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PERIODIC 2-GRAPHS ARISING FROM SUBSHIFTS

DAVID PASK, IAIN RAEBURN ˛ and NATASHA A. WEAVER

(Received 28 October 2009)

Abstract

Higher-rank graphs were introduced by Kumjian and Pask to provide models for higher-rank Cuntz–
Krieger algebras. In a previous paper, we constructed 2-graphs whose path spaces are rank-
two subshifts of finite type, and showed that this construction yields aperiodic 2-graphs whose
C∗-algebras are simple and are not ordinary graph algebras. Here we show that the construction also gives
a family of periodic 2-graphs which we call domino graphs. We investigate the combinatorial structure of
domino graphs, finding interesting points of contact with the existing combinatorial literature, and prove
a structure theorem for the C∗-algebras of domino graphs.

2000 Mathematics subject classification: primary 46L55; secondary 05C20, 22D25.

Keywords and phrases: 2-graph, subshift, graph algebra, crossed product, induced C∗-algebra.

1. Introduction

Higher-rank graphs (or k-graphs) are combinatorial objects which are higher-
dimensional analogues of directed graphs. They were invented by Kumjian and
Pask [13] to provide combinatorial models for a family of higher-rank Cuntz–Krieger
algebras studied by Robertson and Steger [26]. We now know that many important
C∗-algebras can be realized as the C∗-algebras of higher-rank graphs, and there is a
good deal of interest in understanding different classes of higher-rank graphs (see, for
example, [3, 17, 31]).

Here we are interested primarily in 2-graphs. Intuitively, a 2-graph is a directed
graph 3 := (30, 31, r, s) in which the set 31 is partitioned into a set 3e1 of blue
edges and set 3e2 of red edges, together with a set C of commuting squares
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in which every blue–red path gh and every red–blue path e f occur exactly once. We
view C as defining an equivalence relation on the path space 3∗ which allows each
path with i blue edges and j red edges to be rewritten in any chosen order of blue and
red edges. If the square (1.1) belongs to C , for example, then e f = gh as paths in 3.

In [18], we constructed a family of 2-graphs whose infinite path spaces are rank-
two subshifts of finite type, as studied by Schmidt [30]. We found conditions which
ensure that the C∗-algebras of these 2-graphs are simple and purely infinite, and used
results of Evans [6] to compute their K -theory in a wide range of examples. Here
we consider a family of 2-graphs which we call domino graphs. They are also built
using the construction in [18], but their C∗-algebras are definitely not simple. We
find interesting connections with known combinatorial objects, such as necklaces and
Lyndon words, and we analyse the structure of their C∗-algebras.

Our analysis uses two main operator-algebraic tools. We realize domino graphs
as crossed products of an ordinary directed graph (or more strictly speaking, of the
1-graph it defines) by an action of Z, as studied in recent work of Farthing et al. [7];
the results in [7] then imply that the C∗-algebra of a domino graph is the crossed
product of an ordinary graph algebra by an action of Z. Next, we observe that this
action of Z on the graph algebra has large isotropy, and use a theorem of Olesen and
Pedersen [16] to realize the crossed product as an induced C∗-algebra associated with a
simple crossed product. This part of the analysis may be of some independent interest:
we provide a new version of the Olesen–Pedersen theorem which gives a very specific
isomorphism and which is easier to apply.

We begin in Section 2 with a quick review of k-graphs, emphasizing the connection
to the intuitive description of 2-graphs given above. Then in Section 3 we discuss
the general facts about crossed-product C∗-algebras which we need, and describe
how they apply to the crossed-product graphs of [7]. In Section 4 we review the
construction of [18], as it applies to dominos, and then analyse the structure of
the resulting domino graphs using ideas from combinatorics which we discuss in
Appendix A. The main result, Proposition 4.6, says that most domino graphs are
crossed product 2-graphs of the sort studied in [7]. In Section 5 we combine the
results of the preceding two sections to prove our structure theorem for the C∗-algebras
of domino graphs, Theorem 5.1. In the final section we compute the K -theory of
domino-graph algebras.

2. k-graphs and their C∗-algebras

A k-graph is a pair (3, d) consisting of a countable category 3 and a functor
d :3→ Nk , called the degree map, satisfying the factorization property: for every
λ ∈3 and m, n ∈ Nk with d(λ)= m + n, there exist unique elements µ, ν ∈3 such
that d(µ)= m, d(ν)= n and λ is the composition µν. We write 30 for the set of
objects, 3 for the set of morphisms, and s, r :3→30 for the domain and codomain
maps, so that λ and µ are composable exactly when s(λ)= r(µ). The factorization
property implies that for every v ∈30, there is a unique morphism µ such that
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s(µ)= r(µ) and d(µ)= 0, namely the identity morphism ιv at v. We use v 7→ ιv
to identify 30 with a subset of 3. For n ∈ Nk , we define 3n

:= {λ ∈3 : d(λ)= n},
and refer to an element λ of 3n as a path of degree n from s(λ) to r(λ).

In this paper we are concerned primarily with 2-graphs, and not much will be
missed by a reader who assumes k = 2 throughout. We visualize a 2-graph 3 using
its skeleton, which is the directed bicoloured graph with vertex set 30 and edge set
3e1 ∪3e2 , where the elements β of 3e1 are blue edges from s(β) ∈30 to r(β) ∈30,
and the elements of 3e2 are red edges. (In print, solid curves represent blue edges
and dashed curves represent red edges.) The skeleton thus consists of two directed
graphs B3 := (30, 3e1, r, s) and R3 := (30, 3e2, r, s) with the same vertex set and
different coloured edges.

The factorization property in a 2-graph 3 is completely determined by the
factorizations of paths of degree (1, 1): writing (1, 1)= e1 + e2 and (1, 1)= e2 + e1
gives a bijection between the blue–red paths of length 2 and the red–blue paths of
length 2. We visualize a path of degree (1, 1) as a commuting square
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in which the bijection matches up the blue–red path gh with the red–blue path e f ,
so that gh = e f are the two factorizations of the path of degree (1, 1). Then the
factorization property is determined by a family C of commuting squares in which
each red–blue and each blue–red path occurs exactly once (see [13, Section 6]). We
then view paths of degree (3, 2) from w to v, for example, as copies of the rectangle
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pasted round the blue–red graph, in such a way that q lands on w, p lands on v, and
each constituent square belongs to C . Composing two paths involves adding squares
from C to fill out a larger rectangle, and [13, Section 6] says that there is only one way
to do this.

