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Abstract Abstract 
The quaternary structure of alpha-crystallin is dynamic, a property which has thwarted crystallographic 
efforts towards structural characterization. In this study, we have used collision-induced dissociation 
mass spectrometry to examine the architecture of the polydisperse assemblies of alpha-crystallin. For 
total alpha-crystallin isolated directly from fetal calf lens using size-based chromatography, the alpha B-
crystallin subunit was found to be preferentially dissociated from the oligomers, despite being 
significantly less abundant overall than the alpha A-crystallin subunits. Furthermore, upon mixing molar 
equivalents of purified alpha A- and alpha B-crystallin, the levels of their dissociation were found to 
decrease and increase, respectively, with time. Interestingly though, dissociation of subunits from the 
alpha A- and alpha B-crystallin homo-oligomers was comparable, indicating that strength of the alpha 
A:alpha A, and alpha B:alpha B subunit interactions are similar. Taken together, these data suggest that 
the differences in the number of subunit contacts in the mixed assemblies give rise to the 
disproportionate dissociation of alpha B-crystallin subunits. Limited proteolysis mass spectrometry was 
also used to examine changes in protease accessibility during subunit exchange. The C-terminus of alpha 
A-crystallin was more susceptible to proteolytic attack in homo-oligomers than that of aB-crystallin. As 
subunit exchange proceeded, proteolysis of the alpha A-crystallin C-terminus increased, indicating that in 
the hetero-oligomeric form this tertiary motif is more exposed to solvent. These data were used to 
propose a refined arrangement for the interactions of the alpha-crystallin domains and C-terminal 
extensions of subunits within the alpha-crystallin assembly. In particular, we propose that the palindromic 
IPI motif of alpha B-crystallin gives rise to two orientations of the C-terminus. 
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Abstract 

The quaternary structure of -crystallin is dynamic, a property which has thwarted 

crystallographic efforts towards structural characterization.  In this study, we have used collision-

induced dissociation mass spectrometry to examine the architecture of the polydisperse 

assemblies of -crystallin.  For total -crystallin isolated directly from fetal calf lens using size-

based chromatography, the B-crystallin subunit was found to be preferentially dissociated from 

the oligomers, despite being significantly less abundant overall than the A-crystallin subunits.  

Furthermore, upon mixing molar equivalents of purified A- and B-crystallin, the levels of 

their dissociation were found to decrease and increase, respectively, with time. Interestingly 

though, dissociation of subunits from the A- and B-crystallin homo-oligomers was 

comparable, indicating that strength of the A:A, and B:B subunit interactions are similar. 

Taken together, these data suggest that differences in the number of subunit contacts in the 

mixed assemblies give rise to the disproportionate dissociation of B-crystallin subunits.  

Limited proteolysis mass spectrometry was also used to examine changes in protease 

accessibility during subunit exchange. The C-terminus of A-crystallin was more susceptible to 

proteolytic attack in homo-oligomers than that of B-crystallin. As subunit exchange proceeded, 

proteolysis of the A-crystallin C-terminus increased, indicating that in the hetero-oligomeric 

form this tertiary motif is more exposed to solvent. These data were used to propose a refined 

arrangement for the interactions of the -crystallin domains and C-terminal extensions of 

subunits within the -crystallin assembly. In particular we propose that the palindromic IPI motif 

of B-crystallin gives rise to two orientations of the C-terminus. 
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Introduction 

Crystallins comprise approximately 90% of the total protein content of the vertebrate eye lens, 

and are highly concentrated in lens fibre cells, which typically contain no intracellular 

organelles1,2.  Transparency of the lens is highly dependent on the packing, thus short-range 

order, of the crystallins3.  -Crystallin makes up about one-third of the total crystallin content of 

the lens and exists as a multimer of homologous A- and B-crystallin subunits.  In addition to 

the above structural role, -crystallin acts as a molecular chaperone by limiting the aggregation 

of unfolding proteins, thereby contributing to the extraordinary clarity of the healthy lens through 

decades of life.  This functional role is particularly important as, unlike most organs of the body, 

little or no protein turnover occurs with age2. 

