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ABSTRACT: Fracture mapping of Late Permian – Early Triassic flat-lying sedimentary rocks in the 

Sydney Basin, New South Wales, Australia, shows that joints developed originally in extension were 

faulted in subsequent events. Joints with a regional distribution fall into two, early and late formed 

groups. Group I joints propagated horizontally and never interfered with each other. These joints 

were subsequently reworked or recracked. Recracking commenced with jointing and continued with 

lateral slip. Faulted joints grew horizontally by linking of recracked segments. En echelon arrays are 

the result of vertical propagation of faulted joints into intact rock. Recracking of rock also resulted in 

the formation of sets of secondary joints (Group II). The sense of movement on conjugate faulted 

joints and orientation of sets of secondary joints, are related to three compressional stress fields. The 

intensity of recracking and the amount of lateral slip is mostly related to the strength of infilling 

materials, the length and continuity of parent joint, the angle between the existing fractures and the 

maximum compression direction, and the number of compressional events imposed on the fracture. 

Key words: Joint, faulted joint, recracking, secondary joint, Sydney Basin. 

 

1.  INTRODUCTION 

 

In recent years many advances have been made in the understanding of the origin and development of fracture 

patterns in weakly deformed strata [1, 2, 3, 4]. Furthermore, the principles of linear elastic fracture mechanics have 

provided a new understanding of fracture propagation and interaction [2, 5, 6]. These studies have shown how 

joints mainly form from mode I failure with effective tensile stress occurring at the tip of the joint and that once a 

joint set is formed it may subsequently interact with a new set of joints [7, 8, 9, 10,11]. Recracking (reactivation or 

reopening) of pre-existing fractures can occur when a second rupture follows a pre-existing fracture, either by 

propagating through the cement or by following the cement - intact rock boundary (also called intermittent growth 

[12] ). Slip on pre-existing fractures has been reported from various geological settings [13, 14, 15, 16].  

The area studied consists of coastal rock platforms and adjoining cliffs, located between Wollongong and 

Coalcliff, on the south coast of New South Wales, Australia (Fig. 1). These flat lying strata form part of the Late 
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Permian Illawarra Coal Measures and the overlying Early Triassic Narrabeen Group. They are shallow-marine to 

fluvial rocks consisting of mainly of sandstone, mudstone, coal and conglomerate. Joints, faulted joints, widely-

spaced dykes, normal faults and monoclines are the main structures in these rocks. Fractures were studied by 

detailed mapping of 30 outcrops, and 5160 m of scanline surveys. 

Three sets of early formed, vertical joints, striking 010°, 043° and 128° (Group I), developed in the study 

area. Plumose surface markings indicate that these joint sets formed as pure opening mode fractures or joints. Sets 

of laterally-slipped fractures and secondary joints (Group II) were mapped throughout the study area. We argue 

that interactions between sets of the early formed joints of Group I were minimal and that several late-stage 

recracking events are responsible for the reactivation of these joints and formation of relatively shorter secondary 

joints. We review this model in the light of joint interactions recognised in other regions such as Arches National 

Park in Utah [6, 11, 15, 16, 17] and the Appalachian Plateau [9, 10, 16, 17]. This paper is concerned with the nature 

of reactivated joints and episodes of reactivation as well as the stress fields responsible for reactivation.   

 

 

2.  FRACTURE PATTERN  

 

A detailed analysis of joints in a wave cut platform at Coalcliff (platform 2) was carried out. The outcrop consists 

of homogeneous medium-coarse lithic sandstone with pebbly bands and minor mudstone as well as ironstone bands 

(Fig.  2). Regional fractures are vertical and are usually straight. They form two sets: (a) NNE joints striking 005°-

015° with a mean direction of 013°, and (b) NE joints striking between 035° and 050°, with a mean direction of 

046° (Fig. 2). The apertures of individual fractures range from 2 to 20 mm, and fracture lengths range from 1 m to 

approximately 100 m. Each fracture is composed of segments 1-20 m long.  Segments are parallel with the overall 

trend of the fractures and are mostly planar. The average spacing, in 1-3 m thick sandstone beds, is about 2-8 m. 

Spacing changes are locally due to differences in rock type and bed thickness. In some thin ironstone bands the 

spacing is 20 mm or less. The vertical dimension of fractures is much less than their horizontal extent.  

