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Abstract

We consider a family of dynamical systems (A, α, L) in which α is an endomorphism
of a C∗-algebra A and L is a transfer operator for α. We extend Exel’s construction of a
crossed product to cover non-unital algebras A, and show that the C∗-algebra of a locally
finite graph can be realised as one of these crossed products. When A is commutative, we
find criteria for the simplicity of the crossed product, and analyse the ideal structure of the
crossed product.

1. Introduction

Crossed products of C∗-algebras by endomorphisms were first used to describe the rela-
tionship between the Cuntz algebras On and their UHF cores [6, 27]; the original construc-
tions were spatial, and Stacey later described an appropriate universal construction [33].
Various generalisations to semigroups of endomorphisms have been proposed [24, 25, 26],
and these crossed products have been used to study Toeplitz algebras and Hecke algebras
[2, 19, 20]. The endomorphisms in these applications have all been non-unital corner endo-
morphisms, which shift the algebra onto a full corner of itself.

In [7], Exel observed that these notions of crossed product do not work well for the endo-
morphisms coming from classical dynamical systems in which the dynamics is irreversible,
and proposed an alternative construction. The crucial extra ingredient in Exel’s construction
is a transfer operator: a positive linear map which is, loosely speaking, a left inverse for the
endomorphism. One of his main motivations was to find a version of the crossed-product
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construction which realised the Cuntz–Krieger algebras as crossed products by a single en-
domorphism. His answer to this problem is quite different from Cuntz’s description of On:
Exel realises a Cuntz–Krieger algebra as a crossed product of the diagonal subalgebra, which
is a maximal commutative subalgebra, and is much smaller than the UHF core in On .

In most of these examples and applications, the underlying C∗-algebras have identities,
even though many of the endomorphisms are not unital. For example, in Exel’s description
of the Cuntz–Krieger algebras, the underlying algebra is the (unital) algebra of continuous
functions on a compact space of infinite words. Recently there have been many interesting
generalisations of Cuntz–Krieger algebras, such as the graph algebras discussed in [29],
where the infinite-path space is locally compact rather than compact. Our goal here is to
extend Exel’s construction to cover endomorphisms of non-unital algebras, with a view to
realising some substantial family of graph algebras as Exel crossed products.

Our extension of Exel’s construction follows the original as closely as possible: there
are technical issues involving nondegeneracy of representations and homomorphisms, but
otherwise things go quite smoothly. Our main technical tools are a realisation of the crossed
product as a relative Cuntz–Pimsner algebra, generalising the one for unital algebras found
and used by the first two authors in [5], and a closely related realisation as a topological-
graph algebra, which allows us to apply the deep results of Katsura on simplicity and ideal
structure [17, 18]. We succeed in realising the C∗-algebras of locally finite graphs without
sources as Exel crossed products, and we analyse the ideal structure of Exel crossed products
arising from (non-compact) irreversible dynamical systems. The limitations of our method
(for example, as to what kinds of graphs we can handle) are in many ways as interesting as
the results we have obtained, and at the end we make some speculative comments on what
we have learned from our investigations.

We begin in Section 2 by describing the Exel systems which we study. Each system con-
sists of an endomorphism α of a C∗-algebra A and a transfer operator L : A → A. For
technical reasons, we have chosen to assume that the endomorphisms and transfer operators
have strictly continuous extensions to the multiplier algebra; similar extendibility hypotheses
have appeared in the work of Adji [1] and Larsen [21]. These properties are enjoyed by the
endomorphisms α : f �→ f ◦ τ of C0(T ) associated to proper local homeomorphisms
τ : T → T ; we refer to such a pair (T, τ ) as a classical system. In our motivating example,
τ is the shift on the infinite path space of a locally finite graph.

In Sections 3 and 4, we describe the crossed products of Exel systems (A, α, L). As in [7],
there are two algebras of interest: the Toeplitz crossed product T (A, α, L), and the crossed
product A�α,LN, which is a quotient of T (A, α, L). Following [5], we identify T (A, α, L)

as the Toeplitz algebra of a particular Hilbert bimodule ML built from (A, α, L) (Proposi-
tion 3·1), and A�α,LN as a relative Cuntz–Pimsner algebra O(Kα, ML) (Theorem 4·1). For
Exel systems (C0(T ), α, L) arising from classical systems, the ideal Kα is all of A, and
C0(T )�α,LN is the Cuntz–Pimsner algebra O(ML).

In Section 5, we achieve one of our goals by proving that the C∗-algebra of a locally finite
graph with no sources can be realised as the Exel crossed product of the classical system
involving the shift on the (locally compact) space of infinite paths. (Exel and Royer [9] have
described a different extension of the theory in [7] which covers the Exel–Laca algebras
using a (unital) algebra of functions on a compact space.)

In Section 6, we give criteria for the simplicity of crossed products associated to classical
systems. Our main tool is the work of Katsura [17, 18], which applies because we can realise
the Cuntz–Pimsner algebra O(ML) = C0(T ) �α,L N as the C∗-algebra of a topological
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graph. We then check that these criteria are compatible with the known criteria for graph
algebras. In Sections 7 and 8 we use the same technique to determine the gauge-invariant
ideals and primitive ideals of crossed products of the form C0(T )�α,L N. In all these sections,
it takes some effort to recast the results in the language of dynamics so we can compare
them with those for compact T in [10], and more effort to convert them to the usual graph-
theoretic descriptions of the ideal structure of graph algebras in [3, 4, 14, 29], for example.
Reassuringly, though, everything does match up in the end.

1·1. Background and notation

Let A be a C∗-algebra. A Hilbert A-bimodule (or correspondence over A) is a right Hilbert
A-module M together with a left action of A on M which is implemented by a homomorph-
ism φ of A into the C∗-algebra L(M) of adjointable operators on M : a · x := φ(a)(x). A
Toeplitz representation (ψ, π) of M in a C∗-algebra B consists of a linear map ψ: M → B
and a homomorphism π: A → B such that

ψ(x · a) = ψ(x)π(a), ψ(x)∗ψ(y) = π(〈x, y〉A), and ψ(a · x) = π(a)ψ(x).

The Toeplitz algebra of M is the C∗-algebra T (M) generated by a universal Toeplitz rep-
resentation (iM , i A) (see [13, proposition 1·3]).

For x, y ∈ M the operator �x,y: M → M defined by �x,y(z) := x · 〈y, z〉A is adjointable
with �∗

x,y = �y,x . The span K(M) := span {�x,y : x, y ∈ M} is a closed two-sided ideal
in L(M) called the algebra of compact operators on M . Thus J (M) := φ−1(K(M)) is a
closed two-sided ideal in A. For every Toeplitz representation (ψ, π) of M in B there is a
homomorphism (ψ, π)(1): K(M) → B satisfying

(ψ, π)(1)(�x,y) = ψ(x)ψ(y)∗ for x, y ∈ M .

If K is an ideal with K ⊂ J (M), a Toeplitz representation (ψ, π) of M is coisometric on
K if

(ψ, π)(1)(φ(a)) = π(a) for a ∈ K ,

and the relative Cuntz–Pimsner algebra O(K , M) is the C∗-algebra generated by a universal
Toeplitz representation (kM , kA) which is coisometric on K (see [12, 22]). It is the quotient
of T (M) by the ideal generated by

{(iM , i A)(1)(φ(a)) − i A(a)) : a ∈ K },
and if q : T (M) → O(K , M) is the quotient map, then (kM , kA) := (q ◦ iM , q ◦ i A). We
have O({0}, M) = T (M), and O(J (M), M) is Pimsner’s version of the Cuntz–Pimsner
algebra [12, 28]. With (ker φ)⊥ = {a ∈ A : ab = 0 for all b ∈ ker φ}, we recover Katsura’s
version of the Cuntz–Pimsner algebra as O(J (M)� (ker φ)⊥, M) [16]. In our bimodules the
homomorphism φ is always injective, and Pimsner’s and Katsura’s Cuntz–Pimsner algebras
are the same algebra O(M).

2. Exel systems

Suppose A is a C∗-algebra and α is an endomorphism of A. We assume throughout that
α is extendible: there is a strictly continuous endomorphism α of M(A) such that α|A = α.
This is equivalent to assuming that there is an approximate identity (uλ)λ∈	 for A and a
projection pα ∈ M(A) such that α(uλ) → pα strictly in M(A). In this paper, a transfer
operator L for (A, α) is a bounded positive linear map L : A → A which extends to a
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bounded positive linear map L : M(A) → M(A) such that L(α(a)m) = aL(m) for a ∈ A
and m ∈ M(A). We call the triple (A, α, L) an Exel system.

Remark 2·1. Since positive linear maps are adjoint-preserving, the extension also satisfies
L(mα(a)) = L(m)a. Such transfer operators L are automatically strictly continuous.

2·1. Exel systems arising from classical systems

In the main examples of interest to us (and in [7], [8] and [10]), the C∗-algebra A is
commutative. A classical system consists of a locally compact Hausdorff space T and a
surjective local homeomorphism τ: T → T which is proper in the sense that inverse images
of compact sets are compact. Properness implies that α: f �→ f ◦τ maps C0(T ) into C0(T ),
and the endomorphism α is nondegenerate, hence extendible with α(1) = 1. As in [7] and
[8], the transfer operator L is defined by averaging over the inverse images of points. It is
not immediately obvious that this process maps C0(T ) to itself:

LEMMA 2·2. Suppose that τ : T → T is a surjective proper local homeomorphism.
Then the function δ : T → N defined by δ(t) = |τ−1(t)| is locally constant, and for every
f ∈ C0(T ) the function L( f ) defined by

L( f )(t) = 1

|τ−1(t)|
∑

τ(s)=t

f (s) (2·1)

belongs to C0(T ).

