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WATER RESOURCES RESEARCH, VOL. 23, NO. 5, PAGES 911-917, MAY 1987 

A Robust-Resistant Spatial Analysis of Soil Water Infiltration 

N. A. C. CRESSIE 

Department of Statistics, Iowa State University, Ames 

R. HORTON 

Department of A•tronomy, Iowa State University, Ames 

Data taken at adjacent spatial locations often exhibit correlation which must be taken into account in 
their analysis. Geostatistical methods, originally developed for the mining industry, have proven to be 
adaptable to hydrological problems. This paper concentrates on estimating the spatial correlations 
between soil water infiltration observations, with special emphasis on resistant methods to remove 
nonstationarity. After this removal, robust semivariogram estimators are used to examine the spatial 
dependencies for various tillage treatments. There is some indication that infiltration characteristics 
inherit different types of spatial dependency, depending on the tillage treatment applied. 

INTRODUCTION 

In this article we demonstrate how soil water infiltration 

data taken at spatial locations that conform to a regular grid 
can be analyzed sensibly; this is in spite of possible non- 
stationarities caused by superposition of different tillage treat- 
ments. The emphasis is on discovering the spatial structure 
using resistant (i.e., arithmetically stable) and robust (i.e., 
model stable) methods. After appropriate transformation of 
the data and adjustment for trend, we use (robust) geostatisti- 
cal techniques to summarize the spatial structure. Robust 
variogram estimators are computed for each of the tillage 
treatments, and an interesting positive spatial dependency is 
observed in moldboard-plowed soil that is not seen for chisel- 
plowed or no-till soil. 

The four tillage treatments involved in this study are mold- 
board plow (15-20 cm), chisel plow (15-20 cm), paraplow 
(25-30 cm), and no-tillage (see Bowen [1981] for a discussion 
of tillage operations). These treatments were established with 
tillage in the fall of 1982 at the Agronomy and Agricultural 
Engineering Research Center near Ames, Iowa. The soil is a 
Webster silty clay loam (Typic Haplaquoll). All of the tillage 
plots were chisel-plowed in 1981 and left untilled before the 
fall of 1982 with continuous corn production. Consequently, a 
large data set (not suitable for spatial analysis) was collected 
and this forms the basis of the soil water infiltration research 

presented in the work by Mukhtar et al. [1986]. On five con- 
tiguous plots (a small fraction of the larger study) a spatial 
study of soil water infiltration was planned. 

Soil water infiltration measurements were made at lo- 

cations, i.e., on a 3-by-8 grid arrangement, within each plot. 
Two sets of infiltration measurements were obtained, one set 

in May and one set in July 1983; Figure 1 gives the details. 
Notice that no measurements were taken on the middle of the 

five plots, because of the necessity to do all measurements on 
the same day. In May, some observations were lost due to 
compaction of the soil by tractor wheels. 

Double-ring infiltrometers [Bertrand, 1965] were used to 
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measure ponded infiltration volumes, and water stage record- 
ers were used to record the subsidence of water in the inner 

ring as a function of time (details can be found in the work by 
Mukhtar et al. [1986]). Infiltration theory developed for ho- 
mogeneous isotropic systems was unable to describe with 
physical meaning the infiltration processes for these field con- 
ditions. Thus similar to Gish and Starr [1983], only the 30-min 
cumulative infiltration values were used in this analysis (the 
values are presented in Figure 1). 

GEOSTATISTICS 

Geostatistics is the name proposed by Matheron [1963] for 
a method of spatial analysis that is used to predict ore reserves 
from sample data whose relative spatial locations are known. 
The books by David [1977], Journel and Huijbregts [1978], 
and Clark [1979] all address problems and present case stud- 
ies exclusively in the mining field. More recently, it has been 
realized that hydrological data which are spatial in nature can 
also be analyzed using geostatistics, although the questions 
asked of the data are usually different (see, for example, Del- 
homme [1979], Chirlin and Dagan [1980], Neurnan [1980], 
Luxrnore et al. [1981], Russo and Bresler [1981], Vieira et al. 
[1981], Russo and Bresler [1982], Kitanidis and Vornvoris 
[1983], and Grah et al. [1983]). 

Most of the articles above present the assumptions needed 
to perform a geostatistical analysis, but there is often scant 
attention paid to whether it is reasonable to analyze the data 
as if they came from a process which satisfies these assump- 
tions [Horowitz and Hillel, 1983; Harnlett et al., 1986]. There- 
fore we present briefly the theory of geostatistics and indicate 
places where it is crucial to check the assumptions. 