Suppose that3 is a k-graph in which every vertex receives paths of all degrees. The
C∗-algebra of 3 is the universal C∗-algebra C∗(3) generated by partial isometries
{sλ : λ ∈3} satisfying the following requirements:

(a) {sv : v ∈30
} are mutually orthogonal projections;

(b) sλsµ = sλµ whenever s(λ)= r(µ);
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(c) s∗λsλ = ss(λ) for every λ ∈3; and
(d) sv =

∑
r(λ)=v,d(λ)=n sλs∗λ for every v ∈30 and n ∈ Nk .

For information about higher-rank graphs and their C∗-algebras, see [13] or [22].

3. Crossed products of graph algebras

In [7], Farthing et al. consider actions α : Zl
→ Aut3 of Zl on a k-graph3 and the

induced actions α̃ of Zl on C∗(3) [7, Proposition 3.1]. In this section, we establish
some general properties of crossed products of the form C∗(3)×α̃ Zl .

If α : G→ Aut A is an action of a group on a C∗-algebra, then the crossed product
A ×α G is generated by a universal covariant representation (i A, iG) in M(A ×α G).
We write π ×U for the representation of A ×α G corresponding to a covariant
representation (π,U ) of (A, G, α). Here we are only interested in actions of discrete
groups, and then the map i A takes values in A ×α G, and the elements of the form
i A(a)iG(s) span a dense subspace of A ×α G. When G is abelian, the crossed product
carries a canonical dual action α̂ of the dual group Ĝ, which is characterized1 by
α̂ξ (i A(a)iG(s))= ξ(s)i A(a)iG(s).

To state our result about crossed products of the form C∗(3)×α̃ Zl , we need one
further concept. Suppose that L is a closed subgroup of a compact group K , and
α : L→ Aut A is a continuous action. Then

IndK
L (A, α)= { f ∈ C(K , A) : f (gh)= α−1

h ( f (g)) for g ∈ K , h ∈ L}.

is a C∗-subalgebra of C(K , A), called an induced C∗-algebra. (The extra assumption
in [23, Section 6.3] that the function sL 7→ ‖ f (s)‖ vanishes at∞ on K/L is automatic
here because K is compact.)

THEOREM 3.1. Suppose that α is an action of Zl on a finite k-graph 3. Then
there are a cofinite subgroup N of Zl and an injective homomorphism β : Zl/N →
Aut3 such that αm = βm+N . Let 8 : C∗(3)×α̃ Zl

→ C∗(3)×β̃ (Z
l/N ) be the

homomorphism such that 8 ◦ iC∗(3) = iC∗(3) and 8(iZl (m))= iZl/N (m + N ). Then

there is an isomorphism 9 of C∗(3)×α̃ Zl onto IndTl

N⊥(C
∗(3)×β̃ (Z

l/N ), ̂̃β) such

that 9(b)(z)=8(α̃−1
z (b)).

Once we have shown the existence of N and β, we will apply the following general
result of Olesen and Pedersen [16].

THEOREM 3.2. Suppose that H is a subgroup of a discrete abelian group G, and γ
is an action of G/H on a C∗-algebra A. Let q : G→ G/H be the quotient map,
let β := γ ◦ q, and define 8 : A ×β G→ A ×γ (G/H) by 8 := i A × (iG/H ◦ q).
Then the formula 9(b)(ξ)=8(β̂−1

ξ (b)) defines an isomorphism 9of A ×β G onto

IndĜ
H⊥
(A ×γ (G/H), γ̂ ).

1 There is disagreement in the literature about the definition of the dual action: in [32], for example,
iG(s) would be multiplied by ξ(s)= ξ(s−1). It does not make a big difference, since s 7→ s−1 is an
automorphism of the abelian group G, and induces an isomorphism of the two crossed products.
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With some effort, Theorem 3.2 can be deduced from [16, Corollary 2.5], which in
turn is deduced from a chain of results involving both the ‘restricted crossed products’
of Dang Ngoc [2] and the ‘twisted crossed products’ of Green [9]. Since we are only
interested in ordinary crossed products, we give a short direct proof, which is similar
to that of [1, Theorem 2.1].

PROOF. When we view ξ ∈ H⊥ as a character of G/H , we have 8 ◦ β̂ξ = γ̂ξ ◦8,
and an easy calculation using this shows that 9(b) belongs to the induced algebra.

Next we show that 9 is surjective. Since each generator i A(a)iG/H (s + H) is
just 8(i A(a)iG(s)), 8 is surjective. Thus, for each ξ , the elements 9(b)(ξ)=
8(β̂−1

ξ (β̂ξ (b))) fill out A ×γ (G/H). Next, we observe that the integrated form
iG |H : H →U M(A ×γ G) maps C∗(H) into the centre Z(M(A ×γ G)), and hence
by Fourier transformation gives a central action of C(Ĥ)= C(Ĝ/H⊥) on A ×γ G.
The algebra C(Ĥ)= C(Ĝ/H⊥)⊂ C(Ĝ) acts by pointwise multiplication on the
induced algebra, and we claim that 9 is then C(Ĥ)-linear. To see this, consider a
generator δh for C∗(H): since the Fourier transform of δh is the function εh−1 : ξ 7→

ξ(h), we need to check that 9(iG(h)b)(ξ)= ξ(h)9(b)(ξ). For b = i A(a)iG(s),

9(iG(h)b)(ξ) = 8(β̂
−1
ξ (iG(h)i A(a)iG(s)))=8(β̂

−1
ξ (i A(a)iG(h + s)))

= 8(ξ(h + s)i A(a)iG(h + s))= ξ(h)ξ(s)i A(a)iG/H (s + H)

= ξ(h)8(β̂−1
ξ (b))= ξ(h)9(b)(ξ),

as required. Thus 9 is C(Ĥ)-linear, as claimed. Now a partition-of-unity argument
(as in [5, Lemma, p. 704], for example) shows that 9 is surjective.