Proof. We fix t ∈ T and a compact neighbourhood N of t . The inverse image τ−1(t)
is a compact set, and it cannot have a cluster point because τ is a local homeomorphism,
so it must be finite. We list it as τ−1(t) = {si : 1 � i � m}. Next choose disjoint open
sets Ui ⊂ τ−1(N ) such that si ∈ Ui and s|Ui is a local homeomorphism onto an open
neighbourhood of t . The set K := τ−1(N ) \ ( ⋃

i Ui

)
is compact, and t does not belong to

τ(K ), so there is a neighbourhood V of t which misses τ(K ). Then W := ⋂
i (V � τ(Ui ))

is an open neighbourhood of t , and every point of W has exactly m preimages, one in each
Ui . So δ is constant on W , and L( f )|W = (1/m)

∑m
i=1 f ◦ (s|Ui )

−1|W is continuous at t .
Finally, note that if | f | < ε outside a compact set K , then |L( f )| < ε outside the compact

set τ(K ).

Calculations show that the map L : C0(T ) → C0(T ) defined in Lemma 2·2 is positive,
norm-decreasing and satisfies L(α( f )g) = f L(g). Equation (2·1) also defines a map L on
Cb(T ) = M(C0(T )) with the required properties, and hence L is a transfer operator for
(C0(T ), α). Thus (C0(T ), α, L) is an Exel system.

Remark 2·3. The normalising factor of |τ−1(t)|−1 in (2·1) is not required for the key iden-
tity L(α( f )g) = f L(g) – we could multiply L by any bounded continuous function without
changing this equation. Indeed, in [10] no normalising factor is used. However, there the
space T is compact, so the function t �→ |τ−1(t)| is bounded, and the unnormalised transfer
operator is still a bounded linear map on C(T ). When T is locally compact, t �→ |τ−1(t)|
need not be bounded, and then we have to include the normalising factor to ensure that (2·1)
defines a bounded operator on C0(T ).

2·2. Systems arising from directed graphs

We assume throughout this paper that E = (E0, E1, r, s) is a locally finite directed graph
with no sources or sinks, and in Section 9 we discuss the changes that would need to be made
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to accommodate more general graphs. We think of elements of E0 as vertices, elements of
E1 as edges, and r, s: E1 → E0 as determining the range and source of edges. Saying that
E has no sources (resp. sinks) means that r−1(v) (resp. s−1(v)) is nonempty for every vertex
v ∈ E0. Local-finiteness means that E is both row-finite (r−1(v) is finite for every v) and
column-finite (s−1(v) is finite for every v).

We use the conventions of [29] for graphs and their C∗-algebras. Thus C∗(E) is the C∗-
algebra generated by a universal Cuntz–Krieger E-family consisting of partial isometries
{se : e ∈ E1} and mutually orthogonal projections {pv : v ∈ E0} such that s∗

e se = ps(e)

and pv = ∑
r(e)=v ses∗

e . We write E∗ for the set of finite paths μ = μ1μ2 · · · μn satisfying
s(μi ) = r(μi+1) for all i , and |μ| for the length n of such a path μ.

The Exel system associated to E arises from a classical system, as in Section 2·1. The
underlying topological space E∞ is the set of infinite paths ξ = ξ1ξ2ξ3 · · · , which is locally
compact in the product topology from

∏∞
n=1 E1 because E is row-finite; this topology has

a basis consisting of the compact open sets Z(μ) := {ξ ∈ E∞ : ξi = μi for i � |μ|} for
μ ∈ E∗. The map σ is the shift on E∞ defined by σ(ξ1ξ2ξ3 · · · ) = ξ2ξ3 · · · ; σ is a local
homeomorphism because it is a homeomorphism of each Z(e) onto Z(s(e)), and is proper
because the graph is column-finite.

As in Section 2·1, the endomorphism α in our Exel system (C0(E∞), α, L) is given by
α : f �→ f ◦ σ and the transfer operator L is defined by averaging over the inverse images
of points. Since σ−1(ξ) = {eξ : s(e) = r(ξ)}, we can write L as

L( f )(ξ) = 1

|s−1(r(ξ))|
∑

s(e)=r(ξ)

f (eξ).

Even for locally finite graphs E the valencies |s−1(v)| may be unbounded, so this is one
situation where we need the normalising factor to make L bounded (see Remark 2·3).

3. The Toeplitz crossed product

A Toeplitz-covariant representation of an Exel system (A, α, L) in a C∗-algebra B con-
sists of a nondegenerate homomorphism π: A → B and an element V ∈ M(B) such that

(TC1) V π(a) = π(α(a))V , and

(TC2) V ∗π(a)V = π(L(a)).

The Toeplitz crossed product T (A, α, L) is the C∗-algebra generated by a universal Toeplitz-
covariant representation (i, S).

Following [7] and [5], we next realise T (A, α, L) as the Toeplitz algebra of a Hilbert
bimodule. We make A into a right A-module AL in which the right action of a ∈ A on
m ∈ AL is given by m · a = mα(a), and define a pairing on AL by 〈m, n〉L = L(m∗n); AL

is then a pre-inner-product module. We mod out by vectors m ∈ AL with 〈m, m〉L = 0, and
denote the quotient map by q. The completion ML of the quotient is a Hilbert A-module,
and q(AL) is dense in ML . The action of A by left multiplication extends to an action by
bounded adjointable operators on ML , giving a homomorphism φ : A → L(ML), and ML

becomes a right-Hilbert bimodule. Further details are in [5, section 3]. An approximate-
identity argument shows that ML is essential as a left A-module: A · ML = {a · m : a ∈
A, m ∈ ML} is dense in ML . (ML is also essential as a right A-module, because every Hilbert
module is [30, corollary 2·7].)
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PROPOSITION 3·1. Suppose (A, α, L) is an Exel system. There is a linear map ψS :
ML → T (A, α, L) such that ψS(q(a)) = i(a)S, and (ψS, i) is a Toeplitz representation
of ML in T (A, α, L) such that ψS × i is an isomorphism of T (ML) onto T (A, α, L).

This proposition seems to be substantially trickier than the analogous result for unital A
[5, corollary 3·3]. As in the unital case, there is an issue with nondegeneracy: in a Toeplitz
representation (ψ, π), the representation π does not have to be nondegenerate. But even if
we assume nondegeneracy, it is not so easy to move from Toeplitz representations (ψ, π) to
Toeplitz-covariant representations (π, V ): in the unital case, we just take V = ψ(q(1)), and
we go back by taking ψV (q(a)) = π(a)V (see [5, lemma 3·2]). Here we construct V from
(ψ, π) using a spatial argument.

LEMMA 3·2. Suppose (μ, τ) is a Toeplitz representation of ML on a Hilbert space H,
and τ is nondegenerate. Then there is a bounded linear operator Uμ,τ on H such that

Uμ,τ

(
m∑

i=1

τ(ai )ki

)
=

m∑
i=1

μ(q(α(ai )))ki for ai ∈ A and ki ∈ H, (3·1)

and the pair (τ, Uμ,τ ) is a Toeplitz-covariant representation on H.

Proof. Nondegeneracy ensures that τ extends to a representation τ: M(A) → B(H), and
a calculation using the equation L(α(a)α(b)) = aL(1)b shows that∥∥∥ m∑

i=1

μ(q(α(ai)))ki

∥∥∥2
�

∥∥τ(L(1))
∥∥ ∥∥∥ m∑

i=1

τ(ai )ki

∥∥∥2
� ‖L(1)‖

∥∥∥ m∑
i=1

τ(ai )ki

∥∥∥2
. (3·2)

If
∑m

i=1 τ(ai )ki = ∑n
i=1 τ(bi )li , then (3·2) implies that

∥∥∥ m∑
i=1

μ(q(α(ai)))ki −
n∑

i=1

μ(q(α(bi )))li

∥∥∥2
�

∥∥L(1)
∥∥∥∥∥ m∑

i=1

τ(ai )ki −
n∑

i=1

τ(bi )li

∥∥∥2 = 0,

and hence there is a well-defined linear map Uμ,τ on span {τ(a)h : a ∈ A, h ∈ H} satisfying
(3·1). Equation (3·2) implies that Uμ,τ is norm-decreasing, and hence extends to a bounded
linear operator on span {τ(a)h : a ∈ A, h ∈ H}, which is all of H by nondegeneracy of τ .

To see that (τ, Uμ,τ ) is Toeplitz-covariant, we let b ∈ A. Then

Uμ,τ τ (a)(τ (b)h) = μ(q(α(ab)))h = τ(α(a))μ(q(α(b)))h = τ(α(a))Uμ,τ (τ (b)h),

and the nondegeneracy of τ implies that Uμ,τ τ (a) = τ(α(a))Uμ,τ . Next we calculate:

(Uμ,τ
∗τ(a)Uμ,τ (τ (b)h) | τ(c)k) = (τ (a)Uμ,τ (τ (b)h) | Uμ,τ (τ (c)k))

= (τ (a)μ(q(α(b)))h |μ(q(α(c)))k)

= (μ(q(α(c)))∗μ(q(aα(b)))h | k)

= (τ (L(α(c)∗aα(b)))h | k)

= (τ (c)∗τ(L(a))(τ (b)h) | k)

= (τ (L(a))(τ (b)h) | τ(c)k),

which gives Uμ,τ
∗τ(a)Uμ,τ = τ(L(a)).

LEMMA 3·3. If (π, V ) is a Toeplitz-covariant representation of (A, α, L) in a C∗-algebra
B, then there is a Toeplitz representation (ψV , π) of ML in B such that ψV (q(a)) = π(a)V .
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Proof. We define θ: AL → B by θ(a) = π(a)V . Then θ is linear, and for a ∈ A we have

‖θ(a)‖2 = ‖(π(a)V )∗π(a)V ‖ = ‖π(L(a∗a))‖ � ‖L(a∗a)‖ = ‖〈a, a〉L‖,
so θ is bounded for the semi-norm on AL and extends to a bounded map ψV : ML → B. To
see that (ψV , π) is a Toeplitz representation of ML , we let a, b, c ∈ A and compute:

ψV (q(b) · a) = ψV (q(bα(a))) = π(bα(a))V = π(b)V π(a) = ψV (q(b))π(a),

ψV (q(b))∗ψV (q(c)) = (π(b)V )∗π(c)V = V ∗π(b∗c)V = π(L(b∗c)) = π(〈q(b), q(c)〉L),

and
ψV (a · q(b)) = ψV (q(ab)) = π(ab)V = π(a)π(b)V = π(a)ψV (q(b)).