On the basis of sequence homology and function, -crystallin has been classified as a member of 

the small heat shock protein (sHsp) family4, a group of molecular chaperones characterised by 

the presence of an evolutionarily conserved region of 80-100 amino acid residues, denoted the 

-crystallin domain5.  sHsps derive their name from their small monomeric size, ranging from 

12 kDa in Caenorhabditis elegans up to 43 kDa in Saccharomyces cerevisiae5, although they 

exist as oligomers of up to 50 subunits and 1.2 MDa in mass under physiological conditions6,7.  

The -crystallin domain is flanked by a relatively hydrophobic N-terminal domain and a highly 

polar C-terminal extension, both of which are variable in sequence and length8-10. 

Contained within the variable C-terminal extension is an IXI/V motif, a conserved stretch of 

three hydrophobic amino acids that is essential for oligomerisation11.  Modelling based on the 

crystal structures of Hsp16.5 and Hsp16.9 suggests that the IXI/V motif of one subunit interacts 

with a hydrophobic groove between -sheet 4 and -sheet 8, both in the -crystallin domain, of 
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another subunit12.  Corresponding interactions have also been noted for A- and B-crystallin, 

suggesting that this interaction is not restricted to monodisperse, non-mammalian sHsps11. 

Mammalian sHsps such as A- and B-crystallin and Hsp27 are highly dynamic and comprised 

of a variable number of subunits, properties which contribute to the polydisperse nature of the 

assemblies and thwart attempts at crystallisation.  The quaternary structure of -crystallin is 

therefore a highly topical issue and many discrepant theoretical models have been proposed13-17. 

We investigated the quaternary arrangement of -crystallin subunits by performing collision-

induced dissociation mass spectrometry (CID-MS) on native -crystallin isolated from the fetal 

calf lens and during the subunit exchange reaction between purified A- and B-crystallin.  In 

addition, we used limited proteolysis mass spectrometry (LP-MS) to examine solvent-exposed 

cleavage sites during subunit exchange between recombinant A- and B-crystallin.  We found 

that there is a preferential dissociation of B-crystallin subunits during CID-MS of total 

-crystallin isolated from the lens. Furthermore, preferential truncation of the C-terminal 

extension of A-crystallin was observed as subunit exchange between A- and B-crystallin 

proceeded.  From these data, we provide new insights into the subunit-subunit interactions within 

the quaternary structure of -crystallin. 

Materials and Methods 

Materials – Expression vectors pET20b(+) and pET24d(+) (Novagen, San Diego, USA) 

containing the genes for bovine A-crystallin and human B-crystallin, respectively, were gifts 

from Joseph Horwitz (UCLA School of Medicine) and Teresa Treweek (University of 

Wollongong), respectively.  Recombinant bovine B-crystallin and Hsp27 proteins were gifts 
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from Wilbert Boelens (Radboud Universiteit Nijmegen).  Trypsin from bovine pancreas was 

purchased from Worthington Biochemical Corp. (Lakewood, USA).  All reagents used were of 

analytical grade. 

Purification of -Crystallin Proteins – Total -crystallin was isolated from fetal calf lenses as 

described previously18.  Acid denaturation of the isolated -crystallin was performed as 

described previously19.  A- and B-crystallin were purified from fetal calf lenses under 

denaturing conditions and subsequently refolded as described previously19.  pET20b(+)-

A-crystallin (bovine) and pET24d(+)-B-crystallin (human) DNA were transformed into 

electrically competent BL21(DE3) Escherichia coli before expression.  Transformed cells were 

grown in Luria–Bertani medium containing 0.4% (w⁄v) glucose and antibiotics (100 g/mL 

ampicillin and 50 g/mL kanamycin, respectively).  Protein expression was induced with 

0.4 mM isopropyl thio--D-galactoside.  Purification of expressed A- and B-crystallin was 

performed according to the method described by Horwitz et al.20.  Following the final 

chromatography step, fractions containing A- or B-crystallin were concentrated, exchanged 

into MilliQ water and lyophilized.  The purity of recombinant proteins was confirmed by MS 

using nanoelectrospray ionisation (nanoESI-MS). 

Subunit Exchange of A- and B-Crystallin – Subunit exchange experiments were performed 

using either proteins purified from fetal calf lens (CID-MS) or recombinant proteins (LP-MS).  