To see that 9 is injective, it suffices to show that every irreducible representation
π ×U of A ×β G factors through 9. Since G is abelian, the operators Uh for h ∈ H
commute with every Us , and since βh is the identity on A, Uh commutes with every
π(a) too. So U maps H into the commutant (π ×U )(A × G)′, which is C1 because
π ×U is irreducible, and there is a character θ of H such that Uh = θ(h)1 for h ∈ H .
By Pontryagin duality, there is a character χ ∈ Ĝ such that χ |H = θ . Now χ−1U
factors through a unitary representation V of G/H , and (π, V ) is covariant because
(π,U ) is. Since (π ×U )(b)= (π × V )(9(b)(χ)), the result follows. 2

PROOF OF THEOREM 3.1. We begin by showing that Aut3 is finite. Aut3 consists
of bijective functors α :3→3 which preserve the degree map: d(α(λ))= d(λ) for
λ ∈3. In particular, for each n ∈ Nk , α is a bijection of 3n onto 3n . Then define
φ : Aut3→

⊕k
i=1 Perm3ei by taking φ(α) to be the tuple (α|3ei )

k
i=1. Then we have

(αβ)|3ei = α|3ei ◦ β|3ei , so φ is a homomorphism. If φ(α)= φ(β), then α(e)= β(e)
for all edges e ∈

⋃k
i=1 3

ei , and it follows from the factorization property that
α(λ)= β(λ) for all λ; thus φ is one-to-one. Since 3 is a finite k-graph,⊕k

i=1 Perm3ei is a finite group, and the injectivity of φ implies |Aut3|<∞. Let
N := ker α, and let q : Zl

→ Zl/N be the quotient map. Then there is a unique
monomorphism β : Zl/N → Aut3 such that α = β ◦ q . Since Aut3 is finite, this
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implies in particular that Zl/N is finite. The corresponding actions on C∗(3) satisfy
α̃ = β̃ ◦ q , so the result follows from Theorem 3.2. 2

COROLLARY 3.3. If α is an automorphism of a k-graph3 such that αn is the identity,
then C∗(3)oα̃ Z is isomorphic to the mapping cylinder

M(γ ) := { f : [0, 1] → C∗(3)×α̃ (Z/nZ) : f is continuous and f (1)= γ ( f (0)}

associated with the generator γ := ˆ̃αe2π i/n of the dual action.

PROOF. The subgroup N in Theorem 3.1 is N = nZ, so N⊥ is the group Cn of nth
roots of unity. But if θ : Cn→ Aut B is an action on a C∗-algebra B, then the map
φ : IndT

Cn
(B, θ)→ C([0, 1], B) defined by φ( f )(t)= f (e−2π i t/n) is an isomorphism

onto the mapping cylinder M(θe2π i/n ). 2

The description of C∗(3)×α̃ Zl tells us that its primitive ideal space is the
quotient of Tl

× Prim(C∗(3)×β̃ (Z
l/N )) by the diagonal action of N⊥ (see [23,

Proposition 6.16]). This is particularly interesting if C∗(3) is simple, for then
Prim C∗(3)= {0}, and Prim(C∗(3)×α̃ Zl) is homeomorphic to Tl/N⊥ = N̂ ∼= Tl

(because N , being a subgroup of a free abelian group, is itself free abelian). So we
would like to know when C∗(3)× (Z/nZ) is simple. For k = 1, 3 is the path space
of a directed graph E and C∗(3)= C∗(E), and this question has an elegant answer.

We say that a directed graph E is n-connected if for every pair of vertices v, w ∈ E0,
there is a path of length n with source v and range w. The following result is basically
due to Katayama and Takehana [10].

PROPOSITION 3.4. Suppose that E is a finite directed graph which is n-connected for
some n ≥ 1. If α is an automorphism of E which is not the identity, then α̃ ∈ C∗(E) is
outer.

PROOF. We consider the Hilbert bimodule X (E) over c(E0) constructed in [8]
and [21, Section 8]: X (E) is the completion of the bimodule X0 = C(E1)with actions
and inner products

(a · f · b)(e)= a(r(e)) f (e)b(s(e)) and 〈 f, g〉A(v)=
∑

e∈E1,s(e)=v

f (e)g(e).

Indeed, since the graph can have no sources or sinks, the module X0 will already
be complete and is full. Then {kX (E)(δe), kA(δv)} is a Cuntz–Krieger E family
in O(X (E)), and the corresponding homomorphism of C∗(E) into O(X (E)) is an
isomorphism (see [21, Example 8.13], for example). The elements |s−1(s(e))|−1/2δe
form a Parseval frame for X (E), so X (E) is ‘of finite type’ as required in [10]. The
E0
× E0 matrix M constructed in [10, p. 497] is the vertex matrix of E , and the

hypothesis of n-connectedness says precisely that Mn(v, w) > 0 for every v, w ∈ E0.
So [10, Proposition 2.3] says that C(E0) is X (E)-aperiodic.

We define θ : C(E0)→ C(E0) by θ( f ) := f ◦ α−1
0 and U : X (E)→ X (E) by

U (x) := x ◦ α−1
1 , and then (θ,U ) satisfy the hypotheses (3.1) used in [10]. Since α
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is not the identity, the bijection α1 of E1 is not the identity, and since automorphisms
of X (E) of the form x 7→ uxu∗ are C(E1)-linear, U cannot have this form. So [10,
Proposition 3.8] implies that αU is outer. Since αU (δe)= δα1(e) and θ(δv)= δα0(v), the
isomorphism of C∗(E) onto O(X (E)) carries α̃ into αU , and α̃ is outer too. 2

REMARK 3.5. Since [10, Theorem 2.4] says that X -aperiodicity is equivalent to
simplicity of the core O(X)γ , we should reconcile Proposition 3.4 with the results
of Pask and Rho on simplicity of C∗(E)γ for finite E [19]. (Examples in [19] show
that the results do not extend to infinite E .) Pask and Rho define the period per(v) of a
vertex to be the greatest common divisor of S(v) := {|µ| : s(µ)= r(µ)= v, |µ|> 1};
if E is strongly connected, then all vertices have the same period, called the period
of E . They prove in [19, Theorem 6.2] that C∗(E)γ is simple if and only if E is
strongly connected with period 1. This and Proposition 3.4 imply that a graph E is
strongly connected with period 1 if and only if E is n-connected for some n. We
should, of course, be able to see this directly.