This completes the proof.

LEMMA 3·4. Suppose that (ψ, π) is a Toeplitz representation of ML on a Hilbert space
H. Then the essential subspace K := span {π(a)h : a ∈ A, h ∈ H} is reducing for (ψ, π),
and we have π |K⊥ = 0 and ψ |K⊥ = 0.

Proof. It is standard that K is reducing for π and π |K = 0, so we need to show that
K and K⊥ are invariant under ψ . Let m ∈ ML and k ∈ K. Since ML is essential, the
Cohen factorisation theorem (as in [30, proposition 2·33], for example) allows us to factor
m = a · m ′. Then ψ(m)k = ψ(a · m ′)k = π(a)ψ(m ′)k belongs to K, so K is invariant under
ψ . Next, for m ∈ ML and h ∈ K⊥, we have

‖ψ(m)h‖2 = (ψ(m)h |ψ(m)h) = (ψ(m)∗ψ(m)h | h) = (π(〈m, m〉L)h | h) = 0,

because π(〈m, m〉L)h ∈ K. Hence ψ(m)h = 0 for all h ∈ K⊥, which implies that K⊥ is
invariant under ψ and that ψ(m)|K⊥ = 0.

Proof of Proposition 3·1. By Lemma 3·3, there is a Toeplitz representation (ψS, i) of ML

in T (A, α, L). We will use [13, proposition 1·3] to prove that (T (A, α, L), ψS, i) has the
universal property which characterises (T (ML), iML , i A). Since T (A, α, L) is generated by
i(A)� i(A)S, it is generated by i(A)�ψS(ML). Next, let (ψ, π) be a Toeplitz representation
of ML in B, and aim to prove that there is a representation ψ × π of T (A, α, L) such that
(ψ × π) ◦ i = π and (ψ × π) ◦ ψS = ψ .

We choose a faithful nondegenerate representation ρ : B → B(H), and consider the
Toeplitz representation (ψ0, π0) := (ρ ◦ ψ, ρ ◦ π). Lemma 3·4 implies that the restric-
tion (ψ0|K, π0|K) to the essential subspace K of π0 is a Toeplitz representation of ML

on K with π0|K nondegenerate, so Lemma 3·2 gives a Toeplitz-covariant representation
(π0|K, V ) of (A, α, L) on K, and the universal property of T (A, α, L) gives a nondegener-
ate representation π0|K × V : T (A, α, L) → B(K) satisfying (π0|K × V ) ◦ i = π0|K and
(π0|K × V )(S) = V . The representation

μ := (π0|K × V ) ⊕ 0 : T (A, α, L) −→ B(H)

then satisfies μ ◦ i = π0 = ρ ◦ π , and μ ◦ ψS = ψ0 = ρ ◦ ψ . Since T (A, α, L) is
generated by i(A) � ψS(ML), and the range of ρ is closed, we have range μ ⊂ range ρ, and
the homomorphism ψ × π := ρ−1 ◦ μ has the required properties. The result now follows
from [13, proposition 1·3].
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COROLLARY 3·5. The map i : A → T (A, α, L) is injective. The map iA : A → T (ML)

is nondegenerate, and the canonical Toeplitz representation (iML , i A) is universal for Toeplitz
representations (ψ, π) in which π is nondegenerate.

Proof. Proposition 1.3 of [13] implies that i A : A → T (ML) is injective, and therefore
so is i = (ψS × i)−1 ◦ i A. On the other hand, i is nondegenerate, and so is i A = (ψS × i) ◦ i .
The last statement now follows from the universal property of (T (ML), iML , i A).

4. The crossed product

Suppose that (A, α, L) is an Exel system, (i, S) is the canonical Toeplitz-covariant rep-
resentation of (A, α, L) in T (A, α, L), and (ψS, i) is the Toeplitz representation of Pro-
position 3·1. Following [7], we say that a pair (i(a), k) in T (A, α, L) is a redundancy if
k ∈ i(A)SS∗i(A) and i(a)i(b)S = ki(b)S for all b ∈ A. As in [5, lemma 3·5], (i(a), k) is a
redundancy if and only if a ∈ φ−1(K(ML)) and k = (ψS, i)(1)(φ(a)).

Following [7], we define the crossed product A�α,L N to be the quotient of T (A, α, L) by
the ideal I (A, α, L) generated by the elements i(a) − k such that (i(a), k) is a redundancy
and a ∈ Aα(A)A. As in [5, corollary 3·6], we write Kα := Aα(A)A � φ−1(K(ML)), and
then I (A, α, L) is the ideal generated by the elements i(a) − (ψS, i)(1)(φ(a)) for a ∈ Kα.
We write Q for the quotient map of T (A, α, L) onto A �α,L N.

As in [5, proposition 3·6], the crossed product (A �α,L N, Q ◦ i, Q(S)) is universal for
Toeplitz representations (π, V ) of (A, α, L) which are covariant in the sense that

π(a) = (ψV , π)(1)(φ(a)) for all a ∈ Kα.

Then, extending [5, proposition 3·10], we have:

THEOREM 4·1. For every Exel system (A, α, L), there is an isomorphism θ of the relative
Cuntz–Pimsner algebra O(Kα, ML) onto A �α,L N such that θ ◦ kA = Q ◦ i and θ ◦ kML =
Q ◦ ψS = ψQ(S).

Proof. We first observe that Q(ψS(q(a))) = Q(π(a))Q(S), so Q ◦ψS coincides with the
representation ψQ(S) asssociated to (Q ◦π, Q(S)). We prove that (A�α,LN, ψQ(S), Q ◦ i) has
the universal property given in Section 1·1 which characterises (O(Kα, ML), kML , kA). Since
π(A) � ψS(ML) generates the Toeplitz algebra, Q ◦ π(A) � ψQ(S)(ML) generates A�α,LN.

Suppose that (ψ, π) is a Toeplitz representation of ML in a C∗-algebra B which is coi-
sometric on Kα; that is, (ψ, π)(1)(φ(a)) = π(a) for all a ∈ Kα . As in the proof of Pro-
position 3·1, we choose a faithful nondegenerate representation ρ : B → B(H), and con-
sider the Toeplitz representation (ψ0, π0) := (ρ ◦ ψ, ρ ◦ π) of ML on H. The identity
(ρ ◦ ψ, ρ ◦ π)(1) = ρ ◦ (ψ, π)(1) (see [12, section 1]) implies that (ψ0, π0) is coisometric
on Kα. Now we restrict (ψ0, π0) to the essential subspace K for π0, and, as in the proof of
Proposition 3·1, we get a Toeplitz-covariant representation (π0|K, V ). A straightforward cal-
culation shows that (ψ0|K, π0|K)(1)(T ) = (ψ0, π0)

(1)(T )|K for T = �m,n , and this extends
by linearity and continuity to T ∈ K(ML). Thus

(ψV , π0|K)(1)(φ(a))(k) = (ψ0|K, π0|K)(1)(φ(a))(k) = (ψ0, π0)
(1)|K(φ(a))(k)

= (ψ0, π0)
(1)(φ(a))(k) = π0(a)(k) = π0|K(a)(k),

so (π0|K, V ) is a covariant representation of (A, α, L), and gives a representation π0|K × V
of A �α,L N. Then ν := ρ−1 ◦ (

(π0|K × V )⊕ 0
)

satisfies ν ◦ (Q ◦ i) = π and ν ◦ψQ(S) = ψ .
The result now follows from [12, proposition 1·3].
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From now on, we use the isomorphism of Theorem 4·1 to identify A �α,L N with

O(Kα, ML), and we write (kML , kA) for the canonical Toeplitz representation of ML in
A �α,L N = O(Kα, ML).

For systems (C0(T ), α, L) arising from classical systems (T, τ ), φ : C0(T ) → L(ML)

has range in K(ML). To see this, it suffices to prove that φ( f ) ∈ K(ML) for every f ∈
Cc(T ). Choose a finite cover {Ui } of supp f by relatively compact open sets such that τ |Ui

is one-to-one, and let {ρi } be a partition of unity subordinate to {Ui }. Define gi by gi (t) :=
(|τ−1(τ (t))|ρi(t))1/2. Then for h ∈ C0(T ) we have

(� f gi ,gi h)(t) = f (t)gi(t)
1

|τ−1(τ (t))|
∑

τ(s)=τ(t)

gi (s)h(s) = f (t)ρi(t)h(t),

so

φ( f ) =
∑

i

� f gi ,gi (4·1)

belongs to K(ML). Since α is nondegenerate, Aα(A)A = A, and Kα = A. Thus:

COROLLARY 4·2. Suppose that (C0(T ), α, L) arises from a classical system (T, τ ), as in
Section 2·1. Then (C0(T )�α,L N, kML , kA)) is the Cuntz–Pimsner algebra (O(ML), kML , kA).

Next, we recall from [5] that if I is an ideal in A, the transfer operator L is faithful on I
of A if a ∈ I and L(a∗a) = 0 ⇒ a = 0, and almost faithful on I if

a ∈ I and L((ab)∗ab) = 0 for all b ∈ A =⇒ a = 0.

The arguments of [5, theorem 4·2 and corollary 4·3] give the following results on the in-
jectivity of kA: A → A �α,L N. The examples in [5, section 4] show that they are sharp.

THEOREM 4·3. Suppose (A, α, L) is an Exel system. Then Q ◦ i : A → A�α,LN is
injective if and only if L is almost faithful on Kα := Aα(A)A � J (ML).

COROLLARY 4·4. Suppose (A, α, L) is an Exel system with A commutative. Then Q ◦ i :
A → A�α,LN is injective if and only if L is faithful on Kα.

COROLLARY 4·5. Suppose that (C0(T ), α, L) arises from a classical system (T, τ ), as
in Section 2·1. Then the canonical map kA of C0(T ) into C0(T )�α,L N = O(ML) is injective.