A regionalized variable Z(x), where x denotes a spatial lo- 
cation that can vary continuously over some domain D in 
two- or three-dimensional space, is the random measurement 
taken at location x. Relative to another location x', Z(x) and 
Z(x') are assumed to depend (up to second-order moments) 
only on x- x'. More specifically, the intrinsic hypothesis 
[Matheron, 1963] makes the following stationarity assump- 
tions: (1) E{Z(x)- Z(x')} = 0, for any x, x' in D, which is 
equivalent to stating that the expectation of any Z(x) is con- 
stant, and (2) 2•,(x- x') = E{[Z(x)- Z(xt)32•, for any x, x' in 
D, which defines the variogram 2•,(h) (the semivariogram is 
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MOLDBOARD PARAP LOW CHISEL NOTILL 

9.60 0.64 23.87 15.24 9.32 16.28 11.43 
31.55 27.90 12.50 7.54 36.64 26.47 10.24 8.93 14.77 4.30 9.75 9.49 

18.84 4.18 2.10 23.52 1.72 8.84 14.22 
31.10 35.65 6.84 5.40 38.82 42.02 6.81. 8.55 11.84 6.10 13.41 14.84 

4.69 3.35 28.47 30.98 3.41 14.65 13.29 
38.05 53.25 13.90 13.43 10.67 20.33 3.99 1.83 7.96 4.48 15.38 10.41 

43.83 8.02 17.40 18.44 20.79 4.14 13.46 14.48 
17.62 39.04 18.15 26.49 30.28 35.20 ---• l[ 7.10 4.65 5.32 8.67 15.29 12.10 

42.82 13.29 9.71 12.54 26.44 0.50 13.98 11.20 
8.64 34.14 28.53 39.82 27.52 39.65 2.12 5.29 8.31 3.54 12.56 20.59 

20.64 8.43 3.82 28.47 24.28 6.20 10.53 18.09 
6.65 23.30 25.97 20.19 25.15 44.42 6.02 3.52 5.84 2.22 15.21 13.12 

22.45 3.32 6.95 11.80 48.02 2.91 17.22 18.20 
5.78 18.93 38.31 6.48 31.78 60.04 6.33 4.94 8.29 8.58 8.88 18.19 

22.94 2.99 2.79 7.65 31.10 1.33 9.84 13.00 
22.78 31.29 10.00 16.20 63.32 38.71 8.40 2.53 5.41 10.35 15.32 11.11 

Fig. 1. Thirty-minute cumulative soil water infiltration data (in centimeters) and their spatial locations, together with 
tillage treatments. Distance between readings is 3 m in the E-W direction and 1.5 m in the N-S direction within tillage 
treatments and 3 m between adjacent tillage treatments moldboard and paraplow and chisel and no-till; 9 m separates the 
closest readings associated with paraplow and chisel treatments. Top numbers (in boldfaced type) are the May data, and 
tl•e bottom numbers are the July data. 

simply 7(h)). Note that x - x•' is a subtraction of two vectors in 
space. A slightly less general set of assumptions are those of 
second-order stationarity, where assumption 2 becomes Cov 
(Z(x), Z(x'))= C(x- x'). When C(h) is defined, it is easily 
shown that 7(h) = C(0) - C(h). 

Assumption 1 is often overlooked by researchers who 
proceed directly to estimating 27(h). However, suppose 
Z(x) = tt(x) + e(x), where tt(x) is deterministic drift and e(x) is 
stationary with zero mean. Then it is easily seen that 27z(h) = 
{tt(x + h)- tt(x)}2 + 27•(h). On a transect where x is one di- 
mensional, often la(x)=ax + b, and hence 27z(h)=(ah)2 
+ 27•(h). We should be trying to estimate 27•(h), but its effect 

is masked by the presence of (ah) 2 when we use the raw Z data 
to estimate the variogram. Assumption 2, while not over- 
looked, is rarely checked. If the covariance function C( ) 
exists, then at the very least C(0) should be a constant a 2 for 
all x in D, which can be checked. 

In the analysis of the soil water infiltration data given in the 
next section, we found both assumptions 1 and 2 to be viol- 
ated. This was remedied by working with square-root data 
and performing a column-by-column removal of column me- 
dians. Note that the very nature of this study (namely, differ- 
ent tillage treatments in different locations) means that sta- 
tionarity in the mean (assumption 1) is highly unlikely. It has 
been our experience [Cressie, 1985c; Cressie and Read, 1985; 
Cressie, 1986; Hamlett et al., 1986] that stationarity in spatial 
data is very much the exception rather than the rule. 

