A0 = 1 A0 = 0.95 A0 = 1 A0 = 0.95

WL07-FPa n.s. 0.009 0.009 0.682 0.682 0.082 0.082
WL07-FPaa 0.613 0.613 0.074 0.074
WL07-FPab 0.578 0.578 0.077 0.077
WL07-FPb 0.109 0.010 0.010 0.260 0.260 0.040 0.040
WL07-FPc 0.092 0.010 0.010 0.326 0.326 0.050 0.050
WL07-FPd 0.102 0.010 0.010 0.306 0.306 0.044 0.044
WL07-FPe 0.097 0.010 0.010 0.414 0.414 0.058 0.058
WL07-FPf 0.056 0.010 0.010 0.351 0.351 0.051 0.051

a repeated BET analysis on same sample aliquot at a different laboratory (see Table 2).
b repeated BET analysis same sequentially processed sample, different aliquot (see Table 2).
n.s. = not solveable due to measured (234U/238U) > 1.
1-Ameas is the minimum value for fα required to satisfy the comminution equation, as defined in section 7.1.2.
fα geometric is the weighted geometric estimation of fα calculated using equation 1 given in the appendix.
fα BET and fα BETfract  are calculated using equations 2 and 3 given in the appendix.
See the appendix for further equation details and the input parameter values used.



Table 4. Calculated residence times of Wilkawillina valley-fill sediments

sample geometric (psd) geometric (psd) BET BET BETfract BETfract
A0 = 1 A0 = 0.95 A0 = 1 A0 = 0.95 A0 = 1 A0 = 0.95

Tres WL07-FPa n.s. n.s. n.s. n.s. n.s. n.s.
(ka) WL07-FPb n.s. n.s. 167±26.9 91±15 n.s. n.s.

WL07-FPc n.s. n.s. 88±14 29±4.6 n.s. n.s.
WL07-FPd n.s. n.s. 106±17.0 42±6.8 n.s. n.s.
WL07-FPe n.s. n.s. 55±9.0 10±1.6 n.s. n.s.
WL07-FPf n.s. n.s. 16±2.6 n.s. n.s. n.s.

Tres is calculated by subtracting the sediment deposition age from the comminution age as detailed in the text.
The comminution age was calculated using the equation given in text using the fα values given in Table 3
The input parameter values used are given in Table A1 in the appendix.
n.s. = not solveable: either due to measured (234U/238U) > 1 (as for WL07-FPa) or fα being too low 
to produce a solution or positive comminution age.
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Appendix  
 

Sequential phase extraction procedure 
Secondary minerals such as carbonates, Fe-, Mn-oxides and clays are likely to incorporate U 

with a (234U/238U) ratio of the fluid they precipitate from, characterised by (234U/238U) activity 

ratios > 1. Therefore, secondary minerals are undesired materials in U-series isotope 

comminution age studies as they are not representative of the primary detrital (234U/238U) bulk 

activity ratio. 

Approximately 4 g of the post-sieved < 53µm underwent a sequential extraction 

procedure to remove organic and exchangeable material, carbonate and Fe-, Mn-oxide 

secondary minerals following a methodology modified from Schultz et al. (1998) which is 

presented in Handley et al. (in press) and given below. 

 

Stage 1: removal of exchangeable/adsorbed/organics.  

The sample was first heated at 98°C for 30 minutes in 30 mL of NaOCl (pH 7.5). Once cool, 

the sample was centrifuged and the NaOCl supernatant discarded. This stage was then 

repeated. Afterwards the sample was rinsed (rinse stage) via the addition of 10 mL of 18.2 

MΩ water, centrifugation at 7000 rpm for 15 minutes and then the supernatant was discarded. 

The rinse stage was carried out twice. Note that all supernatants (including 18.2 MΩ water) 

were removed carefully via pipette after each centrifuge step.  

 

Stage 2: removal of carbonates.  

20 mL of 1M NaAc in HAc at pH 4 was added to the residue from Stage 1. The sample was 

continually agitated using a rotary mixer at 30 rpm for 2 hours at room temperature. After 

centrifugation the supernatant was discarded. The rinse stage was then repeated twice.  

 

Stage 3: removal of amorphous and crystalline Fe-, Mn-oxides.  

20 mL of 0.04M NH2OH.HCl was added to the residue of Stage 2. The sample was 

continually agitated using a rotary mixer at 30 rpm for 5 hours. After centrifugation the 

supernatant was discarded. The rinse stage was then repeated twice.  
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Stage 4: removal of clay-sized material.  