At platform 1, some lateral movement can be mapped along the NNE and NE fractures. Lateral movement 

is dextral for NNE and sinistral for NE striking fractures. In this outcrop, NNE and NE striking joints, with a 

dihedral angle of 33°, are not conjugate shear fractures, as they show no sign of original shear traction and 

displacement. Surface markings characterized by simple, elliptical plumose structure on their surfaces support an 

origin by Mode I failure. In this outcrop, joints were recracked and slipped laterally in subsequent events to 

produce faulted joints. Original joints are dilated and filled with undeformed calcite. Recracking is more frequent in 

the NE set. Lateral movements along faulted joints are small and generally have accommodated less than a few 

millimetres of slip. No vertical slip occurs on these joints. The typical aperture of a faulted joint is less than 10 mm. 

These fractures have grown by the amalgamation of recracked segments. No slickenlines were observed on fracture 

walls. This is mainly because of the small displacements, and partly due to subsequent weathering and erosion. 

Erosion has exploited joints that were recracked and increased the widths of the faulted joints to more than 300 

mm. 

Strike-slip movements along the faulted joints at platform 2, were measured where they displace markers, 

such as older joints. Short disconnected segments, a few meters long, have small displacements, as small as 1 mm 
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as determined by field inspection with a hand lens. Longer faulted joints, a few tens of meters, have displacements 

in the range 20-30 mm. Thus the amount of displacement is proportional to the length and continuity of a faulted 

joint. Similar lateral displacements occur along joints, normal faults and dykes, throughout the study area (see 

below). 

 
3. RECRACKING OF PRE-EXISTING JOINTS 

 
A set or sets of suitably oriented fractures represent a significant anisotropy that can potentially control nucleation 

and growth of faults [13]. In flat lying sedimentary sequences, the recracking propagation can be both horizontal 

and vertical. 

 

Horizontal recracking 

Recracking normally took place along pre-existing mineralized and closed joints (Fig. 2). In the study area, 

recracked fractures have lengthened horizontally by connecting segments of the parent joints. The lengthening 

process occurred when; disconnected short segments linked and formed long, continuous, open fractures.  This 

process has increased the horizontal extent of the parent joint (Fig. 2). Where two joint sets previously intersected 

each other, the horizontally propagating recracking front along one joint set may have deflected at an intersection 

and followed the other joint set. 

When the recracking front reached the end of the pre-existing joint it either terminated or continued to 

grow in-plane or out-of-plane of the parent joint. In many cases the fracture has either tilted or twisted from the 

parent joint orientation to a new direction that is parallel to σ1 [e.g. see 18, 19]. Further horizontal or vertical 

propagation of a fracture into the intact rock developed the wide range of secondary joints seen on the rock 

platforms (see below). 

 

Vertical recracking 

Fractures that originally propagated in sandstone terminated when they encountered mudstone or claystone beds. 

During reactivation, when the fracture front in a sandstone bed reached a contact with a much thinner interbed of 

mudstone, it often penetrated the mudstone bed, and continued into the overlying or underlying sandstones. In the 

vertical direction and at the edge of a pre-existing joint, the propagating front may have done one of the following: 

(1) terminated, (2) proceeded as a planar fracture through intact rock, and (3) formed an array of short (few cm) en 

echelon joints (see below). 

 The major parameters that control joint propagation across interfaces are strength of the interface, 

geometric and material properties of the layers on the either side of the interface and loading [20]. A strong contact 

between two similar layers will not fail, and the recracking front will continue across the contact without any 

change in direction. A weaker contact will fail and the propagating front has either terminated or stepped. 

  

 

4. FORMATION OF SECONDARY JOINTS 
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Shear along existing joints resulted in a new group of fractures, that developed at the tip, along the sides, or in 

between pre-existing joints. These dilatant fractures (mode I) are called secondary fractures [13], splay cracks [14], 

and pinnate or feather joints [21], and formed as a result of small slips along faulted joints. In plan view, the traces 

of these fractures are straight or curved, and compared to the parent joints; they are short (50 mm to 2 m). They are 

subvertical, and strike 020°-030° at platform 2 (Fig. 2).  