If E is n-connected, then we can get from a vertex v to each of its neighbours by a
path of length n, and hence back to v by one of length n + 1. Hence v admits return
paths of length n + k for every k ∈ N, and per(v)= 1. If E is strongly connected with
period 1, then there exists m such that the subsemigroup S(v) of N contains m + N.
If r is the diameter of E , then we can get from any vertex to any other by a path of
length m + 2r : choose a path through v of length s ≤ 2r , and insert a return path at v
of length m + (2r − s).

COROLLARY 3.6. Suppose that α is an action of Zl on an n-connected directed graph
E which does not consist of a single loop, and β is the injection β : Zl/N → Aut E of
a finite quotient of Zl such that α = β ◦ q. Then C∗(E)×β̃ (Z

l/N ) is simple, and the

primitive ideal space of C∗(E)×α̃ Zl is homeomorphic to Tl .

PROOF. Theorem 3.1 tells us that there is an action β of a finite quotient Zl/N such
that βm+N is nontrivial whenever m + N 6= N . So Proposition 3.4 imples that β̃m+N
is outer for every nonzero m + N . The n-connectedness hypothesis implies that E
cannot consist of single cycle of length greater than 1, so the simplicity theorem for
graph algebras (or the original theorem of Cuntz and Krieger) tells us that C∗(E) is
simple. Thus Kishimoto’s [11] Theorem 3.1 implies that C∗(E)×β̃ (Z

l/N ) is simple.
Now the result follows from the isomorphism of our Theorem 3.1 and the description
of the primitive ideal space of induced algebras in [23, Proposition 6.61]. 2

Although they are not needed here, we ask whether there are similar criteria for
the simplicity of C∗(3)×β̃ (Z

l/N ) when 3 has rank greater than one. Robertson
and Sims have given us good criteria for the simplicity of C∗(3) [25], and of course
Kishimoto’s theorem is still valid, so what is missing is a version of the Katayama–
Takehana theorem (that is, Proposition 3.4) for k-graphs. It is not obvious, though,
that the methods used in [10] will carry over.
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4. Domino graphs

The 2-graphs in [18] are associated with basic data (T, q, t, w) consisting of:
• a tile T , which is a hereditary ( j ∈ T and 0≤ i ≤ j imply i ∈ T ) subset of N2 with

finite cardinality |T |;
• an alphabet {0, 1, . . . , q − 1}, where q ≥ 2 is an integer; we view the alphabet as

a commutative ring by identifying it with Z/qZ in the obvious way;
• an element t of the alphabet, called the trace; and
• a function w : T → {0, 1, . . . , q − 1}, called the rule.
Provided certain values of w are invertible elements of Z/qZ, Theorem 3.4 of [18]
tells us how to construct a 2-graph 3=3(T, q, t, w) from this data.

A domino is a tile of the form T = {0, e1, 2e1, . . . , (n − 1)e1}, which is determined
by |T | := n. In this paper we write (n, q, t) for the basic data consisting of the domino
of cardinality n, alphabet Z/qZ and trace t , and we always take the rule w to be the
constant function 1. Then every value of w is invertible, and [18, Theorem 3.4] gives
a 2-graph 3=3(n, q, t), which we call a domino graph.

Each 2-graph 3 of [18] is finite, has no sources [18, Proposition 3.2], is strongly
connected in the sense that u3v is nonempty for all u, v ∈30

[18, Proposition 5.3],
and has at most one edge of each colour between any pair of vertices [18,
Proposition 3.5(b)]. So domino graphs have all these properties.

We now briefly recall the construction of [18, Section 2] as it applies to domino
graphs. We picture the domino T with |T | = n as a row of n boxes; for example, we
draw the domino with n = 6 as
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, and we picture a vertex in 3 as
a copy of T in which each box is filled with an element of the alphabet so that the sum
of the entries is t mod q . Formally,

3(n, q, t)0 =

{
v : T → Z/qZ :

∑
i∈T

v(i)= t mod q

}
,

and in 3(6, 2, 0), for example, the function v : T → Z/2Z with

v(0)= v(3e1)= 0, v(e1)= v(2e1)= v(4e1)= v(5e1)= 1

gives a vertex pictured as
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0 1 1 0 1 1 .
To describe the paths we need some notation. For S ⊂ Z2 and m ∈ Z2, we define

S + m := {i + m : i ∈ S} and T (m) :=
⋃

0≤l≤m T + l. If f : S→ Z/qZ is a function
defined on a subset S of N2 containing T + l, then we define f |T+l : T → Z/qZ by

f |T+l(i)= f (i + l) for i ∈ T .

A path of degree m is a function λ : T (m)→ Z/qZ such that λ|T+l is a vertex for
every 0≤ l ≤ m; then λ has source s(λ)= λ|T+m and range r(λ)= λ|T . Then 3m

denotes the set of paths of degree m and 3∗ =
⋃

m≥0 3
m . In pictures, paths in 3∗
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are block diagrams covered by translates of T , filled in so that each translate is a valid
vertex. For example, in 3(6, 2, 0), the diagram
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µ=

0 1 1 0 1 1 0 1 1
0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0

(4.1)

represents a path µ of degree (3, 2) from s(µ)=
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0 0 0 0 0 0 (the upper right-

hand translate of T ) to r(µ)=
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0 1 1 0 1 1 (the lower left-hand translate).
The paths3∗ form a category with the composition defined in [18, Proposition 3.2]:

we say that µ ∈3m and ν ∈3p are composable if s(µ)= r(ν) and then there exists a
unique path λ ∈3m+p satisfying λ|T (m) = µ and λ|T (n)− m = ν. So if µ is the path
in (4.1) and ν is the path of degree (2, 1) with diagram
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0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1

ν =

then s(µ)= r(ν), and µν is found by filling in the empty squares in the diagram
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The proof of [18, Proposition 3.2] shows that we can do this in such a way that the entry
for each empty box is completely determined by previous steps. With d :3→ N2

defined by d(λ)= m for λ ∈3m , 3=3(n, q, t) is a 2-graph [18, Theorem 3.4].

REMARK 4.1. Theorem 4.1 of [18] says that the two-sided infinite path space
3(n, q, 0)1 is conjugate to the two-dimensional shift of finite type with underlying
space

�=

{
f : Z2

→ Z/qZ :
∑
i∈T

f |T+l(i)= 0 mod q for all l ∈ Z2
}
.

