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Abstract  

 Frequency domain fluorescence lifetime imaging microscopy (FD-FLIM) has been 

used in combination with laser scanning confocal microscopy to study the cellular uptake 

behaviour of the anti-tumour drug doxorubicin (DOX) and micellar-encapsulated doxorubicin 

(PLA-DOX). The endocytosis uptake process of PLA-DOX was monitored over 72 hours 

using confocal microscopy with a maximum fluorescence recorded at incubation periods 

around 24 hours.  The micellar structure was not found to release the encapsulated DOX 

during the time course of imaging.  FLIM revealed a single fluorescence lifetime distribution 

for PLA-DOX that accumulated in the cytoplasm.  By contrast, two distinct fluorescence 

lifetime distributions were observed for free DOX; a short lifetime for DOX located in the 

cytoplasm and a longer lifetime for DOX localised in the nucleus.  There was a marked 

dependence of the measured free DOX lifetime on concentration within the cell, in contrast to 

reference experiments in aqueous solution, where no such dependence was found.  The 

results suggest the intercalation of DOX with DNA in the nucleus and the formation of 

macromolecular structures within the cytoplasm. 
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Background 

Polymer systems are increasingly being recognized for their potential as delivery devices 

for existing drugs to improve their therapeutic efficacy.  Drugs can be loaded by chemical 

conjugation or physical encapsulation, and the resulting nano-scale macromolecular prodrugs 

have demonstrated a number of advantages over small molecular weight drugs, notably 

prolonged plasma half-lives, selective accumulation in tumours and sustained drug release 

over extended periods [1-8].  Functionality of these prodrugs can be finely tuned because of 

the inherent versatility in polymer chemistry.  Much effort has been focused on the 

development of novel amphiphilic polymers, exhibiting a finely tuned balance of 

hydrophilicity and hydrophobicity. Such systems tend to self assemble into nanostructures 

with hydrophobic cores and hydrophilic shells, systems that are particularly promising for the 

delivery of hydrophobic anti-tumour agents in cancer chemotherapy [9-11].  

A challenge in the design of macromolecular prodrugs is to ensure an efficient 

intracellular release of the carried drugs, which is a key requirement for their therapeutic 

efficacy.  Unlike small molecular drugs, macromolecular prodrugs generally enter cells via 

endocytosis, and they are compartmentalised in the endosome and lysosome. An 

understanding of their intracellular fate after uptake is important in providing guidance for 

the design of efficient drug delivery systems. Key to this is the ability to differentiate between 
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conjugated or encapsulated forms of drug and the free released drug inside living cells.  Many 

anticancer drugs are intrinsically fluorescent, e.g. doxorubicin (DOX), which makes them 

convenient for probing and visualising their location with various microscopic imaging 

technologies. However, conventional intensity based microscopic techniques are of limited 

value in this respect because the intensity or spectral response does not differ significantly 

between polymeric and free drug systems, thus makes the differentiation inside the cells 

difficult. In this paper we demonstrate the potential of fluorescence imaging microscopy 

(FLIM) as a tool to successfully distinguish between polymer mediated and free drug inside 

living cells. Fluorescence lifetime is a sensitive tool to study the local physicochemical 

environment of a fluorophore.  It probes the average time a molecule stays in its excited state 

before returning to the ground state, yielding information on intramolecular interactions, such 

as protein binding events [12, 13], changes in pH [14], local viscosities [15], the presence of 

quenchers such as oxygen or ions [16, 17], and many other parameters.  FLIM is thus able to 

provide information on drug delivery candidates that other techniques cannot. To the best of 

our knowledge, the use of FLIM has not been reported in the literature in the specific context 

of drug delivery research.  Partly this is due to the fact that traditional implementations of 

FLIM, such as time correlated single photon counting (TCSPC) and time gated detection, 

require the use of expensive laser and detector equipment.  Equally importantly, these 

techniques require high photon fluxes, with associated increases in signal acquisition times, 

thus reducing their ability to track dynamic changes.   