Homogeneous solutions of A- and B-crystallin were prepared in 200 mM NH4OAc (pH 7.0) 

and their concentrations determined from A280 values using the extinction co-efficient of 0.85 for 

a 1 mg/mL solution21.  The solutions and buffer were equilibrated on ice for several minutes 

before being combined in a 1:1 (w/w) ratio with a total -crystallin concentration of 1.6 mg/mL 
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and 1 mg/mL for CID-MS and LP-MS experiments, respectively.  Subunit exchange was 

initiated by incubation of the mixtures at 37°C.  Aliquots were taken at various time points and 

kept on ice to halt subunit exchange.  Similarly, subunit exchange experiments between 

recombinant A- and B-crystallin and between Hsp27 and B-crystallin were performed at 

43°C. 

Collision-Induced Dissociation Mass Spectrometry (CID-MS) – CID-MS was performed on total 

-crystallin isolated from fetal calf lenses and quenched subunit exchange samples between lens-

purified A- and B-crystallin at 37°C, recombinant A- and B-crystallin at 43°C and 

recombinant Hsp27 and B-crystallin at 43°C on modified Q-Tof 2 or Q-Tof Ultima™ mass 

spectrometers (Waters, Milford, USA) as described19.  The following instrument parameters 

were used: capillary voltage 1.6 kV; sample cone 200 V; extractor cone 10 V; ion transfer stage 

pressure 1.1x10–3 mbar; quadrupole analyzer pressure 8.7x10–3 mbar and ToF analyzer pressure 

1.66x10–6 mbar.  To sequentially dissociate up to three monomers from the oligomers, the 

voltage applied to the collision cell was 200 V.  Typically, 2 L of solution was electrosprayed 

from gold-coated glass capillaries prepared in-house. 

Limited Proteolysis Mass Spectrometry – LP-MS was performed on cold-quenched subunit 

exchange reactions between recombinant A- and B-crystallin proteins at 37°C.  Digestion was 

initiated by the addition of trypsin in a protease:-crystallin ratio of 1:25 (w/w).  Samples were 

digested at 10°C for 15 min.  Digestion was quenched by the addition of 1% formic acid, 90% 

acetonitrile in a ratio of 1:1.25 (v/v) quenching solution:digest reaction.  Two independent 

experiments were performed.  Mass spectra of digested samples were acquired on a SYNAPT™ 

HDMS™ mass spectrometer (Waters) using a nanoESI source.  The following instrument 
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parameters were used: capillary voltage 1.5 kV; sample cone 40 V; extraction cone 4 V and 

transfer collision energy 4 V.  Typically, 2 L of solution was electrosprayed from gold-coated 

glass capillaries prepared in-house. 

Protein Quantification – All mass spectra were externally calibrated with a solution of either 

sodium iodide or cesium iodide and processed using MassLynx™ software (Waters) with 

minimal smoothing and without background subtraction.  The relative abundance of each protein 

species was determined by summing the intensities of eight of the most significant peaks of each 

protein envelope in the smoothed and centred spectrum.  For the LP-MS samples, some peaks 

belonged to more than one protein envelope and it was not possible to determine the intensity of 

the constituent peaks, thus overlapping peaks were not included.  To ensure consistency, the 

same peaks were summed for each spectrum.  For acid-denatured -crystallin and CID 

experiments, the abundances of A- and B-crystallin were expressed as a proportion of total 

protein.  For LP experiments, the abundances of truncated A- and B-crystallin proteins were 

expressed as a proportion of total A- and B-crystallin, respectively. 

Results 

Dissociation of Subunits from the Native -Crystallin Assembly – -Crystallin in the mammalian 

lens is comprised of A- and B-crystallin subunits in a ratio of approximately 3:122.  Mass 

spectrometry of acid-denatured fetal calf lens -crystallin, in which the assembly was completely 

dissociated into monomers, showed the presence of four major protein species: A- and 

B-crystallin and singly phosphorylated forms of each subunit (Fig. 1A).  Phosphorylation 

occurs early during lens development, with a proportion of phosphorylated -crystallin present 
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in pre-natal lenses, as evidenced here23,24.  The absence of other age-related post-translational 

modifications, such as truncations and multiple phosphorylations, in this nascent isolate 

simplifies quantification of the -crystallin subunits compared with proteins isolated from older 

lenses.  It is clear from the transformed spectra (Fig. 1, insets), that the ratios of phosphorylated 

to non-phosphorylated species were relatively consistent, indicating that the phosphorylated 

species did not ionize or dissociate in a grossly different manner.  A C-terminally truncated form 

of A-crystallin, A1-151 was also identified in the spectrum.  This truncation product was 

present in relatively low abundance and is likely a result of either in-source fragmentation and/or 

acid-induced cleavage associated with denaturation using hydrogen exchange resin. 