The shift � corresponds to the model Rq
2/(g) of [12, Section 3] in which g is the

cyclotomic polynomial gT (u1, u2)= 1+ u1 + · · · + un−1
1 . Theorem 6.5(2) of [30]

implies that � is a nonmixing shift, whereas the shifts associated with the graphs
in [18, Sections 5 and 6] are mixing.

We can explicitly describe the skeletons of domino graphs as follows.

PROPOSITION 4.2. Suppose that 3=3(n, q, t) is a domino 2-graph. Then:

(1) the red graph R3 is the complete directed graph Kqn−1 , so that |v3e2u| = 1 for
all u, v ∈30;

(2) 30 can be identified with the set An
t of words of length n with trace t mod q over

the alphabet A = Z/qZ;
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(3) the blue graph B3 consists of disjoint cycles whose lengths divide n, and
correspond to the necklaces of An

t discussed in Appendix A. For each divisor
d of n, the number hd of blue cycles of length d in 3 is

hd =
∑

s∈Z/qZ,
d−1sn ≡ t mod q

Lq(d, s),

where Lq(d, s) is the number of Lyndon words of Ad
s described in (A.2).

PROOF. Proposition 3.5 of [18] says that |30
| = qn−1 and |v3e2 | = |3e2v| = qn−1

for all v ∈30. Since |v3e2u| ≤ 1 for all u, v ∈30, this forces |v3e2u| = 1 for all
u, v ∈30. For (2), we identify each vertex v ∈30 with its image written as the
concatenation v(0)v(e1)v(2e1) · · · v((n − 1)e1), which is an element of the set An

t .
For (3), B3 must consist of disjoint cycles since |v3e1 | = |3e1v| = 1 for all v ∈30

by [18, Proposition 3.5]. The equivalence classes of An
t under the rotation ρ defined

in Appendix A are called necklaces. Under the identification 30
= An

t , the cycles in
B3 correspond to the necklaces of An

t , and the length of each cycle equals the period
of the corresponding necklace which must divide n. Suppose [a] is a necklace with
period d and let b be its Lyndon subword. Then since t = trace(a)= trace(bn/d), we
have n/d × trace(b)= t . So the number of d-cycles in B3 equals the number of
Lyndon words of length d whose trace s ∈ Z/qZ satisfies d−1sn ≡ t mod q . 2

EXAMPLE 4.3. Suppose3=3(6, 2, 0). The divisors of 6 are d1 = 1, d2 = 2, d3 = 3,
d4 = 6. The constants of Proposition 4.2(3) are h1 = 2, h2 = 0, h3 = 2, h4 = 4, and
so B3 consists of two 1-cycles, two 3-cycles and four 6-cycles. Identifying the vertex
set of 3(6, 2, 0) with the set A6

0 of words of length 6 over A = {0, 1} with trace
0 mod 2, the cycles in B3 correspond to the necklaces of A6

0 which are listed in the
first column of Table A1 in Appendix A. For example, the 3-cycle in the diagram
below corresponds to the necklace [011011] with period 3 of (A.1).
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1 0 1 1 0 1
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gg

LEMMA 4.4. Suppose that3=3(n, q, t) is a domino 2-graph. Define σ :30
→30

by
σ(v)= s(e) where e ∈ v3e1 . (4.2)

Then σ is a bijection. Further, σ is the identity if n = 1 or (n, q, t)= (2, 2, 0), and
otherwise σ has order n.

PROOF. Under the identification 30
= An

t of Proposition 4.2(2), σ corresponds to ρ
defined in Appendix A. There is a unique blue edge entering and leaving each vertex
by Proposition 4.2(3), and so σ is a bijection.



130 D. Pask, I. Raeburn and N. A. Weaver [11]

The order of a vertex v ∈30 under σ is the length of the cycle on which v lies. The
blue graph of3(1, q, t) has only one vertex
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t t , which is a

1-cycle, so σ = id. The blue graph of 3(2, 2, 0) has two vertices
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and the only blue edges
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1 1 1 are 1-cycles, so σ = id.
Otherwise, note that σ has order n if and only if B3 contains an n-cycle. If t 6= 0,

then the vertex v with v(0)= t and v(ie1)= 0 for 1≤ i ≤ n − 1 lies on an n-cycle. If
t = 0, then the vertex u with u(0)= u(e1)= 1, and u(ie1)= 0 for 2≤ i ≤ n − 1 lies
on an n-cycle. 2

The permutation σ satisfies σ(r(e))= s(e), and hence moves against the direction of
the edges. For example, in3(6, 2, 0), σ (
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1 1 0 1 1 0 .
Let E and F be 1-graphs. The product graph (E × F, d) is the 2-graph consisting

of the product category E × F with the degree map d(λ1, λ2)= (d(λ1), d(λ2)). The
following lemma says that the domino graphs for which σ is the identity are the only
ones which are product graphs.

LEMMA 4.5. The domino graph 3(n, q, t) is a product graph if and only if n = 1, in
which case 3∼= K1 × K1, or (n, q, t)= (2, 2, 0), in which case 3∼= K1 × K2.

PROOF. Suppose that 3 is a product graph E × F . Then

3e2 = (E × F)e2 = {(v, f ) : v ∈ E0, f ∈ F1
}

with s(v, f )= (v, s( f )) and r(v, f )= (v, r( f )). Since Proposition 4.2 implies that
R3 is connected, we must have |E0

| = 1. Then |F0
| = qn−1 since

|E0
| × |F0

| = |E0
× F0

| = |(E × F)0| = |30
| = qn−1,

and so B3 has qn−1 copies of (the underlying directed graph of) E .
Recall from [18, Proposition 3.5(b)] that there is at most one edge of each colour

between any pair of vertices in the skeleton of 3. So since E has only one vertex,
there is either no edge or exactly one edge, which has to be a loop. If E had no edge,
then B3 would have no edges, so E must be E = K1. Since B3 has qn−1 copies of
E = K1, there is a blue loop at each vertex. Thus σ = id and Lemma 4.4 implies that
either n = 1 or (n, q, t)= (2, 2, 0). If n = 1, then Proposition 4.2 implies that h1 = 1
and F = K1; if (n, q, t)= (2, 2, 0), then h1 = 2 and F = K2. 2

Suppose that α is an action of Zl on a k-graph 3. Farthing et al. [7] constructed
a crossed product (k + l)-graph 3×α Zl , whose underlying set is the cartesian
product 3× N, and which has degree map1 defined by d(λ, m) := (m, d(λ)), range
and source maps defined by r(λ, m) := (r(λ), 0) and s(λ, m) := (α−m(s(λ)), 0), and
composition defined by (µ, m)(ν, n)= (µαm(ν), m + n) when s(µ, m)= r(ν, n).