For the rest of this section assume 1 and 2 hold. There 

remains the problem of estimating the variogram function 
(think of it as a parameter) defined in 2, from data Z(x O, 
Z(x2), .. -, Z(x.), taken at locations x•, x2,.-., x..Define 

S(h) = {(i, j): x,- x• = h} (1) 

where N(h) is the number of elements in the set S(h). When 
data are equally spaced on a transect or are on a regular grid 

(as is the case in this study), it is easy to determine S(h) for h in 
directions of the grid axes or grid diagonals. 

Matheron [1963] proposed the method-of-moments esti- 
mator of 27(h), namely, 

1 

27() = Z - (2) $(h) 

provided N(h) > 0; it is unbiased, but possesses no other sta- 
tistical optimality properties. Some have mistakenly believed 
(2) to be the variogram itself, but clearly it is just an estimator. 
Other estimators do exist, and, in fact, it was concern for the 
lack of robustness of (2) that led Cressie and Hawkins [1980] 
to propose 

]'/ 27(h) = • Ig(x,)- g(x)l x/2 [0.457 +0.494/N(h)] 
$(h) 

(3) 

as a robust alternative to 27(h). Sampling variances of (2) and 
(3) are derived in the work by Cressie ['1985a]. The denomi- 
nator in (3) is a bias-correcting term which ensures E(27(h)) 
27(h). Cressie and Hawkins [1980] add an additional 
O.045/N(h) 2 to the denominator, whose effect on the correc- 
tions here is negligible. Outliers in the data {Z(xi) } can be 
difficult to detect both because of the spatial aspect and be- 
cause it is not feasible to inspect every datum of a large data 
set for outliers. The Cressie-Hawkins estimator automatically 
downweights contaminated data, whereas in the Matheron 
[1963] estimator the squared terms exacerbate contamination 
(see Cressie [1984], Hawkins and Cressie [1984], and Cressie 
[1985a] for further discussion and comparisons). Other esti- 
mators have been proposed by Cressie 1-1979], Arrnstron•l and 
Delfiner [1980], and Ornre [1984]. 

Having estimated the variogram (at various values of h), 
one usually wants to assimilate a theoretical model with the 
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Fig. 2. Stem-and-leaf diagrams of the July data for (a) all data 
combined, (b) the moldboard and paraplow data combined, and (c) 
the chisel and no-till data combined. In Figures 2a and 2b 410 means 
40 cm, and in Figure 2c 410 means 4.0 cm. 

paraplow (P) (the two southern plots) together and compare it 
to chisel plow (C) and no-till (N) (the two northern plots) 
together. Figures 2b and 2c show each to be roughly sym- 
metric with a couple of outliers, but on Completely different 
scales of magnitude. 

If we want to combine observations over the whole spatial 
domain, rather than analyzing the data as a collection of sub- 
problems, some type of scale-equilibrating transformation is 
needed. To make the plots comparable, at the very least we 
need homogeneous variances; this leaves us free to compare 
(eventually) the treatment levels and to obtain a meaningful 
estimate of standard error. For each column of eight measure- 
ments we computed the resistant quantities, median 3• and 
interquartile-range-squared IQ 2. The median is obtained using 
the convention that when n is odd, it is the middle value of n 
ordered observations, and when n is even, it is the average of 
the "lower middle" value and the "upper middle" value. The 
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estimator; e.g., the spherical model, the exponential model, the 
linear model, etc. [Matheron, 1971]. The spherical model 

y(h' c o, c s, as) - c o 4- Cs{(3/2)(h/a s) - (1/2)(h/as) 3) (4a) 

O<h=<a s 

y(h; Co, c s, as} -- c o 4- c s h > a s (4b) 

is popular because it shows the sort of strong positive corre- 
lation often seen in mining, soil science, hydrology, etc., and 
because the parameters c o (nugget effect, or small-scale struc- 
ture plus experimental error), c o + c s (sill, or stationary vari- 
ance), and a s (range, or limit of dependence) are easily in- 
terpretable. Fitting such a model as (4) to {2•7(hi): i = 1, ..., k) 
or to {2f(hi): i= 1, .--, k) requires care. By-eye or adhoc 
methods have been the practice in the past, but Cressie 
[1985a] has developed a generalized and weighted least 
squares approach that removes subjective biases from the fit. 
This is extremely important, since the variogram is the corner- 
stone of further analyses such as kriging [see Matheron, 1971; 
Burgess and Webster, 1980] and efficient treatment compari- 
sons. 