Taking all protein species into account, the signal intensity arising from A-crystallin was 

significantly greater than that from B-crystallin (Fig. 1A, inset).  Quantification of the 

respective ions revealed that 65% of the signal was attributable to A-crystallin, reflecting the 

previously reported abundance of this subunit in the mammalian lens25. 

CID-MS of -crystallin and other multimeric proteins results in the sequential dissociation of 

subunits from the assemblies26. By manipulating the voltage applied to the collision cell, 

oligomers can be stripped of one, two or three monomers, depending upon the amount of internal 

energy generated via collisions with the noble gas ions in the collision cell.  CID-MS of isolated 

fetal calf lens -crystallin performed under non-denaturing conditions resulted in 63% of the 

dissociated monomer signal arising from B-crystallin (Fig. 1B).  This is compared with the 

35% relative signal intensity observed for B-crystallin in the fully denatured protein mixture 

(Fig. 1A).  Thus, although there is clearly a greater overall proportion of A-crystallin subunits 
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in the fetal lens isolate, there is a significant preferential dissociative loss of B-crystallin 

subunits from the native assemblies during CID-MS. 

Dissociation of Subunits during Subunit Exchange – In an attempt to understand the preferential 

dissociation of B-crystallin from the native -crystallin assembly, and to investigate changes in 

the quaternary arrangement of -crystallin during subunit exchange, we performed CID-MS at 

various time points after mixing solutions of A- and B-crystallin purified from fetal calf lens.  

Upon mixing, -crystallin oligomers undergo subunit exchange, the dynamics of which are 

highly temperature-dependent, with the rate of exchange increasing with temperature, and no 

observable subunit exchange occurring at 3°C27,28.  We exploited this property in our 

experimental design such that subunit exchange could be delayed or stopped by controlling the 

temperature of the sample.  The A- and B-crystallin homo-oligomers were combined in a ratio 

of 1:1 and subunit exchange was allowed to proceed at 37°C, with aliquots being quenched on 

ice at intervals.  The relative signal intensities arising from A- and B-crystallin were 

determined from peak heights of the corresponding ions (Fig. 2). Prior to subunit exchange, the 

signal intensities of the A- and B-crystallin subunits were comparable (51% and 49%, 

respectively) (Fig. 2, inset).  As subunit exchange proceeded, the abundance of dissociated 

B-crystallin subunits increased, with 86% of the signal arising from B-crystallin peaks after 

60 min.  At this time, a plateau was reached (not shown), indicating that, in agreement with Bova 

et al.27, subunit exchange was complete in approximately one hour.  Similar trends were 

observed for subunit exchange reactions involving recombinant human B-crystallin homo-

oligomers, with the B-crystallin signal intensity increasing by 35% and 20%, respectively, after 

complete exchange with recombinant bovine A-crystallin and human Hsp27 (not shown).  The 
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increase in dissociation of B-crystallin subunits during subunit exchange with A-crystallin 

and Hsp27 indicates that the preferential loss of B-crystallin subunits also occurs in partially-

exchanged oligomers, and that this property is not restricted to lens-isolated -crystallin, nor to 

assemblies with a 3:1 subunit ratio. 

Subunit Exchange and Limited Proteolysis – To further investigate the changes in the quaternary 

structure of -crystallin as it undergoes subunit exchange, we performed LP-MS over the time 

course of the subunit exchange reaction.  Subunit exchange between a 1:1 mixture of 

recombinant bovine A- and human B-crystallin was initiated and allowed to proceed at 37°C, 

with aliquots being quenched on ice at various time points.  These samples were then subjected 

to limited proteolysis by incubation with trypsin at 10°C for 15 min.  Based on the findings of 

Bova et al.27, subunit exchange at this temperature is negligible.  Quenching of the digestion was 

achieved by acidification, which denatured both the trypsin and the -crystallin mixture. 