Proof. We just need to observe that

L( f ∗ f ) = 0 =⇒
∑

τ(s)=t

| f (s)|2 = 0 for all t =⇒ | f (s)|2 = 0 for all s =⇒ f = 0.

This completes the proof.

5. Graph algebras as Exel crossed products

Our next theorem says that many graph algebras can be viewed as Exel crossed products
associated to the classical system (E∞, σ ). Recall that in this case ML is the completion of
a copy {q( f ) : f ∈ Cc(E∞)} of Cc(E∞).

THEOREM 5·1. Let E be a locally finite directed graph with no sources or sinks, and
define c: E0 → [0, ∞) by c(v) = |s−1(v)|. Then the elements

Se := √
c(s(e))kML (q(χZ(e))) and Pv := kA(χZ(v)) (5·1)



432 N. BROWNLOWE, I. RAEBURN AND S.T. VITTADELLO

form a Cuntz–Krieger E-family, and the homomorphism πS,P: C∗(E) → C0(E∞) �α,L N is
an isomorphism. For μ ∈ En, we have

kA(χZ(μ)) = SμS∗
μ and kML (q(χZ(μ))) = c(s(μ1))

−1/2SμS∗
μ2···μn

. (5·2)

To make our calculations more legible we are going to drop the map q: Cc(E∞) → ML

from our notation. We will use the next lemma several times.

LEMMA 5·2. For μ ∈ E∗ with |μ| � 1 we have

φ(χZ(μ)) = c(s(μ1))�χZ(μ),χZ(μ1)
= c(s(μ1))�χZ(μ1),χZ(μ)

.

Proof. We let f ∈ Cc(E∞) and ξ ∈ E∞, and compute:

c(s(μ1))(�χZ(μ),χZ(μ1)
( f ))(ξ) = c(s(μ1))(χZ(μ) · 〈χZ(μ1), f 〉L)(ξ)

= c(s(μ1))χZ(μ)(ξ)〈χZ(μ1), f 〉L(σ (ξ))

= c(s(μ1))χZ(μ)(ξ)c(r(σ (ξ)))−1∑
s(e)=r(σ (ξ))χZ(μ1)(eσ(ξ)) f (eσ(ξ)). (5·3)

This vanishes unless ξ = μξ ′, and then e = μ1 = ξ1 is the only edge which gives a non-
zero summand: then eσ(ξ) = ξ , r(σ (ξ)) = s(ξ1) = s(μ1) and (5·3) is (χZ(μ) f )(ξ) =
(φ(χZ(μ))( f ))(ξ). The second formula follows from a similar calculation.

Proof of Theorem 5·1. The projections {Pv} are mutually orthogonal because the χZ(v)

are. Next, observe that 〈χZ(e), χZ(e)〉L = L(χZ(e)) = c(s(e))−1χZ(s(e)), so

S∗
e Se = c(s(e))kA(〈χZ(e), χZ(e)〉L) = kA(χZ(s(e))) = Ps(e).

To verify the Cuntz–Krieger relation at a vertex v, we compute using covariance and
Lemma 5·2 for μ = e:∑

r(e)=v Se S∗
e = ∑

r(e)=vc(s(e))kML (χZ(e))kML (χZ(e))
∗

= ∑
r(e)=v(kML , kA)(1)(c(s(e))�χZ(e),χZ(e) )

= ∑
r(e)=v(kML , kA)(1)(φ(χZ(e)))

= kA(
∑

r(e)=vχZ(e))

= kA(χZ(v)) = Pv. (5·4)

So {Se, Pv} is a Cuntz–Krieger E-family, and gives a homomorphism πS,P : C∗(E) →
O(ML). Since kA is faithful (Corollary 4·5), the projections Pv are all non-zero, and the
gauge-invariant uniqueness theorem for graph algebras implies that πS,P is faithful.

To see that πS,P is surjective, it suffices to show that every kML (χZ(μ)) and every kA(χZ(μ))

belongs to range πS,P . We prove by induction that kML (χZ(μ)) ∈ range πS,P for every μ ∈
En+1 and kA(χZ(ν)) ∈ range πS,P for every ν ∈ En . This is true for n = 0 by definition of Se

and Pv. Suppose it is true for n = k, and let ν ∈ Ek+1 and μ ∈ Ek+2. Using Lemma 5·2, we
have

kA(χZ(ν)) = (kML , kA)(1)(φ(χZ(ν))) = (kML , kA)(1)(c(s(ν1))�χZ(ν),χZ(ν1)
)

= c(s(ν1))kML (χZ(ν))kML (χZ(ν1))
∗, (5·5)
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which belongs to range πS,P by the inductive hypothesis. Next, we use the inductive hypo-
thesis on kML and (5·5) (for ν = μ2 · · ·μk+2) to see that

kML (χZ(μ)) = kML (χZ(μ1)α(χZ(μ2···μk+2)))

= kML (χZ(μ1) · χZ(μ2···μk+2))

= kML (χZ(μ1))kA(χZ(μ2···μk+2)) (5·6)

belongs to range πS,P . Thus πS,P is surjective.
The second formula in (5·2) follows from a calculation like that in (5·6). We prove the

first formula by induction on n. It is trivially true for n = 0. So suppose it is true for n = k.
Now we let μ ∈ Ek+1 and calculate, using Lemma 5·2 again:

kA(χZ(μ)) = kA(χZ(μ))
2 = (kML , kA)(1)

(
c(s(μ1))

2�χZ(μ1),χZ(μ)
�χZ(μ),χZ(μ1)

)
= c(s(μ1))

2kML (χZ(μ1))kML (χZ(μ))
∗kML (χZ(μ))kML (χZ(μ1))

∗

= c(s(μ1))
2kML (χZ(μ1))kA

(〈χZ(μ), χZ(μ)〉L

)
kML (χZ(μ1))

∗

= c(s(μ1))Sμ1 kA(L(χZ(μ)))S∗
μ1

.

A quick calculation shows that L(χZ(μ)) = c(s(μ1))
−1χZ(μ2···μk+1), so the inductive hypo-

thesis implies that

kA(χZ(μ)) = Sμ1(Sμ2···μk+1 S∗
μ2···μk+1

)S∗
μ1

= SμS∗
μ.

This completes the proof.

6. Simplicity for classical systems

To find criteria for the simplicity of crossed products C0(T )�α,L N = O(ML), we want to
use Katsura’s general theory of topological graphs [17, 18] (as in [9]): to study the classical
system (T, τ ), we use the topological graph E = (T, T, τ, id). The bimodule ML is not quite
the same as the bimodule Cτ (E) appearing in [17], but it is isomorphic to it (this too has been
noticed elsewhere, including [15]). Indeed, both bimodules can be viewed as completions of
Cc(T ), the only difference being that the inner product 〈·, ·〉E in Cτ (E) satisfies

〈 f, g〉E =
∑

τ(s)=t

f (s)g(t) = |τ−1(t)|〈 f, g〉L(t).

The formula U ( f )(t) = √|τ−1(τ (t))| f (t) defines a C0(T )–C0(T ) bimodule homomorph-
ism U from Cc(T ) ⊂ Cτ (E) to Cc(T ) ⊂ ML such that 〈U f, Ug〉L = 〈 f, g〉E . Thus U
extends to an isomorphism of Hilbert bimodules, and the Cuntz–Pimsner algebras O(E) :=
O(Cτ (E)) and C0(T ) �α,L N = O(ML) are isomorphic. Thus we can use Katsura’s results
to study C0(T ) �α,L N.

We next describe the faithful representations of C0(T ) �α,L N. Following Exel–Vershik
[10], we say that (T, τ ) is topologically free if the sets Hm,n := {t ∈ T | τm(t) = τ n(t)}
have empty interior for every m � n ∈ N. The next result extends [10, theorem 10·3].

THEOREM 6·1. Suppose that τ : T → T is a proper local homeomorphism such that
(T, τ ) is topologically free, and (ψ, π) is a covariant representation of ML such that π is
faithful. Then ψ × π is faithful on O(ML) = C0(T ) �α,L N.

We need to relate the Exel–Vershik notion of topological freeness which we are using to
the one used in [17], and then Theorem 6·1 follows immediately from [17, theorem 5·10].
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LEMMA 6·2. The system (T, τ ) is topologically free if and only if the topological graph
E = (T, T, τ, id) is topologically free.

Proof. Suppose that (T, τ ) is topologically free. We need to show that the set of base
points of loops without entries has empty interior. The loops in E are the paths tτ(t) · · · τ n(t)
with t = τ n+1(t); an entry would be an element s ∈ E1 = T which has the same range as
some τ i (t) but is not itself τ i (t), and since the range map in E is the identity, there is no such
s. So the set of base points of loops without entries is

⋃∞
n=1{t : t = τ n(t)} = ⋃∞

n=1 H0,n .
Since each H0,n has no interior, the Baire category theorem for locally compact spaces [23,
theorem 48·2] implies that

⋃∞
n=1 H0,n has empty interior.

Now suppose that (T, τ ) is not topologically free. Then there exists (m, n) ∈ N
2 with m >

n such that Hm,n contains an open set V . Since local homeomorphisms are open mappings,
τ n(V ) is open, and since τ n(V ) ⊂ H0,m−n , the set

⋃∞
k=1 H0,k has interior.

Example 6·3. Suppose that E is a locally finite graph with no sources or sinks. We claim
that the system (E∞, σ ) is topologically free if and only if every cycle in E has an entry.

First suppose that (E∞, σ ) is topologically free, and μ ∈ En is a cycle. Then μμμ · · ·
belongs to H0,n . Since H0,n has empty interior, the set Z(r(μ)) cannot be contained in H0,n ,
and there exists ξ with r(ξ) = r(μ) but ξ � σ n(ξ). Then ξ � μμμ · · · , and the first ξk

which is not equal to (μμμ · · · )k is an entry to μ.
Conversely, suppose every cycle in E has an entry. We fix m < n, and aim to show

that Hm,n has empty interior. If Hm,n is empty, this is trivially true, so suppose there exists
ξ ∈ Hm,n . Then μ := ξm+1 · · · ξn has r(μ) = s(μ), hence contains a cycle, hence has an
entry, say e with r(e) = r(μ j ) but e � μ j . Choose η ∈ E∞ with r(η) = s(e). Because ξ is
in Hm,n , ξm+k(n−m)+ j = ξm+ j = μ j for every k � 1, and then ζ (k) := ξ1 · · · ξm+k(n−m)+ j−1eη
is a sequence in E∞ \ Hm,n which converges to ξ . So no point of Hm,n is an interior point,
and the claim is proved. (See also [31, proposition 4·3], where this claim is proved in greater
generality.)