1 This is slightly different from the definition in [7], where the degree map is defined by d(λ, m) :=
(d(λ), m). The change has the effect of repainting the red edges blue and vice versa; we have made the
change to ensure that the isomorphism of Proposition 4.6 matches red edges with red edges.
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One of the main theorems in [7] says that the graph algebra C∗(3×α Zl) is isomorphic
(in a very concrete way) to the C∗-algebraic crossed product C∗(3)×α̃ Zl which we
considered in Section 3 [7, Theorem 3.5]. In our application of these ideas, we go the
other way: we recognize that our domino graphs are crossed products of the form
R3× Z, and then we use properties of crossed product C∗-algebras to study the
C∗-algebras of domino graphs. The action α is defined using the permutation σ
introduced in Lemma 4.4.

PROPOSITION 4.6. Suppose that3=3(n, q, t) is the domino graph associated with
basic data (n, q, t) with n ≥ 2. For each e ∈3e2 , there is a unique edge σ1(e) in 3e2

from σ(s(e)) to σ(r(e)), and then σ1 :3
e2 →3e2 is a bijection. The pair (σ, σ1) is

an automorphism of R3. Let α be the action of Z on R3 generated by (σ−1, σ−1
1 ).

Then 3 is isomorphic to the crossed product R3×α Z.

PROOF. Since R3 is complete (by Proposition 4.2), there is exactly one red edge
between every pair of vertices in 30, so σ1 is well defined. To see that σ1 is
surjective, let f ∈3e2 . Then there exist unique blue edges f1, f2 with s( f1)= r( f )
and s( f2)= s( f ); take e to be the unique edge from r( f2) to r( f1), and then we
have σ(r(e))= s( f1)= r( f ), σ(s(e))= s( f2)= s( f ) and σ1(e)= f . To see that σ1
is injective, suppose that σ1(e)= σ1(h). Then

s(e)= σ−1(s(σ1(e)))= σ
−1(s(σ1(h)))= s(h) and r(e)= r(h),

and since there is exactly one red edge between two given vertices, we must have
e = h. The pair (σ, σ1) is an automorphism of R3 since σ and σ1 are bijections and
we have s(σ1(e))= σ(s(e)) and r(σ1(e))= σ(r(e)) by definition.

We build a coloured graph isomorphism φ from the skeleton of 3 to the skeleton
of R3×α Z and prove that it preserves commuting squares. Then by [13, Section 6],
φ extends uniquely to a 2-graph isomorphism, and the result follows.

We defineφ0 :3
0
→ (R3×α Z)0 by φ0(v)= (v, 0) for v ∈30,

φ1 :3
e1 → (R3×α Z)e1 by φ1(β)= (r(β), 1) for β ∈3e1,

φ2 :3
e2 → (R3×α Z)e2 by φ2(ρ)= (ρ, 0) for ρ ∈3e2 .

(4.3)

Then φ0 and φ2 are bijections because (R3×α Z)0 =30
× {0} and (R3×α Z)e2 =

3e2 × {0}. To see that φ1 is a bijection, note that

(R3×α Z)e1 = {(r(β), 1) : β ∈3e1} = {(v, 1) : v ∈30
}

since |v3e1 | = 1 for all v ∈30, and let β ∈3e1 . Then φ1(β)= (r(β), 1) is the unique
edge with range r(r(β), 1)= (r(β), 0) and source s(r(β), 1)= (α−1(r(β)), 0)=
(s(β), 0). Hence φ1 is a bijection. So φ = (φ0, φ1, φ2) is an isomorphism and it
remains to show that it preserves commuting squares.

Every commuting square λ ∈3(1,1) is uniquely determined by the red edge
λ(0, e2)= λ|T (e2). To see this, let ρ ∈3e2 . There are unique blue edges β1 and β2
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with r(β1)= r(ρ) and s(β2)= s(ρ), and we then have s(β1)= α
−1(r(β1)) and

s(β2)= α
−1(r(β2)). There is a unique red edge from s(β2) to s(β1), and it must

be α−1(ρ) since

r(α−1(ρ))= α−1(r(ρ))= α−1(r(β1))= s(β1),

and
s(α−1(ρ))= α−1(s(ρ))= α−1(r(β2))= s(β2).

So each ρ ∈3e2 determines a commuting square ρβ2 = β1α
−1(ρ) and every

commuting square λ in 3 has this form with ρ := λ|T (e2).
Every commuting square in (R3×α Z)(1,1) has the form (ρ, 1) for some ρ ∈3e2

and has factorizations

(ρ, 0)(s(ρ), 1)= (r(ρ), 1)(α−1(ρ), 0).

We will show that φ maps the commuting square λ ∈3(1,1) to the commuting
square (λ|T (e2), 1) in R3×α Z. Let ρ := λ|T (e2). In pictures,

•• ooβ2

•

���
�

α−1(ρ)�
�

•

���
�

ρ
�
�

oo
β1

φ
−→

•• oo(s(ρ),1)

•

���
�

(α−1(ρ),0)�
�

•

���
�

(ρ,0)
�
�

oo
(r(ρ),1)

We have φ2(ρ)= (ρ, 0) and φ2(α
−1(ρ))= (α−1(ρ), 0) by definition, and

φ1(β2)= (r(β2), 1)= (s(ρ), 1) and φ1(β1)= (r(β1), 1)= (r(ρ), 1). So φ(λ) has
factorizations (ρ, 0)(s(ρ), 1)= (r(ρ), 1)(α−1(ρ), 0) which gives φ(λ)= (ρ, 1)=
(λ|T (e2), 1). 2

5. The C∗-algebras of domino graphs

We now use what we know about the combinatorics of dominoes to describe the C∗-
algebra of a domino graph3(n, q, t). If n = 1 or (n, q, t)= (2, 2, 0), then3(n, q, t)
is a product 2-graph E × F , and C∗(3(n, q, t)) is isomorphic to C∗(E)⊗ C∗(F).
For n = 1, both E and F consist of a single loop, both C∗(E) and C∗(F) are
isomorphic to C(T), and C∗(3(1, q, t)) is isomorphic to C(T)⊗ C(T)= C(T2).
For (n, q, t)= (2, 2, 0), E is isomorphic to K1 and F to K2, and C∗(3(2, 2, 0)) is
isomorphic to C(T)⊗ C∗(K2)= C(T)⊗O2.