MS analysis of the quenched digestions yielded peaks arising from full-length proteins, as well 

as the C-terminal truncation products A1-157, B1-157 and B1–174 (Fig. 3).  LP-MS of the sample 

taken immediately after mixing the homo-oligomeric solutions (i.e. prior to subunit exchange), 

revealed that 55% of the total A-crystallin signal arose from the C-terminally truncated form of 

this subunit and 36% of the B-crystallin signal arose from the B-crystallin truncation products 

(Fig. 4).  This suggests that, in the homo-oligomeric arrangements, the C-terminus of 

A-crystallin is more exposed to protease than that of B-crystallin.  The relative abundance of 

truncated A-crystallin increased as the subunit exchange reaction proceeded, with the 

truncation accounting for 61% of the A-crystallin signal at 55 min, whilst the corresponding 

B-crystallin truncation decreased in abundance to 27% of the B-crystallin signal at 55 min.  A 
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plateau region occurred after this time (not shown).  Thus, the C-terminus of A-crystallin is 

somewhat more susceptible to proteolytic attack in the hetero-oligomeric form than in the homo-

oligomer, with the opposite being the case for B-crystallin. 

Discussion 

CID-MS of -crystallin results in the dissociation of one or more monomers from each 

oligomeric assembly, whilst acidification of -crystallin denatures the assemblies such that all of 

the constituent subunits are present in their unfolded monomeric forms.  Random dissociation of 

subunits from the native -crystallin assemblies during CID-MS would be expected to result in 

ion distribution series in the monomeric region quantitatively resembling the overall total 

population of subunits, i.e. the signal intensities of the dissociated subunits would be in the same 

proportion as in the denatured sample.  This was not the case, however, as a significantly greater 

abundance of B-crystallin monomers was present during CID-MS, indicative of a preferential 

dissociation of B-crystallin from the native assemblies.  This phenomenon was also observed 

for total -crystallin formed after complete subunit exchange of purified recombinant homo-

oligomers combined in a 1:1 ratio (Fig. 2). 

It has been established that A- and B-crystallin homo-oligomers have a propensity to form 

assemblies with an even number of subunits and thus have a dimeric substructure, a property that 

is lost by B-crystallin upon phosphorylation29,30.  Since the phosphorylation sites of 

B-crystallin (residues 19, 45 and 59) are all in the N-terminal domain, the dimeric preference is 

most likely a result of interactions between the N-terminal domains of adjacent subunits within 

the -crystallin oligomer.  Indeed, stretches of residues between the phosphorylation sites at 
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residues 45 and 59 have been shown to be necessary for B-crystallin to interact with 

A-crystallin and undergo subunit exchange31-33. 

Because of the high variability between the N-terminal domains of even closely related sHsps, 

the properties of inter-subunit interactions involving these domains are presumably dependent 

upon the subunits involved10.  The preferential dissociation of B-crystallin subunits from fetal 

lens-isolated -crystallin, as well as hetero-oligomers formed by subunit exchange between both 

lens-purified and recombinant A- and B-crystallin homo-oligomers, demonstrates that there 

are non-equivalent associations between the A- and B-crystallin subunits.  This is evidenced 

by the comparable dissociation of monomers from the respective homo-oligomers prior to 

mixing (Fig 2, inset).  The fact that B-crystallin subunits dissociate more readily from the 

mixed oligomers may be explained by the A-crystallin subunits forming a core within the 

assembly, with B-crystallin subunits arranged in more exposed quaternary positions.  

Alternatively, it may suggest that the A:B subunit interactions are weaker than A:A and 

B:B, and that on average B-crystallin subunits experience a greater proportion of weaker 

A:B contacts than do the A-crystallin subunits. 

The structure of mammalian sHsps is dynamic and the polydispersity of -crystallin is well-

documented19,29,34.  It is therefore probable that there is no single arrangement of subunits that 

make up the quaternary structure of -crystallin, however, cryo-EM data suggest that a 24mer is 

the predominant oligomer35.  Based on our findings, we have proposed a possible arrangement of 

-crystallin subunits that allows for a variable number of subunits and A:B ratios (Fig. 5).  