In this paper we demonstrate what we believe to be the first application of FLIM in 

polymer mediated drug delivery research.  In particular we have set up a frequency domain 
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widefield FLIM system, which makes use of inexpensive light emitting diodes (LEDs) as 

excitation sources. The system is photon efficient and because lifetime information is tracked 

for all image pixels in parallel, measurements have good temporal resolution, making the 

technique suitable for dynamic studies in live cell systems.  The system operates using an 

LED, the amplitude of which is modulated at a frequency of 40 MHz.  Lifetimes are obtained 

using a homodyne detection scheme and extracting phase shift and demodulation information 

of the emitted fluorescent intensity from each individual image pixel.  The technique is 

simple to implement and makes use of high brightness, large emission area LEDs.  Their 

spectral and illumination properties make them ideally suited for widefield FLIM to provide 

reliable lifetime information at subsecond data acquisition speed, which makes the technique 

ideally suited for the dynamic imaging over extended observation periods.   

The drug carrier studied in the present work was a grafted pseudopeptide, poly(L-lysine 

adipylamide) with poly (ethylene glycol) side chains (PLA) (Fig. 1).  This amphiphilic 

synthetic polymer self assembles into a core-shell like superamolecular structure with DOX 

encapsulated in its core. Here we present the first example of using LED based frequency 

domain FLIM (FD-FLIM) in the study of intracellular dynamics of free DOX and of 

polymeric micellar encapsulated DOX (PLA- DOX). 

Methods 

Materials 

Doxorubicin hydrochloride (DOX.HCl) was obtained from Fluka. Poly (L-lysine 

adipaminde), prepared from an interfacial polymerization [18], was treated in dimethyl 

sulfoxide (DMSO) with methoxypoly(oxyethylene) amine (Mn =4400 g mol-1, 0.05 molar 
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equivalent of [COOH]), in the presence of N,N’-dicyclohexylcarbodiimide and 4-

dimethylaminopyridine. The product was purified by diafiltration (Millipore, MWCO 

5000Da) against four volumes of deionized water, before lyophilisation to fine white powder. 

The structure of PLA was confirmed by 1H NMR in d6-DMSO.  

  25 mg of PLA and 5 mg of DOX.HCl were dissolved in dimethyl sulfoxide (12.5 mL) 

in the presence of triethyl amine (100 μL).  An equal volume of deionized water was added 

and the mixture stirred at room temperature for 1 h, dialyzed (MWCO 12000 Da) against 

deionized water for 72 h to remove the dimethyl sulfoxide (DMSO), triethyl amine and free 

DOX, before lyophilization to a red powder occurred. 

Determination of drug loading 

1 mg of PLA-DOX was dissolved in 1 mL of DMSO, and its absorption at 485 nm 

was measured on a Shimadzu UV-160A spectrophotometer. The amount of DOX in PLA-

DOX was quantified to be 5.1 wt%, based on a standard curve of DOX.HCl. 

Steady state fluorescence spectroscopy 

The fluorescence spectra of free DOX and PLA-DOX in aqueous solutions were 

collected using a SPEX FluoroMax-3 spectrofluorometer (HORIBA JOBIN YVON, UK). 

Cell culture and sample preparation 

Human cervical carcinoma (Hela) cells were grown in Dulbecco’s modified Eagle’s 

medium (DMEM, GIBCO) supplemented with 10 % fetal bovine serum (FBS, GIBCO).  

Cells were maintained in a humid incubator at 37 oC and with 5 % CO2.  For living cell 

fluorescence microscopy, cells were seeded into sterilized glass-bottom dishes (Mat Tek, 

Ashland, MA) a day in advance.   
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Time Correlated Single Photon Counting 

Time correlated single photon counting (TCSPC) measurement was performed at the 

Department of Physics, Politecnico di Milano, Italy.  Free doxorubicin at a concentration of 

0.01 mg mL-1 in aqueous solution in standard 10-mm quartz cuvettes was measured. 