A ROBUST-RESIsTANT ANALYSIS 

An initial look at the data via a stem-and-leaf diagram 
[Tukey, 1977], shown here for July (Figure 2a), indicates a 
highly skewed distribution. That this is a misleading interpre- 
tation is apparent when we look at moldboard plow (M) and 

4- 

4- 4- 

I 

Me d i an 

4-4- 

4- 
- 4- 

0 [ I [ I I•' I '14' 
0 I 2 3 4 

Me d i an 

Fig. 3. Interquartile-range-squared (IQ squared) versus median 
(within columns) plots of the May data for (a) measured data, (b) 
square-root transformed data, and (c) log-transformed data. 
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lower (upper) quartile is simply the median of the lower 
(upper) "half' of the data (which includes the median when n is 
odd). The interquartile range is then the difference between the 
upper quartile and the lower quartile and is a measure of 
spread much like the standard deviation. Figure 3 is based on 
all the May data and shows graphs of IQ 2 versus ,• for raw 
and for transformed data. The compromise square-root trans- 
formation seems to do the best job of straightening out the 
data so that variation is no longer a function of location. We 
decided to use resistance-based rather than classical variance- 

versus-mean graphs, because of the several outliers that would 
certainly have undue influence on parts of the graphs. A simi- 
lar series of graphs for July (not shown here) shows little 
difference between square-root and log transformations. 
Therefore on balance, we chose to use the square-root trans- 
formation for both the May and July data. 

Variogram ½stimators (see equations (2) and (3)), based on 
square-root data, can now be combined across plots if neces- 
sary; this was out of the question for the raw data (Figures 4b 
and 4c should b• compared to Figures 2b and 2c). Figure 4 
shows stem-and-leaf diagrams of transformed data made 
stationary in the mean by subtracting, column by column, the 
column median xf• from the square-root data x//•, leaving 
behind residuals data at the 4 x 3 x 8 spatial locations (sta- 
tionarity was further verified by observing no trend in plots of 
row medians of these residuals against row number). 

For those who think the square-root scale is unnatural, we 
would like to make the following comments. We arrived at 
this transformation by noticing that the medians of columns 
were roughly linearly related to their respective IQ •. Must we 
stop the analysis and report that the data do not fit the as- 
sumptions? No, fortunately we were able to find a scale (the 
square-root scale) where the transformed data can be modeled 
as realizations from a process whose variance is stationary. Of 
course, there are still problems with stationarity in the mean, 
but usually this can be handled by subtracting column and/or 
row effects. 

This good fortune is not happenstance, and it is likely to 
occur for most data sets. Cressie [1985b] explores this through 
a "universal transformation principle" which says that additi- 
vity of small effects (normality), additivity of small effects to 
large effects (stationarity of variances), and additivity of large 
effects (no interaction) all tend to occur on the same scale. 
Therefore it makes sense to analyze the data on this scale and 
to convert the answers back to the original scale when neces- 
sary. Anyone who has taken logs of their data has essentially 
been invoking the above principle. We have simply expanded 
the possible scales to include squares, square roots, cube roots, 
and reciprocals, as well as logs. Moreover, the conclusions of 
Cressie [1985b] show that parameters defined for the raw data 
are available from those of the transformed data. He demon- 

strates, using precisely the July data in Figure 1 the equiva- 
lence between estimating scaled semivariograms of the raw 
data and semivariograms of the transformed data. 

In all that follows, we use the robust estimator of the semi- 
variogram given by (3) on square-root data. Figure 5 shows 
the semivariogram estimator, combined over all plots, and 
individually for each plot, for May. The same selection of 
semivariograms for July is presented in Figure 6. At best, the 
number of pairs used in the individual semivariogram esti- 
mators are 21(lag h = 1), 18(lag h = 2), 15(lag h = 3), 12(lag 
h = 4), and 9(lag h = 5). For May they are considerably less in 

places; however, a general picture seems to emerge. Treat- 
ments no-till (N), chisel (C), and paraplow (P) exhibit no spa- 
tial structure but moldboard (M) show•s strong positive spatial 
dependence, evidenced by the variogram estimator's (Figure 
5e) rapid increase between lags h = 1 through lags h = 3 (early 
lags are the most reliably estimated' see Cressie [1985a]). 
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Fig. 4. Stem-and-leaf diagrams of square-root transformed July 
data (made stationary by subtracting, column by column, the column 
median x//• from the square-root data) for (a) all data combined, (b) 
the moldboard and paraplow data combined, and (c) the chisel and 
no-till data combined. In Figures 4a and 4b 011 means 0.1 cm •/", and 
in Figure 4c 011 means 0.01 cm •/2. 
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Fig. 5. The f values in the E-W direction using residuals resulting from the May data for (a) all data combined, (b) no-till 
data, (c) chisel data, (d) paraplow data, and (e) moldboard data. Lag distance is 3 m. 