The first formula in (5·2) shows that if {T, Q} is a Cuntz–Krieger family on Hilbert space,
then the corresponding covariant representation (θ, ρ) of ML satisfies ρ(χZ(μ)) = TμT ∗

μ .
Theorem 6·1 says that θ × ρ is faithful if and only if ρ is faithful on C(E∞). On the face of
it, this is weaker than the Cuntz–Krieger uniqueness theorem, which says that πT,Q is faithful
if and only if Qv � 0 for every v ∈ E0, and implies that θ × ρ is faithful if and only if every
Qv � 0. However, C(E∞) is the direct limit of the subalgebras Dn = span {χZ(μ) : |μ| = n}.
If every Qv is non-zero, then every SμS∗

μ = Qs(μ) � 0, the projections {SμS∗
μ : |μ| = n} are

mutually orthogonal and non-zero, ρ is faithful on each Dn , and hence also on the direct limit
C(E∞) by [29, proposition A·8]. So Theorem 6·1, as it applies to (E∞, σ ), is equivalent to
the Cuntz–Krieger theorem for E .

Next we characterise the systems (T, τ ) for which C0(T ) �α,L N is simple. Again follow-
ing [10], we say that a subset Y of T is invariant1 if we have τ(Y ) ⊂ Y and τ−1(Y ) ⊂ Y ,
and that τ is irreducible if the only closed invariant subsets are � and T . Our version of [10,
theorem 11·2] differs from that theorem in that we need to assume topological freeness as

1 In [10], the authors define Y to be invariant if t ∈ Y and τm(s) = τn(t) =⇒ s ∈ Y , and claim that this
is equivalent to τ−1(Y ) ⊂ Y . We think they inadvertently omitted the extra condition τ(Y ) ⊂ Y , since it has
to be there: for example, with τ : T → T given by τ(z) = z2, the set Y = {exp(2π ik2−n) : k ∈ N, n � 2}
satisfies τ−1(Y ) ⊂ Y but is not invariant. [10, proposition 4·1] still holds because the set in question is
invariant in our sense; [10, theorem 11·2] still holds because it is a special case of our Theorem 6·4.
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well as irreducibility. When τ is a covering map on an infinite compact space, irreducibility
implies topological freeness [10, proposition 11·1], but this is not true for locally compact
T , as our later examples show.

THEOREM 6·4. Suppose that τ : T → T is a proper local homeomorphism. Then
C0(T ) �α,L N is simple if and only if (T, τ ) is topologically free and τ is irreducible.

Proof. Lemma 6·2 says that (T, τ ) is topologically free if and only if E = (T, T, τ, id)

is, and it is easy to see that E is minimal in the sense of [18] if and only if τ is irreducible,
so the result follows immediately from [18, theorem 8·12].

Example 6·5. Suppose that E is a locally finite graph with no sources or sinks. We claim
that σ is irreducible if and only if E is cofinal. This claim and the one in Example 6·3 say that
the criteria in Theorem 6·4 applied to (E∞, σ ) reduce to the known criteria for simplicity of
C∗(E) = C0(E∞) �α,L N, as in [4, proposition 5·1] or [29, theorem 4·14].

Suppose E is cofinal, and Y is a nonempty open invariant subset of E∞. Let ξ ∈ E∞.
Since Y is open, it contains a cylinder set Z(μ), and cofinality implies that there exists
ν ∈ E∗ with r(ν) = s(μ) and s(ν) = ξk for some k. Then η := μνξkξk+1 · · · is in Z(μ) ⊂ Y ,
and since σ k(ξ) = σ |μ|+|ν|(η), invariance of Y implies that ξ ∈ Y . Thus Y = E∞, as
required. Conversely, suppose that σ is irreducible. Then for v ∈ E0,

Yv := {ξ ∈ E∞ : there exists μ ∈ E∗ with r(μ) = v and s(μ) = r(ξk) for some k}
is a non-empty open invariant subset of E∞, hence all of E∞. But this says precisely that v

can be reached from every infinite path in E , and hence that E is cofinal.

7. Gauge-invariant ideals in crossed products for classical systems

Every relative Cuntz–Pimsner algebra carries a gauge action ([12, proposition 1·3]), and
pulling this over under the isomorphism of Theorem 4·1 gives a gauge action γ : T →
Aut(A �α,L N) which is characterised by γz ◦ kA = kA and γz(iML (m)) = ziML (m). An ideal
I in A �α,L N is gauge-invariant if γz(I ) ⊂ I for all z ∈ T.

LEMMA 7·1. For every ideal I of C0(T ) �α,L N,

YI := {t ∈ T : f (t) = 0 for all f ∈ C0(T ) such that kA( f ) ∈ I }, (7·1)

is a closed invariant subset of T in (T, τ ).

Proof. The set YI is the kernel of the ideal k−1
A (I ), so it is closed. [18, propositions 2·5

and 2·7] say that YI is an invariant subset of the topological graph E = (T, T, τ, id), which
is the same thing as invariance in (T, τ ). However, it is easy to give a short direct proof.
First, we suppose that τ(t) ∈ YI and aim to prove that t ∈ YI . Let f ∈ C0(T \ YI ); we need
to prove that f (t) = 0. Choose g such that g(t) = 1 and g has support in a neighbourhood
of t on which τ is one-to-one. Since kA(〈g, φ( f )g〉L) = kML (g)∗kA( f )kML (g) is in I , we
have 〈g, φ( f )g〉L(τ (t)) = 0, and the calculation

0 = 〈g, φ( f )g〉L(τ (t)) = 1

|τ−1(τ (t))|
∑

τ(s)=τ(t)

|g(s)|2 f (s) = |τ−1(τ (t))|−1 f (t)

shows that f (t) = 0, as required.
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We show that τ(YI ) ⊂ YI by proving that kA(Cc(T \ τ−1(YI ))) ⊂ I . So we take f ∈
Cc(T \ τ−1(YI )), and write φ( f ) = ∑

i � f gi ,gi as in (4·1). Then for t ∈ YI and each i , we
have

〈φ( f )gi , φ( f )gi 〉L(t) = 〈 f gi , f gi 〉L(t) = L(| f gi |2)(t) = 1

|τ−1(t)|
∑

τ(s)=t

| f gi |2(s) = 0,

because f vanishes on τ−1(YI ). Thus kML ( f gi )
∗kML ( f gi ) = kA(〈 f gi , f gi 〉L) belongs to I ,

and so does kML ( f gi). Thus

kA( f ) = (kA, kML )
(1)(φ( f )) = (kA, kML )

(1)
(∑

i� f gi ,gi

) = ∑
i kML ( f gi )kML (gi )

∗

also belongs to I , as required.

THEOREM 7·2. Suppose that (C0(T ), α, L) arises from a classical system (T, τ ). Then
the map I �→ YI is a bijection from the set of gauge-invariant ideals of C0(T ) �α,L N to the
set of closed invariant subsets of T . The inverse takes a closed invariant set Y to the ideal
IY generated by {kA( f ) : f ∈ Cc(T \ Y )}.

Proof. Since the range map id is surjective, all the vertices in E = (T, T, τ, id) are regu-
lar; in the notation of [18, section 2], E0

rg = T and E0
sg = �. Thus the “admissible pairs” in

[18, definition 2·3] are (Y, �) for Y closed and invariant in T . So [18, theorem 3·19] implies
that I �→ YI is a bijection. It remains to identify the inverse.

Suppose Y is closed and invariant, giving the admissible pair ρ = (Y, �). Since φ :
C0(T ) → L(ML) has range in K(ML) by (4·1), the algebra F1 in [18, section 3] is the
image under (kCτ (E), kA)(1) of K(Cτ (E))). Thus the ideal Jρ in [18, definition 3·1] is

Jρ = {(kCτ (E), kA)(1)(x) : x ∈ ker ωY : K(Cτ (E)) −→ K(Cτ |Y (Y ))}.
[17, lemma 1·14] implies that ker ωY |K(Cτ (E)) is

K(Cτ |T \Y (T \ Y )) = span {� f,g : f, g ∈ Cc(T \ Y )},
and applying (kCτ (E), kA)(1) shows that (modulo the isomorphism of Cτ (E) with ML which
carries O(Cτ (E)) onto C0(T ) �α,L N),

Jρ = JY := span {kML ( f )kML (g)∗ : f, g ∈ Cc(T \ Y )}.
Thus the ideal Iρ in [18, definition 3·3] is generated by JY .

We now claim that the ideal generated by JY is equal to IY . Let f ∈ Cc(T \Y ), and choose
h ∈ Cc(T \ Y ) with h|supp f = 1. Then f = h f , and we have kML ( f ) = kA(h)kML ( f ). So
each kML ( f )kML (g)∗ ∈ IY , and JY ⊂ IY . To see that JY generates, let f ∈ Cc(T \ Y ). Since
(kML , kA) is coisometric on C0(T ), (4·1) implies that

kA( f ) = (kML , kA)(1)(φ( f )) = (kML , kA)(1)
(∑

i� f gi ,gi

) = ∑
i kML ( f gi )kML (gi )

∗,

belongs to JY , and so IY is contained in the ideal generated by JY .