Picosecond light pulses at 535-545 nm were selected using an optical bandpass filter from a 

supercontinuum pulse-train generated by a self-mode-locked Ti:sapphire laser and a photonic 

crystal fibre [19]. The fluorescence decay curve was measured with a spectrally resolved 

TCSPC set-up consisting of a spectrometer, a 32-channel photomultiplier tube (H7260-L32, 

Hamamatsu), a router (PML, Becker & Hickl) and a PC card with the TCSPC electronics 

(SPC-600, Becker & Hickl). The temporal resolution of the set-up was 0.16 ns. The lifetime 

was determined by fitting an exponential, convolved with the instrument response function, 

to the measured decay curve. 

Laser Scanning Confocal Microscopy 

 Laser scanning confocal microscopy (Olympus FV300) was used to study the 

dynamics of PLA-DOX uptake by the Hela cells using a conventional intensity based 

approach.  For this purpose cells were kept on a heater stage at 37 oC and imaged with a 60 × 

oil immersion objective (1.35 NA Olympus).  The 488 nm line from an argon ion laser was 

used for excitation, and emission was collected between 565 and 630 nm.  

 DOX and PLA-DOX were dissolved in phenol red free Dulbecco’s modified Eagle’s 

medium (GIBCO) containing 30 mM HEPES buffer (GIBCO), 2.0 mM L-Glutamine 

(GIBCO) and 10 % FBS.  The solutions were filtered with 0.22 μm syringe filters for 

purification before experiments were started.  Hela cells were incubated with 0.1 mg mL-1 
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PLA-DOX and imaged by confocal microscopy every 12 hours over periods lasting up to 72 

hours. 

Fluorescence Lifetime Imaging Microscopy 

Fig. 2 shows the set-up used for the FLIM measurements.  The system was set up on an 

Olympus IX50 inverted microscope (Olympus UK, Southall, UK).  As an excitation source, a 

480 nm light emitting diode emitting over 40-nm bandwidth (Luxeon III star, Lumileds 

Lighting, U.S.) was fitted into the lamp house in place of the standard mercury burner with 

the LED light passing through the normal collector and condenser optics present in the 

microscope.  Excitation and emission wavelengths were selected using a 470-490 nm band-

pass excitation filter, a 505 nm dichroic mirror and a 545-580 nm band-pass emission filter.  

Fluorescence emission was detected using a Generation 2 type multi channel plate (MCP) 

intensifier unit (II18MD, Lambert Instruments, Netherlands), which was optically coupled to 

a CCD camera (CCD-1300D, VDS Vosskuhler).  The LED intensity and the detector 

intensifier gain were both modulated at a frequency of 40 MHz using a signal generator/phase 

shifter (LIFA modulation signal generator, Lambert Instruments, Netherlands). 

In FD-FLIM, excitation with a time-modulated intensity leads to a phase shift (φ ) of the 

fluorescence waveform and a demodulation (m) of the emitted light with respect to the 

excitation waveform.  For each pixel, 12 images were recorded at different phase positions 

over a full modulation cycle, in a scheme analogous to homodyne detection.  To obtain a 

standard against which lifetime measurements could be calibrated, a 1.0 μM solution of 

rhodamine 6G was prepared in water providing a reference lifetime standard of 4.11 ns.  The 

calibration protocol, and a full discussion on the precision and accuracy of the technique are 
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described in references 17 and 20 [17, 20].  Using a lifetime standard as a reference permits 

us to account for hardware induced phase shifts and demodulations introduced by the 

electronics and optics inserted in the light path in a convenient manner. The fluorescence 

lifetimes were calculated by fitting a sine wave function through the sequence of recorded 

intensities in each pixel using the following equations: 
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where τφ and τm refer to the phase and modulation lifetimes, respectively,  and refφ , mref and 

refτ  refer to the phase shift, demodulation and lifetime of the reference sample.  Eqs. (1) and 

(2) are parametrically independent and thus lifetimes can be independently calculated for τφ 

and τm, but only in the case of single exponential fluorescence decays is τφ  found to be equal 

to τm [21]. 