Several types of secondary joints have been recognised in association with recracking, among them are 

those that form at the termination points or along the sides of the pre-existing fractures. Secondary joints develop 

either by horizontal or vertical growth of the parent joint and normally indicate the direction of maximum 

horizontal compression (Fig. 3). 

 

Horizontally grown secondary cracks 

One of the most common types of secondary joints are those that form at the termination points of faulted joints in 

response to shearing along them. These fractures are either straight, and bend abruptly from the termination point, 

or are curved and sometimes branched and resemble the hairs in a horse-tail (e.g. Figs 3, 4). Horse-tail fractures 

always grow out of the plane of the host fracture. Their clockwise or counter-clockwise bending indicates the sense 

of shearing and the direction of maximum tension [11, 13].  Horse-tail fractures represent the location where the 

slip terminates along the host fracture and the direction of minimum compression [22]. 

 Short fractures can occur anywhere along the length of a faulted joint (Fig. 4). These fractures occur on 

either side of the parent joint, but normally do not cross it. Some of the secondary joints are wedged open due to 

slip on the host faulted joint, with the width of opening decreasing away from the parent faulted joints. Secondary 

joints are more frequent near the end of each sheared segment, or near the termination points of a faulted joint (Fig. 

4). Where the spacing between two parent fractures is relatively small, the secondary joints, which have initiated 

from one fracture, terminate against the second one and form an en echelon pattern. These short secondary joints 

are more frequent at the area of two overlapping segments of a faulted joint (Fig. 4). The presence of pinnate joints 

branching from both unfaulted and faulted parts of host fracture suggests that some pinnate joints develop prior 

to fault slip rather than as a direct consequence of fault slip. The cause of this pre-slip development could be 

pre-fault stress accumulation in the wall rock, thus suggesting that pinnate joints may also serve as precursors to 

slip [11].  

In a horizontally propagating front, the fracture tip tilts uniformly about an axis in the fracture plane but 

normal to the direction of propagation [18]. All horizontally propagating secondary cracks occur in the extensional 

quadrants of a faulted segment (Fig. 4). These two quadrants undergo net dilation during slip on small faults [13]. 

Repeated movements at different locking points lead to the formation of secondary cracks on both sides of the 

faulted joint [21]. This also happens when compressional events of different orientations developed differently 

oriented sets of secondary joints (see below). 

 

Vertically grown secondary cracks 

Some of the reactivated joints show an array of small en echelon cracks at their termination points. These cracks 

also form along the length or beside other fractures. En echelon cracks are different from horse-tail fractures in that 

they are not connected with the host fracture in plan view (e.g. Fig. 3). Instead, these en echelon fractures form 
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above the upper edge of a parent fracture that has terminated at a layer interface.  These features likely formed 

when an existing joint was reactivated under a combination of mode I and mode III deformation. Instead of 

twisting as a unit, it subdivided into en echelon secondary joints by rotating about vertical axes in the fracture plane 

[1, 6, 18, 23]. 

 

Interactive secondary crack 

There are other secondary joints that abut against a nearby fracture with a 90° angle (e.g. Fig. 3b). The recracking 

front propagated out-of-plane of the parent joint when it reached the proximity of a nearby open fracture, and 

abutted against it at a normal angle. The curving perpendicular geometry is the result of the interaction of the 

recracking front with a nearby through-going free surface [6, 24]. When a recracking front grows towards an 

already opened fracture, the stress field systematically rotates and changes due to the presence of the open joint 

[25]. At the free surface, one of the principal stresses is perpendicular to the fracture face and its magnitude is zero. 

As these sigmoidal patterns developed due to the rotation of σ1 near a free surface of any orientation, they are not 

indicators of far-field stress, nor can they be used to infer the sense of displacement along a faulted joint. 

 

 

5. EPISODES OF RECRACKING 

 

Following lithification of the sediments of the Illawarra Coal Measures and the Narrabeen Group, several sets of 

extension joints (Group I) were formed and sealed with minerals [26]. Later in the history of the basin, the 

development of new stress field enabled resolved shear stresses on properly oriented pre-existing joints to result in 

recracking and lateral slip. Mode I secondary joints (Group II) were formed during this time and initiated at 

roughness elements and irregularities along a faulted joint [see 6, 22]. Both faulted joints and secondary joints may 

have been sealed with calcite, but only faulted joints show more than one episode of infilling. From the orientation 

of 430 secondary fractures measured in different rock units of the study area three main sets are recognised, and 

each represents a distinct episode of compressional deformation (Fig. 5). 