Example 7·3. Suppose that E is a locally finite graph E without sources or sinks. For
each closed invariant subset Y of E∞, the complement E∞ \ Y is open and invariant, and
HY := E0 \ {r(ξ) : ξ ∈ Y } is a hereditary and saturated subset of E0, as in [29, section 4].
Conversely, if H ⊂ E0 is saturated and hereditary, then YH := {ξ : r(ξi) ∈ E0 \ H} is a
closed invariant subset of E∞. So Theorem 7·2 confirms that the gauge-invariant ideals in
C∗(E) = C(E∞) �α,L N are parametrised by the saturated hereditary subsets H of E0.
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We want to know, however, that the ideal IYH is the ideal IH generated by the projections

{pv : v ∈ H} (as in [29, section 4], for example). When we realise C∗(E) as a crossed
product, the projections pv are carried into the elements kA(χZ(v)) (see Theorem 5·1). So
we need to show that IYH is generated by {kA(χZ(v)) : v ∈ H}. Certainly each kA(χZ(v))

belongs to IYH . To see that they generate, we deduce from the Stone–Weierstrass theorem
that C0(E∞ \ YH ) = span {XZ(μ) : Z(μ) ⊂ E∞ \ YH }. Since χZ(μ) � χZ(r(μ)) and ideals are
hereditary, this implies that kA(χZ(μ)) ∈ IH belongs to the ideal generated by the kA(χZ(v)).
So the kA(χZ(v)) generate.

Now we want to decide when every ideal is gauge-invariant, so that Theorem 7·2 gives a
description of all the ideals in C0(T ) �α,L N. We say that t ∈ T is periodic if there exists
n � 1 such that τ n(t) = t . The smallest such n is called the period.

THEOREM 7·4. Suppose that (C0(T ), α, L) arises from a classical system (T, τ ). Then
every ideal of C0(T ) �α,L N is gauge-invariant if and only if every periodic point t is a
cluster point of τ−N(t) := ⋃

n�0 τ−n(t).

Proof. Katsura proved in [18, theorem 7·6] that every ideal of C0(T ) �α,L N is gauge-
invariant if and only if the topological graph E = (T, T, τ, id) is what he calls “free,” so we
need to reconcile this notion of freeness with our condition.

For each t ∈ T the set Orb+(t) in [18, definition 4·1] is τ−N(t). Condition (ii) of [18,
definition 7·1] holds trivially for E because the range map id is one-to-one, so t ∈ T is
periodic and isolated in τ−N(t) if and only if t is an element of the set Per(E) in [18, defini-
tion 7·1]. So our condition says precisely that Per(E) is empty, which is freeness.

Example 7·5. A directed graph E satisfies Condition (K) if for every v ∈ E0 either there
is no cycle based at v or there are two distinct return paths based at v. We claim that a
locally finite graph E with no sources or sinks satisfies (K) if and only if every periodic
point ξ ∈ E∞ is a cluster point of σ−N(ξ). Then Theorem 7·4 implies that all the ideals of
C∗(E) are gauge invariant if and only if E satisfies (K), as in [3, corollary 3·8].

Suppose that E satisfies Condition (K) and ξ ∈ E∞ is periodic with period n. We show
that for each μ ∈ E∗ with ξ ∈ Z(μ) we have Z(μ) � (σ−N(ξ) \ {ξ}) � �. We know
there is a cycle in E based at s(ξn). Let 1 � k � n be the largest integer such that r(ξk) =
s(ξn). Then ξk · · · ξn is a return path in E based at s(ξn) and E satisfies (K), so there is
a distinct return path η1 · · · ηm based at s(ξn). Choose j � 1 such that jn � |μ|. Then
λ := ξ1 · · · ξ jnξ1 · · · ξk−1η1 · · · ηmξ ∈ Z(μ) � (σ−N(ξ) \ {ξ}).

Conversely, suppose every periodic point ξ ∈ E∞ is a cluster point of σ−N(ξ), and that
μ is a cycle in E based at v. Then ξ := μμμ · · · is a periodic point in E∞, and there exists
η ∈ Z(r(ξ)) � (σ−N(ξ) \ {ξ}). Let m � 1 be the smallest integer such that σ m(η) = ξ .
Then η = η1 · · · ηmξ has r(η1) = v. Let 1 � k � m be the largest integer such that
r(ηk) = v. Since σ k−1(η) � ξ by the choice of m, ηk · · · ηm � μ. Further, r(ηk · · · ηm) =
v = s(ηk · · · ηm). Hence ηk · · · ηm is a return path in E based at v, distinct from μ. Thus E
satisfies Condition (K).

8. Primitive ideals in crossed products for classical systems

Suppose (T, τ ) is a classical system. A closed invariant subset Y of T is a maximal head
if for every pair y1, y2 ∈ Y and neighbourhoods V1 of y1 and V2 of y2, there exist points
x1 ∈ V1, x2 ∈ V2 and m, n ∈ N with τm(x1) = τ n(x2).
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We claim that if t ∈ T is periodic, then τ−N(t) is a maximal head. Since τ−N(t) is
nonempty and invariant, τ−N(t) is a closed nonempty invariant subset of T . Given y1, y2 ∈
τ−N(t) and neighbourhoods V1 of y1 and V2 of y2 we know τ−N(t)�V1 ��� τ−N(t)�V2.
So there exist x1 ∈ τ−N(t) � V1 and x2 ∈ τ−N(t) � V2, and there are m, n ∈ N with
τm(x1) = t = τ n(x2).

If t ∈ T is periodic with period n, then we call β := {τ k(t) : 0 � k � n} a cycle. The
cycle β is discrete if t is isolated in τ−N(β) := τ−N(t). Each τ k(t) is then isolated, and so
each δτ k (t) ∈ Cc( τ−N(β) ).

THEOREM 8·1. Suppose (T, τ ) is a classical system and T is second-countable.

(a) Suppose Y is a maximal head in T . Then the ideal IY defined in Theorem 7·2 is prim-
itive if and only if there is no discrete cycle β with Y = τ−N(β).

(b) Suppose β is a discrete cycle with |β| = n and denote Y := τ−N(β). Choose t ∈ β,
f ∈ Cc(T ) with f |Y = δt , and gi ∈ Cc(T ) with gi |Y = √|τ−1(τ i+1(t))|δτ i (t) for 0 � i �
n − 1. Then for each w ∈ T the ideal Iβ,w generated by

{kML (g0) . . . kML (gn−1) − wkA( f )} � IY

does not depend on the choice of t ∈ β or functions f, gi , and is primitive.

(c) Every primitive ideal I of C0(T )�α,LN has the form IY for Y given by (7·1) or Iβ,w

for a unique choice of cycle β and w ∈ T.

(d) The ideals IY are gauge-invariant, and the ideals Iβ,w are not.

Proof. We first prove that Iβ,w does not depend on the choice of f . Write

x := kML (g0) · · · kML (gn−1) − wkA( f ).

Suppose h ∈ Cc(T ) satisfies h|Y = δt and let x̃ = kML (g0) · · · kML (gn−1) − wkA(h). Then
h − f ∈ Cc(T \ Y ), and kA(h − f ) ∈ IY . It follows that x̃ − x = wkA(h − f ) ∈ IY , and so
{x} � IY and {x̃} � IY generate the same ideal.

To prove that Iβ,w does not depend on the choice of gi for any 0 � i � n − 1 we do it for
g0. Recall from the proof of Theorem 7·2 that kML (g) ∈ IY for all g ∈ Cc(T \ Y ). Suppose
p0 ∈ Cc(T ) satisfies p0|Y = δt , and let x̃ = kML (p0)kML (g1) · · · kML (gn−1) − wkA( f ). Then
p0 − g0 ∈ Cc(T \ Y ), and kML (p0 − g0) ∈ IY . Thus x̃ − x ∈ IY , and {x} � IY and {x̃} � IY

generate the same ideal.
To prove that Iβ,w does not depend on the choice of t ∈ β it suffices to show that for

h ∈ Cc(T ) with h|Y = δτ(t) and

x̃ = kML (g1) · · · kML (gn−1)kML (g0) − wkA(h),

the sets {x} � IY and {x̃} � IY generate the same ideal. We have

kML (g0)
∗xkML (g0) = kML (〈g0, g0〉L g1)kML (g2) · · · kML (gn−1)kML (g0) − wkA(〈g0, f g0〉L),

and routine calculations show that

〈g0, g0〉L g1|Y =
√

|τ−1(τ 2(t))|δτ(t) = g1|Y and 〈g0, f g0〉L |Y = δτ(t) = h|Y .

So {x̃} � IY generates the same ideal as {kML (g0)
∗xkML (g0)} � IY , which is contained in the

ideal generated by {x} � IY .
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To get the reverse containment we assume without loss of generality that τ is injective on

supp g0, and write m := (|τ−1(τ (t))|)−1
, d(s) := |τ−1(τ (s))| for s ∈ T . We have

kML (g0)x̃kML (mdg0)
∗ = kML (g0) · · · kML (gn−1)(kML , kA)(1)(�g0,mdg0)

− w(kML , kA)(1)(�g0α(h),mdg0). (8·1)

It follows from the injectivity of τ on supp g0 that

�g0,mdg0 = φ(m|g0|2) and �g0α(h),mdg0 = φ(m|g0|2α(h)),

and since (kML , kA) is coisometric on C0(T ), we have both (kML , kA)(1)(�g0,mdg0) =
kA(m|g0|2) and (kML , kA)(1)(�g0α(h),mdg0) = kA(m|g0|2α(h)). The right-hand side of (8·1)
then becomes

kML (g0) · · · kML (gn−2)kML (gn−1α(m|g0|2)) − wkA(m|g0|2α(h)).

Routine calculations show that(
gn−1α(m|g0|2)

)|Y =
√

|τ−1(t)|δτ n−1(t) = gn−1|Y and
(
m|g0|2α(h)

)|Y = δt = f |Y ,

and so {x} � IY generates the same ideal as {kML (g0)
∗ x̃kML (mdg0)} � IY , which is contained

in the ideal generated by {x̃} � IY . Hence {x} � IY and {x̃} � IY generate the same ideal, and
we have finished proving that Iβ,w does not depend on choices.

We now want to apply [18, theorem 11·14 and corollary 12·3] to E = (T, T, τ, id), so we
again have to reconcile our definitions with Katsura’s.