When these are combined into an overall semivariogram 
(Figure 5a), as one might be tempted to do to obtain more 
pairs at various lags, the M treatment dominates, leading one 
to think (wrongly) that there is a general positive spatial de- 
pendence throughout all the plots. Since there are missing 
observations from treatment M in May, it is interesting to see 
if this picture persists in July, when no observations are lost 
(from any treatment). 

In July, N and C still show no structure, but there is evi- 
dence that P has acquired somewhat weak positive spatial 
dependence. Sampling fluctuations, however, could easily ac- 
count for this impression (Figure 6d). The strong positive spa- 
tial dependence for M (Figure 6e) is once again apparent for 
July, where 50% more observations are available. 

Some physical explanation of these conclusions is called for. 
Before we start however, we would like to emphasize that 
these are tentative, for the following reasons. First, without 
replication we cannot be sure that the behavior of M, P, C, 
and N is not due to their plot location. Second, the semivario- 

gram shapes given by Figures 5 and 6 are only an impression 
and must be judged in the light of sampling fluctuation. 
Nevertheless, our conclusions are supported by a previous 
study [Harnlett et al., 1986]. The data in Figure 1 were not 
originally collected for a full-scale spatial analysis, but we 
have emerged with a hypothesis we would not have expected 
before we started our analysis. Spatial dependence as mea- 
sured by the variogram seems to vary with tillage. 

The soil physical disturbance levels associated with the four 
tillage treatments can be ranked as follows: moldboard plow 
is greater than paraplow is greater than chisel plow is greater 
than no-till. The tillage tools affect the soil surfaces differently, 
and thus can be expected to have differing effects on the soil 
water infiltration. We expected to see treatment differences 
show up in the mean level of soil water infiltration, but did 
not expect to see them in the spatial-dependence measures. 
We are excited by the prospect of comparing treatments via 
semivariograms, since this adds another dimension to the 
analysis of soil water infiltration for different treatments. (The 
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Fig. 6. The ½ values in the E-W direction using residuals resulting from the July data for (a) all data combined, (b) no-till 
data, (c) chisel data, (d) paraplow data, and (e) moldboard data. Lag distance is 3 m. 

use of semivariograms for treatment comparisons is also seen 
in the work by Bresler et al. [1982], who analyze crop yield 
under controlled line-source irrigation.) That M should be so 
different from C is surprising; we already had hints that M 
and N show different spatial relationships in a study of soil 
water tension [Harnlett et al., 1986]. 

The spatial analysis reported herein gives rise to the hy- 
pothesis that the greater the action of a tillage tool, the more 
likely it is that positive spatial dependence will be found. The 
tillage tools that provide the highest level of change in the soil 
surface, namely, M and P, are the two treatments that showed 
possible spatial correlation in soil water infiltration over the 
lag distances sampled. Less soil surface disturbance occurs 
with C and N and no spatial dependence was apparent in 
these treatments at the lag distances sampled. To corroborate 
this evidence, a well-designed study that replicates treatments 
say by a randomized blocks design and that measures the 
infiltration in each plot prior to tilling and then after should 
be implemented. 

SUMMARY 

Measurements of soil water infiltration sampled across four 
areas of land receiving various tillage treatments were ana- 
lyzed using geostatistical methods. Resistant data analytic ap- 
proaches were used to remove identified nonstationarity in 
data means and variances. By construction then, the data are 
more likely to satisfy the stationarity assumptions needed for 
variogram estimation. A robust estimator rCressie and Haw- 
kins, 1980] was used to estimate semivariograms for the 
various tillage treatments. Strong spatial dependence was 
found consistently in the moldboard plow treatment. The 
paraplow treatment exhibited weak spatial structure. No spa- 
tial structure was found in the chisel plow and notill treat- 
ments. The results indicate that tillage with higher disturbance 
levels may provide more spatial correlation in the soil surface 
physical condition. Efficient estimation and testing of treat- 
ment comparisons in the presence of spatial dependence 
should be an area of fruitful future research. 
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