 For the lifetime measurements, cells were incubated with 0.01 and 0.05 mg mL-1 free 

DOX and  PLA-DOX for 24 hours prior to imaging.  The concentration of PLA-DOX (1.0 

mg mL-1) was adjusted to yield a DOX concentration of 0.05 mg mL-1.    Lifetime images 

were recorded using a 100 × oil immersion objective (1.4 NA, Olympus). 

Results  

 Fig. 3 shows the absorption spectrum of free DOX as well as the emission spectra of 

both free DOX and PLA-DOX on excitation near 485 nm.  For both systems the emitted 

fluorescence peaks near 595 nm.  The fluorescence lifetime of free DOX in aqueous solution 

was measured using TCSPC (time correlated single photon counting).  We obtained a 

concentration independent single exponential decay corresponding to a lifetime of 1.1 ns for 
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free DOX.  

Cells were incubated with 0.1 mg mL-1 PLA-DOX in a glass-bottom dish and imaged 

using 488 nm excitation light. The fluorescence emission from PLA-DOX was collected 

between 565 and 630 nm using the laser scanning confocal microscope after incubation 

periods of 4, 12, 24, 48, and 72 hours (Fig. 4), respectively.  Fluorescence yields were 

obtained by normalizing integrated fluorescence intensities to the cellular area (indicated by 

transmission microscopy).  The data were used to quantify the cellular uptake of PLA-DOX 

as a function of time.  It is evident from the images shown in Fig. 4 how PLA-DOX gradually 

accumulated in the cytoplasm without evidence of entering into the nucleus from which no 

signals were obtained.  The fluorescence yield seemed to increase with time, reaching a 

maximum after about 24 hours of incubation, followed by a gradual decrease (Fig. 4K).  

 Fluorescence lifetime images were obtained from DOX in live Hela cells.  The results 

are shown in Fig. 5, depicting intensity images in the first column, lifetime images in the 

second column and lifetime histograms in the third column.   Image series (A) to (C) and (D) 

to (F) show data of free DOX, and series (G) to (I) show the data of PLA-DOX.  It is seen 

that the free DOX is translocated into the nucleus whereas PLA-DOX is not.   

Free DOX displayed very strong nuclear accumulation after 24 hours of incubation (Fig. 

5A, D).  It is clearly seen in the lifetime images (Fig. 5B, E) that there exist lifetime 

differences between the nuclear domains and the cytoplasm.  These bimodal distributions are 

clearly exhibited also on the lifetime histograms (Fig. 5C, F), which show significant shifts 

towards longer lifetimes in the nucleus compared to the cytoplasm. For example, cells 

incubated with 0.01 mg mL-1 doxorubicin displayed lifetimes of 1.8 ns in the cytoplasm 
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compared to 3.5 ns in the nucleus (Fig. 5B, C).  At higher incubation concentrations (0.05 mg 

mL-1), the lifetimes were measured to be 1.8 ns in the cytoplasm and 2.8 ns in the nucleus, 

respectively (Fig. 5E, F). 

The concentration of PLA-DOX was adjusted to yield a DOX concentration of 0.05 mg 

mL-1.  The PLA micellar prodrug reduced the cytotoxicity of the drugs, and cellular viability 

was found to be much higher than the cells incubated with 0.05 mg mL-1 free DOX.  It 

appears from Fig. 5G that PLA-DOX is taken up by endocytosis and subsequently localized 

in small vesicles inside the cytoplasm.  Similar to what had been observed using confocal 

microscopy (Fig. 4), no significant accumulation was found of PLA-DOX in the nucleus and 

thus no doxorubicin signal was detected from the nucleus after 24 hours of incubation (Fig. 

5G).  Cytoplasmic PLA-DOX exhibited a single lifetime distribution peaking at around 3.3 ns 

(Fig. 5H, I). 