The sets in [18, definition 1·3] are Tsce = � and Tfin = T = Trg, so Y ⊂ T is invariant
if and only if it is invariant in the sense of [18, definition 2·1]. We have already seen that
t ∈ T is periodic and isolated in τ−N(t) if and only if t is an element of Per(E) given in
[18, definition 7·1]. Thus Y ⊂ T is a maximal head if and only if it is a maximal head as in
[18, definition 4·12]. The definition of MPer(E) in the middle of [18, page 1839] shows that
{τ−N(β) : β a discrete cycle} = MPer(E).

We claim that for Y a maximal head as in (a) we have IY = PY , where PY is given in [18,
definition 11·4]. We have already seen in the proof of Theorem 7·2 that IY = Iρ , where ρ is
the admissible pair (Y, �) and Iρ is given in [18, definition 3·3]. The ideal PY is defined to
be Iρ for such Y , so the claim follows.

We now claim that for w ∈ T, β a discrete cycle and Y := τ−N(β) we have Iβ,w = PY,w,
where PY,w is given in [18, definition 11·8]. Write β = {τ k(t) : 0 � k � n − 1}, choose
f ∈ Cc(T ) such that f |Y = δt , and for 0 � i � n − 1 choose functions gi ∈ Cc(T ) with
gi |Y = δτ i (t). The ideal PY,w is generated by

{kCτ (T )(g0)kCτ (T )(g1) · · · kCτ (T )(gn−1) − wkA( f )} � IY .

The isomorphism U : Cτ (T ) → ML of Section 6 satisfies kCτ (T ) := kML ◦ U , so PY,w is
generated by

{kML (U (g0))kML (U (g1)) · · · kML (U (gn−1)) − wkA( f )} � IY .

For 0 � i � n − 1 we have U (gi)|Y = √|τ−1(τ i+1(t))|δτ i (t), so PY,w = Iβ,w.

The set BV(E) given in [18, page 1837] is empty, so the result now follows from [18,
theorem 11·14] and [18, corollary 12·3] (which needs second-countability).



440 N. BROWNLOWE, I. RAEBURN AND S.T. VITTADELLO

8·1. The primitive ideals of graph algebras

Let E be a locally finite graph with no sources. As in [14], a maximal head is a non-empty
subset M of E0 such that

(MH1) if v ∈ E0, w ∈ M , and v � w then v ∈ M ;
(MH2) if v ∈ M , then there exists e ∈ E1 with r(e) = v and s(e) ∈ M ; and
(MH3) for every v, w ∈ M there exists y ∈ M such that v � y and w � y.

We write M(E) for the set of maximal heads in E , and Ml(E) for the set of maximal heads
M containing a return path without an entry in M . [14, lemma 2·1] says that M ∈ Ml(E) if
and only if there is a cycle in M without an entry in M .

The following result was proved for arbitrary directed graphs in [14, corollary 2·12].

THEOREM 8·2. Suppose E is a locally finite directed graph with no sources, and denote
by {s, p} the universal Cuntz–Krieger E-family in C∗(E).

(a) Suppose M ⊂ E0 is a maximal head. Then the ideal IE0\M in C∗(E) generated by
{pv : v ∈ E0 \ M} is primitive if and only if every cycle in M has an entry.

(b) Suppose M ⊂ E0 is a maximal head and let μ1 · · · μn be a cycle in M without an
entry in M. Then for each w ∈ T the ideal IM,w generated by

{sμ1 · · · sμn − wpr(μ1)} � IE0\M

does not depend on the choice of cycle μ1 · · · μn, and is primitive.
(c) Every primitive ideal I of C∗(E) is IE0\M for M = {v ∈ E0 : pv � I } or IM,w for a

unique w ∈ T and a unique maximal head M containing a cycle without an entry.
(d) The ideals IE0\M are gauge-invariant, and the ideals IM,w are not.

Remark 8·3. We claim that Y �→ HY := E0 \ {r(ξ) : ξ ∈ Y } is a bijection from the set of
closed invariant subsets of E∞ onto the set of saturated and hereditary subsets of E0, with
inverse H �→ YH := {ξ : r(ξi) ∈ E0 \ H}. We have

YHY = {ξ : r(ξi) ∈ E0 \ HY } = {ξ : ξiξi+1 · · · ∈ Y for all i}.
It follows immediately that YHY ⊂ Y . For the reverse containment, let ξ ∈ Y . Since Y is
invariant, ξiξi+1 · · · = σ i−1(ξ) ∈ Y for all i . So ξ ∈ YHY , and it follows that YHY = Y .

Now fix a saturated hereditary subset H of E0 and suppose v � H . Let ξ ∈ YH with
r(ξ) = v. Then v � HYH , and so HYH ⊂ H . Conversely, let v ∈ H . If ξ ∈ YH , then r(ξ)� v,
so v ∈ HYH . Hence H ⊂ HYH , and so HYH = H .

LEMMA 8·4. Let E be a locally finite directed graph with no sources or sinks. The map
M �→ YE0\M is a bijection from M(E) onto the set of maximal heads in E∞, with inverse
Y �→ E0 \ HY , and it maps Ml(E) onto {σ−N(β) : β a discrete cycle in E∞}.

Proof. Let M ∈ M(E). Since E0 \ M is hereditary and saturated, YE0\M is closed and
invariant; it is nonempty because we can choose v ∈ M and ξ ∈ E∞ with r(ξ) = v and
r(ξi) ∈ M for all i � 1, which implies ξ ∈ YE0\M . Suppose ξ 1, ξ 2 ∈ YE0\M and consider
the neighbourhoods Z(ξ 1

1 · · · ξ 1
m) of ξ 1 and Z(ξ 2

1 · · · ξ 2
n ) of ξ 2. It follows from (MH3) that

there exist v ∈ M and paths λ, μ with s(λ) = v = s(μ), r(λ) = s(ξ 1
m) and r(μ) = s(ξ 2

n ).
Take η ∈ E∞ with r(η) = v, and let η1 := ξ 1

1 . . . ξ 1
mλη and η2 := ξ 2

1 . . . ξ 2
n μη. Then we

have η1 ∈ Z(ξ 1
1 · · · ξ 1

m), η2 ∈ Z(ξ 2
1 · · · ξ 2

n ) and σ m+|λ|(η1) = η = σ n+|μ|(η2). So YE0\M is a
maximal head in E∞.
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Let Y be a maximal head in E∞. Since Y is nonempty, so is E0\HY . To see that E0\HY =
{r(ξ) : ξ ∈ Y } satisfies (MH1), let v ∈ E0 and r(ξ) ∈ E0 \ HY with v � r(ξ). Then there
exists a path μ with s(μ) = r(ξ) and r(μ) = v. Since μξ = σ−|μ|(ξ), it follows from the
invariance of Y that μξ ∈ Y . Hence v = r(μξ) ∈ E0 \ HY .

It follows from the invariance of Y that for r(ξ) ∈ E0 \ HY we have σ(ξ) ∈ Y , and so
r(σ (ξ)) ∈ E0 \ HY . Then ξ1 ∈ E1 satisfies r(ξ1) = r(ξ) ∈ E0 \ HY and s(ξ1) = r(σ (ξ)) ∈
E0 \ HY , and so E0 \ HY satisfies (MH2).

Since Y is a maximal head, for each r(ξ), r(η) ∈ E0 \ HY there exists ξ ′, η′ ∈ E∞ with
r(ξ ′) = r(ξ) and r(η′) = r(η), and m, n ∈ N with σ m(ξ ′) = σ n(η′). Since Y is invariant, we
have σ m(ξ ′) ∈ Y , so r(σ m(ξ ′)) ∈ E0 \ HY and satisfies r(ξ), r(η) � r(σ m(ξ ′)). So (MH3)
is satisfied. The first assertion in the result now follows from Remark 8·3.

Now suppose M ∈ Ml(E) and μ = μ1 · · ·μn is a cycle in M without an entry in M .
We claim that for η := μμ · · · ∈ E∞ the set β := {σ k(η) : 0 � k � n − 1} is a discrete
cycle with YE0\M = σ−N(β). To see that η is isolated in σ−N(β) suppose that ξ ∈ σ−N(β) �
Z(r(η)). Then σ m(ξ) = η for some m ∈ N, and r(ξ) = r(η). So ξ = ξ1 · · · ξmη where
r(ξ1) = r(η). Since s(ξm) = r(η) ∈ M , it follows from (MH1) that r(ξi) ∈ M for each
1 � i � m. If ξ1 � η1 = μ1, then ξ1 is an entry for μ in M , so we must have ξ1 = μ1.
Continuing in this manner for 2 � i � m gives ξ = η. So σ−N(β) � Z(r(η)) = {η}, and
hence η is isolated in σ−N(β).

Since η ∈ YE0\M and YE0\M is invariant, we have σ−N(β) ⊂ YE0\M . Since YE0\M is closed,
we have σ−N(β) ⊂ YE0\M . For the reverse containment, let ξ ∈ YE0\M . If ξ ∈ σ−N(β), then
ξ ∈ σ−N(β), so we assume ξ � σ−N(β). It suffices to show that σ−N(β) � Z(ξ1 · · · ξ j )��
for all j . Consider the points and neighbourhoods η ∈ Z(r(η)) and ξ ∈ Z(ξ1 · · · ξ j ). Since
YE0\M is a maximal head, there exists λ1 ∈ Z(r(η)), λ2 ∈ Z(ξ1 · · · ξ j ) and m, p ∈ N

with σ m(λ1) = σ p(λ2). Since YE0\M is invariant, we have λ1 ∈ YE0\M , and so r(λ1
i ) ∈ M

for all i . Since r(λ1) = r(η) and μ does not have an entry, we must have λ1 = η. So
σ p(λ2) = σ m(λ1) ∈ σ−N(β), which implies λ2 ∈ σ−N(β). So λ2 ∈ σ−N(β) � Z(ξ1 · · · ξ j ).