 

NNE-SSW compressional event 

At platform 2, the compression that acted from the NNE was responsible for the formation of secondary joints that 

have a mean orientation of 027° (Fig. 2). Evidence for this compressional event has been recognised throughout the 

study area, although its orientation changes slightly due to local changes in rock type. Pre-existing N-NNE and NE 

fractures have been reactivated by this compressional event. Dextral movements along N-NNE joints, earlier 

formed normal faults and dykes and sinistral slip along NE fractures are all related to this event. SE joints, dykes 

and normal faults are least affected by this deformation as they occur approximately at right angles to the 

compression direction. The mean orientation of NNE secondary cracks measured between platform 2 and platform 

22, is 024° (Fig. 5) and is regarded as the mean orientation of σ1 for this event. 

 

E-W compressional event 

A well defined set of 85-105° striking secondary joints (mean 097°) is developed in most parts of the study area 
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(Fig. 5). E-W compression caused sinistral shear on SE fractures as well as dextral shear on NE oriented fractures. 

This compression had almost no effect on N-NNE oriented fractures because the compression direction was almost 

at right angles to these fractures. At platform 2, recracking is more frequent along NE fractures (Fig. 2) and 

probably resulted from the effect of major NNE-SSW as well as E-W compression, while this is not the case for 

NNE joints, which were sub-normal to the E-W compression and only affected by NNE compression. 

 
     
SSE-NNW compressional event 

The third set of secondary joints has a mean orientation of 163° (Fig. 5). These fractures are the least important, 

both in size and number. The compressional event responsible for the formation of these fractures caused sinistral 

shear along N-NNE and NE fractures as well as a dextral shear along SE fractures. 

 

  

6. RELATIVE AGE OF COMPRESIONAL EVENTS 

 

The principal criteria for determining the sequence of fracturing are abutting and overprinting relationships and the 

offset of one structure by another [21]. Recracking of, and slippage along, Group I regional joints, dykes and 

normal faults indicates that these compressional events were the youngest group of deformational events in this part 

of the Sydney Basin [26]. Overprinting relations (see below) suggest that the NNE-SSW compression predated the 

E-W compression, but the relative age of the SSE-NNW compressional event to these is unknown. 

 At Wombarra (Fig. 6a) the 095°-100° secondary joints developed along the sides and in between NE 

fractures. The NE fractures show sinistral displacement with the NNE secondary joints developed at the ends of 

and in between them. This pattern suggests that the 040° joints had already opened, and slipped due to the NNE 

compressional event, and therefore predated the E-W compression that formed the 095°-100° secondary joints.  

In another example (Fig. 7a), 090° secondary cracks cut 040° joints without any lateral displacement, but 

sinistral displacement along the same 040° joint has displaced a Group I fracture striking 115°. Sinistral slip of the 

040° fracture is related to the NNE compression. This configuration suggests that at this locality the NNE 

compression, which was responsible for the sinistral slip along the 040° fracture, was active earlier than the E-W 

compression, which formed the 090° secondary cracks. Elsewhere (Fig. 7b), sinistral slip of a 140° fracture has 

displaced two parallel 015° secondary joints. E-W compression is responsible for this sinistral movement, while the 

015° cracks are the product of NNE compression. Similar overprinting relations have been found at Austinmer and 

it is concluded that the NNE compression was older than the E-W one. 

 Throughout the study area, the 090°-100° secondary joints are most frequently developed along the NE 

fractures and less frequently along the SE fractures. The dihedral angle between the E-W compression direction 

and the SE joints is about 30°, which is less than the 45° dihedral angle it makes with the NE joints. From Mohr-

Coulomb fracture criterion [11], it is anticipated that fracturing is more likely to occur on the SE joint set rather 

than as observed on the NE joint set. Our explanation for this, is that the NE fracture set was recracked during 

the earlier NNE compression event resulting in the development of open and weaker NE fractures that were 

therefore more susceptible to additional recracking and secondary joint development during the E-W 
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compression. Whereas the SE joints were not affected by the earlier NNE compression and were therefore still 

intact and stronger when affected by the later E-W compression event and therefore show less evidence of 

recracking and secondary joint development despite the more favourable dihedral angle between the joint set 

and the E-W compression direction. 