The remaining cases are handled by the following theorem.

THEOREM 5.1. Suppose that (n, q, t) is a set of basic data with n ≥ 2 and (n, q, t) 6=
(2, 2, 0), and let α be the action of Z on R3 described in Proposition 4.6. Let
O30 := C∗(tv : v ∈30) be the Cuntz algebra of the finite set 30

=30(n, q, t), and
let γ be the automorphism of O30 such that γ (tv)= tα1(v). Then γ has order n,
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hence induces an action γ of Z/nZ on O30 , and there is an isomorphism 2 of
C∗(3(n, q, t)) onto the mapping cylinder

M(γ̂e2π i/n )= { f ∈ C([0, 1], O30 ×γ (Z/nZ)) : f (1)= γ̂e2π i/n ( f (0))}

such that

2(sv)(t) = iO
30 (tvt∗v ) for v ∈30, (5.1)

2(se)(t) = e2π i t/niO
30 (tr(e)t

∗

r(e))iZ/nZ(1+ nZ) for e ∈3e1 , (5.2)

2(s f )(t) = iO
30 (tr( f )ts( f )t

∗

s( f )) for f ∈3e2 . (5.3)

The crossed product O30 ×γ (Z/nZ) is simple and the primitive ideal space of
C∗(3(n, q, t)) is homeomorphic to T.

PROOF. Lemma 4.4 implies that the permutation σ−1
= α1|30 has order n, and hence

so does the induced automorphism γ of O30 . In Proposition 4.6 (and specifically
in equation (4.3)) we constructed an isomorphism φ of 3(n, q, t) onto the crossed
product R3×α Z, and this induces an isomorphism

θ1 : C
∗(3)→ C∗(R3×α Z). (5.4)

Proposition 3.1 of [7] implies that the action α of Z on R3 induces an action α̃ of Z
on the C∗-algebra C∗(R3) such that α̃m(sλ)= sαm(λ) for λ ∈3 and m ∈ Z, and [7,
Theorem 3.5] gives us an isomorphism

θ2 : C
∗(R3×α Z)→ C∗(R3)×α̃ Z, (5.5)

which is characterized by θ2(s(µ,m))= i A(sµ)iZ(m). Since the generator is induced
by a permutation of order n, α̃ factors through an an action β of Z/nZ such that
βm+nZ(se)= sαm(e), and the Olesen–Pedersen theorem in the form of Corollary 3.3
gives us an isomorphism

θ3 : C
∗(R3)×α̃ Z→ M(β̂e2π i/n ), (5.6)

where β̂ is the dual action of Cn on the crossed product C∗(R3)×β (Z/nZ).
Next we recall from Proposition 4.2 that R3 is the complete directed graph K30

with vertex set 30, which is the dual of the graph E30 with one vertex and the
edges parameterized by 30. Write {tv : v ∈30

} for a universal Cuntz–Krieger family
which generates O30 := C∗(E30). Then we can deduce from [21, Corollary 2.6],
for example, that there is an isomorphism ψ of C∗(R3) onto O30 which carries the
projections pv into tvt∗v and the partial isometries se into tr(e)ts(e)t∗s(e). The inverseψ−1

takes tv to Tv :=
∑

r(e)=v se, and hence we have

β(ψ−1(tv))=
∑

r(e)=v

β(se)=
∑

r(e)=v

sα(e) =
∑

r( f )=α1(v)

s f = Tα1(v) = ψ
−1(γ (tv)).
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Therefore ψ induces an isomorphism ψ × id of C∗(R3)×β (Z/nZ) onto
O30 ×γ (Z/nZ), and composing functions with ψ × id gives an isomorphism θ4 of
M(β̂e2π i/n ) onto M(γ̂e2π i/n ). Since β is induced by a transitive permutation of the
edges of E30 , we know from Corollary 3.6 that O30 ×β (Z/nZ) is simple and that the
primitive ideal space is T.

At this stage, we have an isomorphism 2 := θ4 ◦ θ3 ◦ θ2 ◦ θ1 of C∗(3) onto
M(γ̂e2π i/n ), and we need to check that2 does the right thing on generators. For v ∈30,

2(sv)= θ4 ◦ θ3 ◦ θ2(s(v,0))= θ4 ◦ θ3(iC∗(R3)(pv)),

and hence for t ∈ [0, 1], we have

2(sv)(t) = ψ × id(θ3(iC∗(R3)(pv)))(t)
= ψ × id(9(iC∗(R3)(pv))(e−2π i t/n))

= ψ × id((iC∗(R3) × (iZ ◦ q))(δ̂e2π i t/n (iC∗(R3)(pv))),
(5.7)

where δ := β ◦ q is the action of Z inflated from β : Z/nZ→ Aut C∗(R3). Since the
dual action fixes the range of iC∗(R3), we have

2(pv)(t)= ψ × id((iC∗(R3) × (iZ ◦ q))(iC∗(R3)(pv)))= iO
30 (tvt∗v ),

which is (5.1). For f ∈3e2 , we have 2(s f )= θ4 ◦ θ3(iC∗(R3)(s f )), and a calculation
just like (5.7) gives (5.3). Finally, for e ∈3e1 , we have

2(se)= θ4 ◦ θ3 ◦ θ2(s(r(e),1))= θ4 ◦ θ3(iC∗(R3)(pr(e))iZ(1)),

and hence for t ∈ [0, 1], we have

2(se) = ψ × id((iC∗(R3) × (iZ ◦ q))(δ̂e2π i t/n (iC∗(R3)(pr(e))iZ(1))))

= ψ × id((iC∗(R3) × (iZ ◦ q))(iC∗(R3)(pr(e))e
2π i t/niZ(1)))

= ψ × id(iC∗(R3)(pr(e))e
2π i t/niZ/nZ(1+ nZ))

= e2π i t/niO
30 (tr(e)t

∗

r(e))iZ/nZ(1+ nZ). 2

REMARK 5.2. It is intriguing that the other family of periodic 2-graphs whose
algebras have been analysed also have C∗-algebras with primitive ideal space T (see [4,
Section 5]). The graphs in [4] have just one vertex, and the skeleton admits many
possible families C of commuting squares; for domino graphs, the skeleton admits a
unique family C of commuting squares.