To see that M �→ YE0\M maps Ml(E) onto {σ−N(β) : β a discrete cycle in E∞}, we
suppose β = {σ k(ξ) : 0 � k � n − 1} is a discrete cycle, and let Y = σ−N(β). The
bijection sends E0 \ HY to Y , so we need to show that E0 \ HY ∈ Ml(E). We know that
ξ1 · · · ξn is a return path in E . Since ξ ∈ Y , r(ξ1) ∈ E0 \ HY . Then (MH1) implies that
r(ξi ) ∈ E0 \ HY for 1 � i � n. We suppose that ξ1 · · · ξn has an entry in E0 \ HY , and look
for a contradiction. There exist e ∈ E1 and 1 � j � n such that e � ξ j , r(e) = r(ξ j ),
and s(e) ∈ E0 \ HY . Since s(e) � HY , there exists η ∈ Y such that r(η) = s(e). Choose
m � k+1 such that ξm = ξ j , and consider the infinite path ξ1 · · · ξm−1eη. Since Y is invariant
and η ∈ Y , ξ1 · · · ξm−1eη ∈ Z(ξ1 · · · ξk) � Y . Moreover, since e � ξm , ξ1 · · · ξm−1eη � ξ .
Thus ξ is not isolated in Y , which is a contradiction. Therefore, the return path ξ1 · · · ξn must
have no entries in E0 \ HY , and hence E0 \ HY ∈ Ml(E).

Proof of Theorem 8·2. Let w ∈ T, M ∈ Ml(E) and μ1 · · ·μn ∈ M be a cycle without an
entry in M , and note that all such cycles are cyclic permutations of each other. The Cuntz–
Krieger relations imply that for qi := sμ1 sμ2 · · · sμi−1 and ri := sμi sμi+1 · · · sμn we have

sμi sμi+1 · · · sμn sμ1 sμ2 · · · sμi−1 − wpr(μi ) = q∗
i (sμ1 sμ2 · · · sμn − wpr(μ1))qi

and

sμ1 sμ2 · · · sμn − wpr(μ1) = r∗
i (sμi sμi+1 · · · sμn sμ1 sμ2 · · · sμi−1 − wpr(μi ))ri .

Thus the ideal IM,w does not depend on the choice of the cycle μ.
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Recall from Theorem 5·1 that for {Se, Pv} given by (5·1) there exists an isomorphism
πS,P : C∗(E) → C0(E∞)�α,LN satisfying πS,P(se) = Se for each e ∈ E1, and πS,P(pv) =
Pv for each v ∈ E0. We can apply the arguments in Example 7·3 to see that for each M ∈
M(E) in which every cycle has an entry we have πS,P(IE0\M) = IYE0\M

.
Now suppose M ∈ Ml(E) and μ = μ1 · · ·μn ∈ M is a cycle without an entry in M . We

saw in the proof of Lemma 8·4 that for η := μμ · · · ∈ E∞ the set β = {σ k(η) : 0 � k � n−
1} is a discrete cycle with YE0\M = σ−N(β). We claim that for 0 � i � n−1 the function gi ∈
Cc(E∞) given by gi (ξ) = √|σ−1(σ i+1(ξ))|χZ(μi+1) has restriction

√|σ−1(σ i+1(ξ))|δσ i (η) on
YE0\M . Clearly χZ(μi+1)|YE0\M

(σ i(η)) = 1. Suppose that ξ = ξ1ξ2 · · · ∈ YE0\M � Z(μi+1).
Since ξ ∈ YE0\M , r(ξ j ) ∈ M for j � 1. If we have ξ � σ i(η) = ηi+1ηi+2 · · · , then we can
choose the smallest m � 1 such that ξm � ηi+m . Since s(ξm) ∈ M , ξm is an entry for μ in
M , which is a contradiction. So ξ = σ i(η). Therefore χZ(μi+1)|YE0\M

= δσ i (η), and the claim
follows. A similar argument shows that χZ(r(μ1))|YE0\M

is the characteristic function δη.
The ideal Iβ,w is generated by the set{

kML (g0) · · · kML (gn−1) − wkA(χZ(r(μ1)))
}

� IYE0\M
.

Since
√

c(s(μi)) = √|σ−1(σ i(ξ))|, Iβ,w is also generated by{
πS,P

(
sμ1 · · · sμn − wpr(μ1)

)}
� πS,P(IE0\M),

which is πS,P(IM,w).
The result now follows by applying Theorem 8·1 to the system (E∞, σ ).

9. Conclusions

In extending Exel’s theory to non-unital algebras, we have had to make choices. We have
already mentioned one such issue in Remark 2·3: even for a classical system (T, τ ) there are
different choices of transfer operator. We have mainly used the normalised version which
is defined on all of C0(T ). However, when we used the isomorphism with the topological-
graph algebra O(E), we were effectively switching to the unnormalised version, which is
only densely defined on C0(T ). We chose not to try to develop a general theory for systems
with densely-defined transfer operators, though we think the topic is potentially interesting,
and this is one possible direction for further work. Here we discuss several other possible
directions.

To get a bounded transfer operator, we had to restrict attention to locally finite graphs. To
get a theory which applies to arbitrary graphs, we would need to use the boundary ∂ E , which
is formed by adding to E∞ the paths which start at a source or a vertex v where r−1(v) is
infinite. Then the shift is not everywhere defined, so we need to allow partially defined maps
τ , as is done for the compact case in [9]. One could then directly define a topological graph
(that is, with no normalising factor), so that Katsura’s theory applies, and view his algebra
as the crossed product. Such methods, though, could only be used for classical systems.

A second possibility which appeals to us is guided by what might work for actions of
semigroups. From this point of view, it seems best to drop the normalising factor: the square
L2 of the normalised transfer operator L for a classical system (T, τ ) need not be the norm-
alised transfer operator for α2 (as examples from graphs show). So we come back to densely-
defined transfer operators. However, rather than work out some axioms, we think it might be
best to concentrate on the modules ML , which can be built by completing a dense subspace
such as Cc(T ), work out conditions under which these modules form a product system over
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the semigroup in the sense of Fowler [11], and define the Exel crossed product to be the
Cuntz–Pimsner algebra of the product system. A start on such a theory has been made by
Larsen [21], though she deals only with bounded transfer operators. One problem with such
an approach is that there is not yet a generally accepted notion of Cuntz–Pimsner algebra for
product systems (see the discussion at the start of [32]). Nevertheless, examples and intu-
ition from Exel systems might be a fertile source of interesting product systems, and a useful
contribution to the general theory.
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[14] J. H. HONG and W. SZYMAŃSKI. The primitive ideal space of the C∗-algebras of infinite graphs.

J. Math. Soc. Japan 56 (2004), 45–64.
[15] M. IONESCU and P. S. MUHLY. Groupoid methods in wavelet analysis. Group Representations,

Ergodic Theory, and Mathematical Physics: A Tribute to George W. Mackey, Contemp. Math.,
vol. 449 (Amer. Math. Soc., Providence, 2008), pages 193–208.

[16] T. KATSURA. On C∗-algebras associated with C∗-correspondences. J. Funct. Anal. 217 (2004),
366–401.

[17] T. KATSURA. A class of C∗-algebras generalizing both graph algebras and homeomorphism C∗-
algebras I. Fundamental results. Trans. Amer. Math. Soc. 356 (2004), 4287–4322.

[18] T. KATSURA. A class of C∗-algebras generalizing both graph algebras and homeomorphism C∗-
algebras III. Ideal structures. Ergodic Theory Dynam. Systems 26 (2006), 1805–1854.

[19] M. LACA and I. RAEBURN. Semigroup crossed products and the Toeplitz algebras of nonabelian
groups. J. Funct. Anal. 139 (1996), 415–440.

[20] M. LACA and I. RAEBURN. A semigroup crossed product arising in number theory. J. London Math.
Soc. 59 (1999), 330–344.

[21] N. S. LARSEN. Crossed products by abelian semigroups via transfer operators. Ergodic Theory Dy-
nam. Systems, to appear; arXiv.math.OA/0502307.

[22] P. S. MUHLY and B. SOLEL. Tensor algebras over C∗-correspondences (representations, dilations,
and C∗-envelopes). J. Funct. Anal. 158 (1998), 389–457.



444 N. BROWNLOWE, I. RAEBURN AND S.T. VITTADELLO

[23] J. R. MUNKRES. Topology. Second Edition (Prentice Hall, 2000).
[24] G. J. MURPHY. Ordered groups and Toeplitz algebras. J. Operator Theory 18 (1987), 303–326.
[25] G. J. MURPHY. Crossed products of C∗-algebras by endomorphisms. Integral Equations Operator

Theory 24 (1996), 298–319.
[26] A. NICA. C∗-algebras generated by isometries and Wiener-Hopf operators. J. Operator Theory 27

(1992), 17–52.
[27] W. PASCHKE. The crossed product by an endomorphism. Proc. Amer. Math. Soc. 80 (1980), 113–

118.
[28] M. V. PIMSNER. A class of C∗-algebras generalizing both Cuntz–Krieger algebras and crossed

products by Z. Fields Institute Commun. 12 (1997), 189–212.
[29] I. RAEBURN. Graph Algebras. CBMS Regional Conference Series in Math., vol. 103 (Amer. Math.

Soc., Providence, 2005).
[30] I. RAEBURN and D. P. WILLIAMS. Morita Equivalence and Continuous-Trace C∗-Algebras. Math.

Surveys and Monographs, vol. 60 (Amer. Math. Soc., Providence, 1998).
[31] J. RENAULT. Cuntz-like algebras. Operator Theoretical Methods (Theta Foundation, 2000),

pages 371–386.
[32] A. SIMS and T. YEEND. C∗-algebras associated to product systems of Hilbert bimodules. J. Oper-

ator Theory, to appear; arXiv.math.OA/07123073.
[33] P. J. STACEY. Crossed products of C∗-algebras by ∗-endomorphisms. J. Austral. Math. Soc. (Ser. A)

54 (1993), 204–212.


	Exel's crossed product for non-unital C*-algebras
	Recommended Citation

	Exel's crossed product for non-unital C*-algebras
	Abstract
	Keywords
	Disciplines
	Publication Details

	psp1000037a