 In most cases, the sense of displacement inferred from the orientation of secondary joints is confirmed by 

the slip measured along fractures. Contradictions occur locally, where one member of a fracture set shows sinistral 

movement and another dextral slip (e.g. Fig. 8). In other examples, the sense of displacement along fractures is the 

opposite to that inferred from the orientation of secondary joints. Frequently, more than one set of secondary cracks 

occur along the sides of a parent fracture and sometimes form a feather-shaped pattern at ends of faulted joints (see 

examples in Fig. 6 b, c, d). 

In all of these examples, a single event cannot explain the formation of two differently oriented sets of 

secondary cracks. Opposite senses of strike-slip displacement along faulted joints of the same set have also been 

reported from the Garden Area of Arches National Park, Utah where this configuration is related to inhomogeneous 

deformation [6]. 

 

 

7. JOINTING AND RECRACKING PROCESSES 

 

Joint propagation and interaction with pre-existing fractures has been well illustrated in Arches National Park of 

Utah ([5, 6] and in the Appalachian Plateau [9]. These studies have shown that a regional set of long joints is 

frequently reworked during the formation of a younger set of regional joints under a new or rotating stress field. A 

requirement for this process is that joints remain as open fractures and would therefore control the near-field 

principal stress directions. Younger joints change direction as they approach an open joint so that they veer into 

parallelism with the older joint surface or hook so that they intersect the older joint at right angles. In the 

southeastern Sydney Basin, in contrast to these regions, joint reworking during the progressive development of 

early formed Group I joints has not been recognised and it was quite late in the history of the region where 

compressional events initiated a wide variety of interactions (see below). 

 

Mode of fracturing 

At platform 2 (Fig. 2), two sets of 010° and 045° joints were formed separately with no original interaction.  These 

joints were reactivated in shear during the subsequent compressive event. The sense of slip along these fractures 

and the direction of secondary cracks indicate that the direction of regional compression was contained within the 

dihedral angle during this second event.  Pre-existing fractures formed planes of weaknesses in the rock mass. The 

fracture toughness is considered less than the tensile strength of intact rock, because rather than forming a new set 

of joints in intact rock, the later episode of deformation has almost universally resulted in slip along pre-existing 

fractures.  

 Comparison between the directions of the compressional events and the strike of recracked sets showed 

that pre-existing joints at 10°-30° angles to the compression direction have been most frequently recracked. Where 

the angle between two sets of fractures was between 60° and 90°, each set was recracked by a separate 
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compressional event with σ1 at a 10°-30° angle to the recracked set (e.g. Fig. 9). It should be noted that an already 

recracked set could be reactivated by a subsequent compression even if the acute angle between the contemporary 

compression and the pre-existing faulted joint was more than the 30° limit for closed fractures. 

  

Sequence of deformation 

Different parts of a faulted joint were not fractured simultaneously, nor were different fractures of a set or members 

of interfering systems formed at the same time (e.g. Fig. 10). Secondary joints propagate from or abut against pre-

existing fractures. In some places, a group of secondary fractures have been mapped which cut through 

neighbouring fractures without any interaction (Fig. 11). Through-going secondary cracks have only formed when 

the pre-existing fractures were closed. 

 Traces of faulted joints are segmented and segments are fractured sequentially. Segments form with an 

alternate sequence of fracturing of different segments in the same group of closely spaced joints. Segments of one 

fracture, or two fracture sets, interfered with each other when a recracking joint approached an already opened 

fracture. As a result of recracking, a network of connected open segments developed in rock which accommodates 

lateral slip along faulted joints [2, 4, 10, 11]. These observations on faulted joints are almost identical with those 

that have been reported for strike-slip faults developed in sandstone [15] and strike-slip faults formed during the 

laboratory tests on clay models [27]. 

 

Recracking and stress field 

Each joint set developed in rock, represents a unique stress field [18, 25]. In some outcrops the fracture pattern 

consists of two or more regional joint sets. Consequently, it is expected that each new, differently oriented, stress 

field may cause shear stresses on pre-existing fractures. Two extension joint sets mapped at platform 2 (Fig. 2), or 

similar sets mapped in the other parts of the study area, have not interfered with each other.  