As control measurements, fluorescence lifetimes were measured in vitro in solutions 

containing free DOX and double-stranded DNA.  Measurements were performed at a range 

of (DNA:DOX) ratios.  For a fixed amount of DOX solution, the concentration of double-

stranded DNA added to the solution was gradually increased.  The results are shown in Fig. 6, 

and clearly an increase of the DOX lifetime is seen as the (DNA:DOX) ratio is increased, 

increasing from 1.1 ns to 2.4 ns at the highest (DNA:DOX) ratio. 

Discussion 

Doxorubicin is an anthracycline antibiotic that is commonly used in the treatment of a 

wide spectrum of cancers.  The exact mechanism of its anti-tumour activity still remains 

unclear.  It is known however that doxorubicin intercalates into DNA, which results in the 
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blocking of topo-isomerase II activity preventing DNA replication and cell division [22-24].  

For encapsulated DOX, its cytotoxicity relies on the amount of drug released in active form 

inside cells, as the presence of polymer carriers hinders the intercalation of DOX into DNA.   

Confocal microscopy revealed difference between the uptake mechanisms of PLA-DOX 

and free DOX.  The nuclear accumulation of free DOX can be ascribed to diffusion.  In 

contrast, PLA-DOX is taken up by the cells into small vesicles and concentrations remain 

mostly in the cytoplasm with negligible nuclear accumulation observed for incubation 

periods up to 72 hours.  These findings are characteristic for uptake of PLA-DOX via 

endocytosis and not diffusion.  The marked difference in fluorescence patterns observed 

between free DOX and PLA-DOX revealed that no significant release of DOX from the 

internalized PLA-DOX took place, and this accounts also for the reduced cytotoxicity during 

the period of observation.  It is interesting to note that the fluorescence intensity of 

internalized PLA-DOX reaches a maximum at around 24 h with a continuous decrease then 

observed on increased incubation periods up to 72 h.  The reason for this is unclear and 

requires further elucidation. 

Fluorescence lifetime imaging microscopy was performed of free DOX and PLA-DOX 

at different concentrations in live cells.  The bimodal lifetime distribution observed for 

internalized free DOX (Fig. 5A-F) suggests the existence of two different states of DOX 

within the cells.  The lifetime of DOX increased to 1.8 ns in the cytoplasm and to 3.8 ns in 

the nucleus from its corresponding value in aqueous solution (1.1 ns).  The increased lifetime 

of nuclear DOX compared to cytoplasmic DOX can be ascribed to the known nuclear 

intercalation effect of DOX with DNA [25, 26].  DOX forms π-π stacks with the aromatic 
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groups of the DNA base pairs, locally reducing the exposure of DOX to external quenchers 

(i.e. dissolved oxygen), and this leads to the observed increases in fluorescence lifetime.  

Lifetime imaging thus has the power to inform directly on the molecular interactions taking 

place in complex live cell systems, and this underlines its potential for use in drug delivery 

assays.   

Increasing the concentration of free DOX leads to decreased lifetimes (Fig. 5C, F) in the 

nuclear domains, suggesting the onset of fluorescence self-quenching.  Increasing the 

concentration from 0.01 to 0.05 mg mL-1 reduced lifetime from 3.5 ns to 2.8 ns, whereas 

cytoplasmic lifetimes remained unchanged.  Again this demonstrates the potential of lifetime 

imaging to inform on detailed molecular level events.  

It is seen from Fig. 3 that PLA-DOX is spectrally indistinguishable from free DOX, 

however, this is not the case with lifetime imaging.  Whereas intensity based imaging does 

not allow us to distinguish between the two classes of molecules, their lifetime signatures are 

substantially different, leading to a clear differentiation between the two species.  A PLA-