Subunits are arranged in a manner similar to that observed for Hsp16.536.  In this conformation, 

the A-crystallin subunits experience more inter-subunit contacts than the B-crystallin 
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subunits.  Whilst all subunits have approximately the same number of weaker A:B 

interactions, the B-crystallin subunits have fewer homologous contacts than the A-crystallin 

subunits, thus are less tightly bound to the assembly. 

Whilst CID-MS provided information on interactions between subunits in the -crystallin 

assembly, LP-MS experiments were undertaken in order to examine quaternary and tertiary 

accessibility of trypsin to the subunits as subunit exchange proceeded.  After LP-MS, full-length 

A- and B-crystallin proteins were identified, as well as C-terminally truncated forms of each.  

Peaks corresponding to truncations in other regions of the subunits were not observed.  This is 

consistent with the presence of a highly flexible, solvent-exposed region in the C-terminal 

extension of mammalian sHsps, which is more susceptible to proteolytic attack than other 

regions of the protein8,37. 

Prior to subunit exchange, approximately half of the A-subunits in the homo-oligomers were 

present as the truncation product A1-157.  This was significantly greater than the relative 

abundance of truncated B-crystallin (B1-157 and B1174), indicating that R157 in the 

C-terminal extension of A-crystallin is more accessible to protease than this residue in 

B-crystallin homo-oligomers.  Potential differences between the orientation of the C-terminal 

extensions of A- and B-crystallin are shown in Fig. 6.  We propose that the IXI/V motif of 

A-crystallin (IPV) interacts with its binding site in a neighbouring subunit such that the flexible 

region of the C-terminal extension is oriented towards the interior of the oligomer (Fig. 6A).  The 

IXI/V motif of B-crystallin (IPI) is a palindrome, and is thus likely to be able to interact with its 

binding site bi-directionally, as does the palindromic IXI/V motif of Hsp 16.912,38.  Thus, the 

C-terminal extension of B-crystallin can adopt the same orientation as in A-crystallin 
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(Fig. 6B) or with the IXI/V motif oriented in the opposite direction and the flexible region of the 

C-terminus extended towards the exterior (Fig. 6C). 

In these configurations, the observed tryptic cleavage site at R157 is located on a loop that 

extends between the monomers, with the R157 residue more accessible in A-crystallin 

(Fig. 6A), as well as the B-crystallin subunit oriented similarly to A-crystallin (Fig. 6B).  

With a proportion of B-crystallin subunits having cleavage sites oriented towards the interior of 

the oligomer, and thus more shielded from the protease (Fig. 6C), the R157 residue of 

A-crystallin is overall more exposed than that of B-crystallin. 

Several other potential tryptic cleavage sites exist in the C-terminal extensions of A- and 

B-crystallin: R163 and K166, and also K174 for B-crystallin.  The relative abundance of 

B1-174 did not change during subunit exchange, consistent with K174 being the penultimate 

residue of B-crystallin and thus highly flexible and accessible to solvent at all times39.  

Cleavage at R163 or K166 was not observed for either A- or B-crystallin.  Disordered 

structure in the C-terminal extensions of A- and B-crystallin has been shown to commence at 

K16624.  Because the preceding residue is less mobile and also adjacent to the IXI/V motif, 

which associates with the globular structure of the adjacent monomer, it is likely that K166 is 

inaccessible to trypsin as a result of steric hindrance.  R163 is not a flexible residue and is also in 

close proximity to the interacting IXI/V motif and the globular -crystallin domains. 

The proposed orientations of the C-terminal extensions allow the flexible region of B-crystallin 

to be more exposed in some of the subunits than that of A-crystallin.  The greater overall 

accessibility of the flexible region of B-crystallin may be an important feature contributing to 
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previous observations that the extension of B-crystallin loses flexibility in the presence of 

target proteins and that the C-terminal lysine residue of B-crystallin may be involved in 

interactions, properties which A-crystallin lack40,41. 