Group I regional joint sets of the study area are mineralised so that the fractures have been healed and 

no longer act as major planes of weakness controlling near field principal stress orientations. On the other hand, 

where the effective normal stress on an existing joint is sufficiently compressive, a propagating joint will cross 

through the earlier formed joint as if the rock was intact [2, 9, 28]. Such cross cutting of the later set takes place 

at a depth where there is a significant traction across the surfaces of the earlier systematic joints.  

Joints can form under a relatively small differential stress [18, 29] and thus during the formation of a 

new set of Group I regional joints, differential stress was too low to overcome the strength of infillings of 

existing joints. In the late compressional events, responsible for the reactivation of the Group I joints, the stress 

difference was high enough to overcome the strength of fracture infillings. It can be argued that the fracture 

toughness was less than the tensile strength of the intact rock, and so the pre-existing fractures were capable of 

recracking and nucleating faults. Finally, the role of pore water pressure, which was significant during the burial 

and formation of Group I regional joints, was probably less important during the more recent compressional events.  

Change of the stress field can occur by two processes. First, the regional stress fields can change orientation 

over time, as was the case for Alleghanian Plateau tectonics [9], and southeastern Sydney Basin [26]. Second, 

jointed beds can rotate within a regional stress field that remains fixed in orientation [11]. Regional change in 

horizontal stress orientation, was clockwise during the Alleghanian Orogeny [9], but has not been identified for the 
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southeastern part of the Sydney Basin, due to the lack of regional studies. 

Repeated recracking of Group I joints produced faulted joints as well as secondary joints (Group II 

joints). Secondary joints have been found to be systematic across a geological province, such as the Appalachian  

Plateau detachment sheet, to the extent that they are found to be useful as a tool for unravelling the tectonic history 

of the region [9]. Group II joints of the study area serve as effective kinematic indicators. The observed less than 

18° angle between secondary (pinnate) joints and host NNE or NE oriented faulted fractures is considerably less 

than the conventional 30°-35° angle between σ1 and isolated primary fault planes predicted by Coulomb fracture 

criterion [11].  

 

8. ORIGIN OF COMPRESSIONAL STRESS 

 

Because systematic joints align parallel to the trend of the maximum horizontal stress (σ1), late-formed joints 

are reported to be aligned with the regional trend of the contemporary tectonic stress (modern-day SH), and are 

thus used for mapping the orientation of neotectonic stress field [4, 13, 17, 29]. 

Group I joints as well as faults and their associated joints have been affected by the recracking episodes 

[26]. This evidence suggests that these episodes occurred quite late in the geological history, possibly as young as 

post-early Tertiary time [26]. We previously indicated that the NNE-SSW and E-W compressional recracking events 

may have reflected variation of in situ stress orientation [26] as determined from overcoring, hydraulic fracturing and 

earthquakes [31]. More recent analyses of in situ stress in Australia have found that the Sydney Basin, in contrast to 

other parts of eastern Australia, has a complicated pattern of stress with local sources considered necessary to explain 

the variation in stress [32, 33, 34]. 

In northeastern Australia, the principal compressional stress direction is NNE and thought to reflect plate-

boundary forces associated with subduction along the Solomons and New Hebrides subduction zone [34]. In 

southeastern Australia, especially along the southern margin, the principal compressional direction is NW-SE and 

has been related to plate-boundary forces associated with oblique convergence in the South Island of New Zealand 

and more orthogonal convergence along the subduction zone south of New Zealand [34, 35]. An east-west 

orientation of principal compressional stress has been recognised in central Australia and has been considered the 

orientation of the main stress trajectories for the Sydney Basin region and related to the plate-boundary forces 

associated with the Tonga-Kermedec subduction zone to the east of Australia and north of New Zealand [34, 35]. 

Although the late Tertiary to Recent age of the recracking episodes in the southeastern Sydney Basin 

cannot, as yet, be conclusively demonstrated from radiometric dating of igneous rocks affected by the recracking 

episodes, our preference has been that these events are late [26] and are possibly neotectonic. It has been increasingly 

recognised that the relatively high levels of intraplate seismicity in southeastern Australia and associated widespread 

evidence for tectonic deformation in some regions, such as the Mt Lofty and Flinders Ranges of South Australia and 

the southern margin and eastern highlands of Victoria, are indicative of high rates of compressional deformation 

anomalous for the intraplate setting of southeastern Australia [35]. 