REMARK 5.3. Since the group Z/nZ is finite, Theorem 4.1 of [15] implies that the
action γ of Z/nZ on O30 in Theorem 5.1 is proper in the sense of Rieffel [24]; then,
since O30 ×γ (Z/nZ) is simple, [24, Corollary 1.7] implies that O30 ×γ (Z/nZ) is
Morita equivalent to the fixed-point algebra Oγ

30 . However, the underlying action on
R3 is not free on any R3n , so the discussion in [15, Section 4] suggests that it may
be hard to get useful information about this fixed-point algebra (examples there show
that it need not be the C∗-algebra of the quotient graph, for example).
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6. K -theory

In [18, Section 7] we conjectured, based on the numerical evidence in [18, Table 1],
that K0(C∗(3)) and K1(C∗(3)) are cyclic groups of the same order. In this section we
verify this for domino graphs using the identification of C∗(3) as a crossed product.

PROPOSITION 6.1. If (n, q, t) is basic data, then for i = 0 and i = 1,

Ki (C
∗(3(n, q, t)))=


Z2 if n = 1

0 if (n, q, t)= (2, 2, 0)

Z/(qn−1
− 1)Z otherwise.

PROOF. In the first case C∗(3)= C(T)⊗ C(T) by Theorem 5.1. As Ki (C(T))= Z
[27, p. 234], the K -groups of C(T) are torsion-free and the Künneth formula [28] gives

K0(C(T)⊗ C(T)) = K0(C(T))⊗ K0(C(T))⊕ K1(C(T))⊗ K1(C(T))
= Z⊗ Z⊕ Z⊗ Z= Z2,

K1(C(T)⊗ C(T)) = K0(C(T))⊗ K1(C(T))⊕ K1(C(T))⊗ K0(C(T))
= Z⊗ Z⊕ Z⊗ Z= Z2.

In the second case C∗(3)= C(T)⊗O2 by Theorem 5.1, and since Ki (O2)= 0
[27, p. 234] the Künneth formula gives Ki (C(T)⊗O2)= 0. Otherwise, we have
C∗(3)∼=O30 ×α̃ Z. Since O30 is a Cuntz algebra with qn−1 generators, we deduce
from [27, p. 234], for example, that

K1(O30)= 0 and K0(O30)= Z/(qn−1
− 1)Z,

where K0(O30) is generated by the class [1] of the identity. Thus the Pimsner–
Voiculescu sequence [20] for this crossed product reduces to

0−→ K1(O30 ×α̃ Z)−→ K0(O30)
id−α̃∗
−−−−→ K0(O30)−→ K0(O30 ×α̃ Z)−→ 0,

and we have id− α̃∗ = 0 because α̃∗(1)= 1. So both K0(C∗(3))= K0(O30 ×α̃ Z)
and K1(C∗(3))= K1(O30 ×α̃ Z) are isomorphic to Z/(qn−1

− 1)Z. 2

Appendix A. Necklaces and Lyndon words

A word is a finite or infinite sequence of symbols from a finite set A called the
alphabet. Subsets of the set A∗ of all finite words are called languages and we write
An for the words of length n. The product of two words u and v is their concatenation
uv, and for k ∈ N the kth power of u is uk .

Consider the alphabet A = {0, 1, . . . , q − 1}, and define ρ : An
→ An by

ρ(a1 · · · an)= a2 · · · ana1. Then the permutation group 〈ρ〉 acts on An , and the
equivalence classes under rotation are known as necklaces of length n, so called



136 D. Pask, I. Raeburn and N. A. Weaver [17]

because a necklace of length n can be visualized as a regular n-gon where the corners
represent the ‘beads’, each designated one of q colours. For example, if q = 2 and
n = 6, the class of 011011 is the necklace [011011] = {011011, 101101, 110110} and
is drawn as /.-,()*+1 /.-,()*+1

<<<<<

/.-,()*+0

����� /.-,()*+0

�����

/.-,()*+1

<<<<< /.-,()*+1

(A.1)

The period of a necklace [a] is the smallest d ∈ N such that ρd(a)= a, and it
must divide the length of the necklace. A necklace with period equal to its length is
called aperiodic and its lexicographic least representative is known as a Lyndon word
(originally called standard lexicographic sequences in [14]). For example, 000011 and
000001 are Lyndon words of length 6. For every necklace [a] of length n and period
d there is a unique subword b of length d such that [bn/d

] = [a]; we call b the Lyndon
subword of [a]. For example, the necklace [011011] in (A.1) has period 3 and Lyndon
subword 011.

We identify the alphabet A = {0, 1, . . . , q − 1} with the commutative ring Z/qZ,
and let the trace of a word be the sum of its symbols mod q . We will often consider
the collection An

t of words with length n and trace t mod q . See Table A1 for the
period, trace and Lyndon subword of each binary necklace of length 6.

By [29, Theorem 1.2] the number of Lyndon words of length n with trace t mod q
over the alphabet {0, 1, . . . , q − 1} is given by

Lq(n, t)=
1

qn

∑
d|n

gcd(d,q)|t

gcd(d, q)µ(d)qn/d , (A.2)

where µ is the Möbius function.

TABLE A1. The binary necklaces of length 6.

Necklaces of A6
0 Period Lyndon subword Necklaces of A6

1 Period Lyndon subword

[000000] 1 0 [000001] 6 000001
[000011] 6 000011 [000111] 6 000111
[000101] 6 000101 [001011] 6 001011
[001001] 3 001 [001101] 6 001101
[001111] 6 001111 [010101] 2 01
[010111] 6 010111 [011111] 6 011111
[011011] 3 011
[111111] 1 1
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