As subunit exchange proceeded, the proportion of truncated A-crystallin increased whilst that 

of B-crystallin decreased.  This is indicative of the cleavage site of B-crystallin, already in a 

relatively protected environment in the homo-oligomer compared with that of A-crystallin, 

becoming more shielded during subunit exchange.  The -crystallin hetero-oligomer is larger 

than the A- and B-crystallin homo-oligomers and is more tightly packed8,42.  Thus, it is 

feasible that this tighter packing of the hetero-oligomer further shields the cleavage site of the 

B-crystallin extension from protease. 

In the absence of direct visualisation of the quaternary structure of -crystallin, we have used 

MS methodologies to propose an arrangement of subunits within the -crystallin oligomer.  In 

this representation, the B-crystallin subunits experience fewer contacts than the A-crystallin 

subunits, giving rise to the preferential dissociation of B-crystallin from the -crystallin 

complex.  Preferential truncation of the C-terminal extension of A-crystallin is highly 

suggestive of different accessibilities of the R157 cleavage site between the extensions of A- 

and B-crystallin.  Differential interactions between the IXI/V motifs of A- and B-crystallin 

are emphasised, but this warrants further investigation.  To the authors' knowledge, only one 

study has used mutagenesis to investigate the role of the palindromic IPI motif of B-crystallin, 

however this work replaced one palindromic motif with another (GPG), thus not specifically 

addressing the palindromic role11.  We plan to further investigate this by introducing single 
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mutations at residue 159 or 161 in B-crystallin and studying the dynamics of subunit exchange 

and oligomeric stability using the methodology of the present work. 
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Figure Legends 

Fig. 1: Smoothed mass spectra of the monomeric region of native -crystallin isolated from fetal 

calf lens after acid denaturation (A) and dissociation by CID-MS (B).  Only a portion of the 

monomeric region is shown for clarity.  Some peaks arising from the proteins present are 

indicated: A-crystallin (open stars), B-crystallin (filled stars), phosphorylated A-crystallin 

(open circles), phosphorylated B-crystallin (filled circles) and A1-151 (open squares).  

Transformed spectra are shown in inset. 

Fig. 2: Representative smoothed mass spectra of a portion of the monomeric region of subunit 

exchange between lens-purified A- and B-crystallin after CID-MS.  Only the major peaks are 

shown for clarity and some peaks arising from A- and B-crystallin are indicated.  Spectra 

shown are from CID-MS of samples after 0 (back), 7.5, 15, 30 and 60 min (front) subunit 

exchange.  Inset: Relative signal intensity arising from the dissociated monomeric A- (open 

circles) and B-crystallin (filled circles) during the process of subunit exchange compared with 

total protein signal. 

Fig. 3: Representative smoothed mass spectrum of the monomeric region after 15 min of subunit 

exchange between recombinant bovine A- and human B-crystallin at 37°C after LP-MS.  

Peaks that were used to quantify protein species are indicated: A-crystallin (open stars), 

B-crystallin (filled stars), A1-157 (open circles) and B1-157 (filled circles). 

Fig. 4: Relative signal intensity of C-terminal truncations of A- (open circles) and B-crystallin 

(filled circles) present after LP-MS as a function of subunit exchange time.  Proportions are the 
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amount of truncated proteins in relation to total A- or B-crystallin.  Data are the means of 

duplicate experiments  SEM. 

Fig. 5: A possible arrangement of the subunits within the -crystallin oligomer highlighting 

differences in interactions between A- (purple) and B-crystallin (blue) subunits.  The 

A-crystallin subunits form the core of the structure, with the B-crystallin subunits in more 

exposed locations, with fewer inter-subunit contacts.  The N-terminal domains (darker spheres) 

are oriented towards the interior of the oligomers and are surrounded by the C-terminal domains 

(lighter spheres).  C-terminal extensions are not shown.  Adapted from the octahedral symmetry 

arrangement for Hsp16.536. 

Fig. 6: Differences between the orientation of the C-terminal extensions of A- (A) and 

B-crystallin (B and C) highlighting interactions between the IXI/V motif of one oligomer and 

the IXI/V binding site (black) on the adjacent oligomer, and the resultant orientation of the 

C-terminal extension (dotted line represents the flexible region that protrudes from the 

oligomer).  The R157 trypsin cleavage site is denoted by a red X. 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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