We consider that the E-W and NNE-SSW compressional episodes of the southeastern Sydney Basin, if they 

are related to the modern stress field, may also be related to plate-boundary forces with the former associated with the 

Tonga-Kermedec subduction zone to the east and the latter reflecting the Solomons and New Hebrides subduction 
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zone to the northeast. In this case the local variation of in situ stress in the Sydney Basin is considered a reflection of 

interacting far-field plate-boundary forces rather than local controls, such as local escarpments [e.g. 32], on in situ 

stress directions [cf. 34, 35]. 

 

9. CONCLUSIONS 

 

In the Late Permian - Early Triassic strata of the southeastern Sydney Basin, joints formed by mode I failure and 

faulted joints are parallel with each other. Early formed Group I joints do not interfere with each other. These joints 

are dilated and filled with undeformed calcite, by comparison the subsequently formed faulted joints are mostly 

opened, with evidence of lateral slip. Secondary joints developed primarily as a result of shearing along recracked 

joints. These fractures are systematic and form sets of relatively short dilatant joints. Secondary joints form at the 

end, along the sides and in between faulted joints or cut through closed joints. They normally show no sign of 

subsequent shearing. The faulted joints grew horizontally by the connection of recracked segments with secondary 

cracks. 

 The recracking and lateral displacements across the study area are related to three separate deformation 

events with σ1 oriented 024°, 097° and 163° respectively. Each of these events was responsible for recracking and 

lateral slip along suitably oriented pre-existing fractures and for the formation of one set of secondary joints parallel 

to the prevailing σ1 direction. The consistent direction of secondary joints indicates that the far-field stress field was 

roughly uniform for each episode of compression in this part of the basin.  

The intensity of recracking and the amount of lateral slip is believed to be related to the strength of 

infilling materials, the length and continuity of parent joint, the angle between the existing fractures and the 

maximum compression direction, and the number of compressional events imposed on the fracture. 

During each event, the pre-existing sealed fractures that formed 10°-30° angles with prevailing σ1, have 

been recracked with lateral slip along their strike. An already recracked joint has commonly been subsequently 

reactivated by a different σ1 in a different orientation. The result of the alternating reactivation of interfering set(s) 

is a network of connected recracked segments that have accommodated shear displacement caused by changes in 

the orientation of σ1. 
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Fig. 1. (a) Location of the study area in the Sydney Basin, Australia [from 26]. (b)  Location 

map of the studied outcrops. Northern (I), central (II) and southern (III). 
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Fig. 2. (a) Fracture pattern of Coal Cliff Sandstone at platform 2, NSW. (b) Rose diagram of 234 fractures 

in this platform. [From 26.] 
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Fig. 4. Recracking and horizontal enlargement of a segmented NE joint (I). Due to a NNE horizontal compression 

one segment started to recrack (II), and slipped (III). Secondary cracks developed at the dialational quadrants of the 

faulted segment (III) and (IV). The next segments recracked and linked by secondary cracks and bridge fractures (V). 

 

Fig. 3. Classification of secondary cracks in the study area. (a) Secondary cracks which indicate the orientation of 

far-field stress and the sense of slip along the faulted joints. Circular inset indicates the E-W direction of far-field 

compressive stress, responsible for the sinistral shearing and formation of secondary cracks. (b) Secondary fractures 

which form due to the local reorientation of stress field: bridge fractures (cross joints, 1), curving perpendicular (2) 

and curving parallel (3) fractures, and interaction between two segments of a same fracture propagating towards 

each other (veers in the sense of Cruikshank et al., 1991) (4). [From 26.] 

Fig. 5. Rose diagram (5° intervals) with the 

orientation of 430 secondary cracks in the 

Illawarra Coal Measures and lower Narrabeen 

Group, between Platform 1 and 22. [From 26.] 
97°
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Fig. 6. Development of multiple sets of secondary cracks along faulted joints. (a) NNE and E-W oriented 

secondary cracks formed along a set of NE faulted joint (Wombarra). [From 26.]  (b) 160-180° as well as 090° 

secondary fractures formed along adjacent joints of a 140° striking dyke  at Austinmer, and NE oriented joints at 

Scarborough (c), and Wombarra (d). Feather patterns formed by two sets of 090° and 160° secondary cracks 

near the termination points of some faulted joints (c, d). 