The clay-sized 0-2 µm fraction of the samples was removal by controlled centrifugation, 

following the United States Geological Survey centrifugation method (Open-File Report 01-

041). Prior to centrifugation, approximately 50 mL of filtered 5% sodium hexametaphosphate 

solution was added to the sample to disperse the particles. The mixture was then sonicated 

with an ultrasonic probe for 20 seconds at 140 W and agitated overnight at 30 rpm using a 

rotary mixer. The centrifugation step was undertaken an additional 3 times beyond when the 

sample was considered clear of suspended matter to try to ensure complete removal of the 

clay-sized material. 

 

The question of whether the clay-sized fraction should be removed or not requires further 

consideration in future studies. Secondary clay material, as stated above, will incorporate the 

(234U/238U) ratio of the fluid it precipitates from and is therefore undesirable sample material. 

However, by removing the clay-sized fraction, the clay-sized primary detrital component will 

also be removed from the sample. This fraction is likely to contain significant disequilibria 

due to its fine grain size and therefore, would have contributed significantly to the bulk 

sample measured (234U/238U) ratio. Whether or not this fraction should be removed may 

depend upon sample source area and sample mineralogy. 

 

To ensure that the leaching method used here does not induce any unwanted isotopic 

fractionation, thorough leaching tests are required. A future study whereby leachate and 

residual component U element concentration and (234U/238U) activity ratio is determined at 

each step of the phase extraction procedure is required to confirm the robustness of the pre-

treatment procedure. 

 

Recoil loss factor (fα) calculation 

Geometric estimation 

In the geometric estimation of fα, the amount of recoil is related to the size, surface area 

(roughness) and sphericity of the grain. Consequently, a weighted geometric model is 

preferred to yield reasonable estimations of fα  (DePaolo et al., 2006): 
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where r is the grain radius, L is the 234Th recoil distance (in nm), X(r) is the volume fraction 

of grains with radius r, β is the aspect ratio of the grain and λs is the surface roughness factor. 

Assumptions are required for the surface roughness factor (λs), which is expected to increase 

with grain size, and for the aspect ratio (β), which is commonly taken to range between 1 for 

the largest grain and 10 for smallest grain (e.g., DePaolo et al., 2006; Dosseto et al., 2010). 

The parameter values used in this study are given in Table A1. 

 

Surface area estimation 

Direct measurements of bulk sediment specific surface area determined by BET gas 

adsorption methods overcome the necessity to assume a surface roughness factor and aspect 

ratio. Alpha-recoil loss is related to surface area by the following equation (Kigoshi, 1971; 

Luo et al., 2000; DePaolo et al., 2006):  

! 

f" =
1
4
L# SBET # $            (2) 

Where SBET is the measured BET total surface area and ρ is the bulk density of the solid. 

However, due to the large difference in size between the length of α-recoil (~ 30 nm) and the 

adhering gas molecule (~ 0.35 nm), this method can significantly overestimate fα, as noted by 

DePaolo et al. (2006) and Maher et al. (2006). To overcome this scale issue, Bourdon et al. 

(2009) incorporated the theoretical fractal recoil model of Semkow (1991) that predicts fα 

based on the BET surface measurements according to the following equation: 
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Where D is the fractal dimension of the surface (which can be determined via BET data, see 

Bourdon et al., 2009 for details) and a is the diameter of the adsorbate gas molecule (N2 in 

most BET measurements). 

 

The weighted geometric and BET surface area methods described above were used to 

estimate and compare values of fα , employing the assumed input parameter values given in 

Table A1. 
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Table A1. Input parameter values used in recoil loss factor and comminution age equations 

 

Parameter Value 
weighted geometric method  
surface roughness, λs 1 to 2 
aspect ratio, β 10 to 1 
length of α-recoil, L (nm) 30 
Source rock (234U/238U), A0 1 or 0.95 
Sample (234U/238U), Ameas as measured 
234U decay constant, λ234 2.82629 x 10-6 

  
Surface area (fract.) method  
fractal dimension, D as calculateda 

total surface area, BETtot as measured 
density, ρ (kg/m3) 2670 
length of α-recoil, L (nm) 30 
Source rock (234U/238U), A0 1 or 0.95 
diameter adsorbant gas, a (nm) 0.35 
234U decay constant, λ234 2.82629 x 10-6 

 
acalculated using BET isotherm linear plot data following Bourdon et al. (2009). 
234U decay constant (λ234) from Bourdon et al. (2003). 

The surface area calculation without fractal correction (BET, Table 3 in the main text, Equation 2 in 

the appendix) uses the input parameter values (for L and ρ) as those given for the surface area 

(fract.) method given here (BETfract, Table 3 in the main text). 

λs varies from 1-10 assuming a linear increase from the smallest to largest grains. 

β varies from 10-1 assuming a linear decrease from the smallest to largest grains. 
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