DOX concentration of 1.0 mg mL-1 yields the same amount of doxorubicin as the free DOX 

at 0.05 mg mL-1, however the PLA-DOX lifetime distribution in the cytoplasm displays a 

much narrower histogram than corresponding free DOX concentration after incubation for 24 

h.  This narrower distribution peak may be associated with the protected environment that 

micellar structures give to the loaded fluorophore (DOX), reducing its sensitivity to 

environmental quenching.  The lifetime changes observed of free DOX in the nuclear domain 

compared to cytoplasmic DOX provide evidence of intercalation of DOX into the DNA 

strands.   
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These mechanisms were elucidated further by in vitro lifetime measurements conducted 

in solutions containing free DOX and DNA at different ratios.  Whereas free DOX showed 

concentration independent lifetime of 1.1 ns in aqueous solution, increases in DOX lifetime 

were observed on mixing with DNA.  This increase is clearly a result of DNA intercalation 

[25, 26], resulting in an effective shielding of DOX from external quenchers such as oxygen. 

The in vitro observations provide foundation for our in vivo observations, explaining both the 

increasing lifetimes with intercalation and decreasing lifetimes on high drug loading in the 

nucleus due to increasing self-quenching.  

 In conclusion, we demonstrate here the use of frequency domain fluorescence lifetime 

imaging for the study of drug delivery systems in living cells.  FLIM provides additional 

information compared to standard intensity based techniques, informing on the processes 

occurring on a molecular level.  To demonstrate this, we have studied the uptake behaviour of 

micelle encapsulated PLA-DOX and free DOX in living cells.  PLA-DOX was taken up by 

cells via endocytosis, and a maximum concentration of the drug was observed after 24 h of 

incubation, after which the PLA-DOX concentration began to diminish. Uptake of free DOX, 

in contrast, was observed to occur at a much faster scale by diffusive and active transport 

processes.  The observed lifetime distribution of free DOX in the nuclear domain could be 

explained by a balance of concentration dependent self-quenching effects and intercalation of 

free DOX into DNA leading to an effective protection against external quenchers.  FLIM thus 

has powerful capabilities in drug delivery research, providing information complementary to 

purely intensity based imaging approaches, permitting detailed molecular level function and 

interactions to be observed in vivo.   
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Figures 

Figure 1.  Chemical structures of PEGylated poly(L-lysine adipylamide) (PLA) (A), 

doxorubicin (DOX) (B), and schematic representation of PLA-DOX encapsulated structure 

(C). 
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Figure 2. Diagram illustrating the main components of the frequency domain FLIM setup.  

The voltage on the photocathode of the MCP intensifier is modulated at a frequency of 40 

MHz, same waveform was used to modulate the intensity of the light emitting diode but a 

variable phase shift could be imposed with respect to the excitation waveform using a 

precision delay generator.  For all the experiments reported here, 12 images were recorded for 

each cycle corresponding to 30 degree shift between individual measurements. τφ and τm 

could thus be evaluated from sinusoidal fits through the 12 intensity values obtained for each 

pixel.   
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Figure 3.  Absorption (––) and emission  (--) spectra of 0.01 mg mL-1 free DOX, emission 

spectrum of 0.2 mg mL-1 PLA-DOX (‥‥) in aqueous solution.   
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Figure 4. Uptake of PLA-DOX by Hela cells as imaged with confocal microscopy.  Cells 

were incubated with 0.1 mg mL-1 PLA-DOX for 4 h (A, B), 12 h (C, D), 24 h (E, F), 48 h (G, 

H), and 72 h (I, J).  A, C, E, G, and I are bright-field images of the cells, and B, D, F, H, and J 

are fluorescent images of the same field.  The yellow line is used to demark an outline of the 

cells.  K, Time history of PLA-DOX fluorescence yield, which peaks near 24 hours.  
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Figure 5.  Fluorescence images, phase lifetime images and corresponding lifetime histograms 

in the Hela cell nucleus (black) and cytoplasm (red).  The cells were incubated with 0.01 mg 

mL-1 (A-C), 0.05 mg mL-1 (D-F) free doxorubicin and 1.0 mg mL-1 PLA-DOX (G-I) for 24 

hours prior to lifetime imaging.  

 

 

 

 

 

 

 

 24



Figure 6.  Fluorescence lifetime of DOX when mixed with double-stranded DNA at a range 

of (DNA:DOX) ratios. 
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