Fig. 7. Sequence of deformation events at Wombarra. (a) Formation of 040° and 115° fractures (I), sinistral 

displacement of 040° fracture due to the NNE-SSW compression (II), healing of the NE fracture (III), formation 

of through-going 090° secondary cracks due to the E-W compression (IV). (b) Formation of 015° secondary 

fractures due to NNE-SSW compression (I), sinistral displacement of 140° fracture due to E-W compression (II). 
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Fig. 8. Model for development of opposite senses of lateral slip in two neighbouring, NNE striking, faulted joints 

at Coledale. In the first deformation, dextral slip along two fractures, A and B (I), has been for 2 and 8 mm 

respectively (II). The difference in lateral slip is mostly due to the different lengths of faulted segments and the 

variation in strength of infilling materials. In a subsequent event, both fractures have been slipped sinistrally along 

their strike for 6 mm (III). The outcome has caused an overall different sense of displacement for A and B, which 

is therefore attributed to 2 deformations (IV).  

Fig. 9. Fracture map demonstrating the relation between secondary cracks and lateral displacement in 

laminated siltstone and fine-grained sandstone of the Wilton Formation at Austinmer. Short, slightly 

curved, 160° striking secondary cracks (insets 1 and 4) represent the direction of SSE compression which 

was responsible for the dextral slip along the 120° joints at this locality. At Austinmer dextral slip on 000-

005° fractures is due to the NNE compression. The amount of lateral slips ranges between 0 and 30 mm. 

Small rhombohedric cavities are the results of dextral slip on both sets (inset 3). Inset 2 suggests that the 

slip along the NNE joints was prior to slip along SE fractures. 
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Fig. 10. (a) Alternative recracking of three sets of vertical joints striking 005, 035, and 155° in a 5 cm thick, 

medium-grained sandstone bed at Platform 1. Each fracture consist of both open and closed segments. (b) Stages 

of recracking in the central part of (a). Recracking was sequential and for a single joint, the propagation was from 

either side toward the free surfaces (b). (c) Photograph of (b). North arrow is 5 cm. 

(a) 

(b) 

(c) 

Fig. 11. Sequential development of through-going, abutting and offsetting secondary cracks (Austinmer). After 

formation of 010° joints (a), the orientation of stress field changed and a new set of joints formed parallel to the 

contemporary σ1, i.e. 160° (b). Resolved shear stress on 010° joints recracked one of these joints. Small secondary 

cracks form parallel to σ1 at the termination point of this joint. Later in the same compressional episode, more 010° 

joints recracked and sinistral slips along them displaced the already existing 160° joints (c). Finally, more secondary 

cracks formed where the faulted segments were under tension. 
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، نشان داد که درز ها در ابتدا به صورت  فقی زغالداربررسی انجام شده در لایه های رسوبی ا: چکيده

تداخل موجود در بين دسته درز ها، ناشی از عملکرد دو رخداد . اکستنشن ایجاد شده و سپس گسليده اند

درزهایی که به طور  ناحيه ای گسترش یافته اند، در دو گروه اوليه و ثانویه قرار می . مجزای درزدار شدن است

این درزها بعد . رزهای گروه اول عمدتا به طور افقی رشد کرده و هرگز در یکدیگر تداخل نکرده اندد دسته. گيرند

رشد .  ادامه یافته است)گسلش(باز شکستگی با درزیدن آغاز شده و با لغزش جانبی . ها بازشکسته شده اند

ن اشلان نيز حاصل رشد رشته درزهای ا. افقی درزهای گسليده با اتصال قطعات بازشکسته، انجام می شود

را ) 2گروه (انوی درزهای ثفرایند بازشکستگی سنگ سيستمی از . قایم درزهای گسليده به داخل سنگ بکر اند

لغزش در دسته درزهای باز شکسته گروه اول و جهتيابی دسته درزهای گروه دوم، حاصل . به وجود آورده است

مواد مقاومت کستگی و مقدار لغزش جانبی وابسته به شدت باز ش.  استنسبتا جدیدسه ميدان تنش فشاری 

که است  رخدادهای فشارشی دپر کننده، طول و تداوم درزها، زاویه بين درز قبلی و جهت فشارش ثانوی و تعدا
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