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WATER RESOURCES RESEARCH, VOL. 26, NO. 11, PAGES 2695-2703, NOVEMBER 1990 

A Spatial Analysis of Variance Applied to Soil-Water Infiltration 

CAROL A. GOTWAY • AND NOEL A. C. CRESSIE 

Department of Statistics, Iowa State University, Ames 

A spatial analysis of variance uses the spatial dependence among the observations to modify the 
usual inference procedures associated with a statistical linear model. When spatial correlation is 
present, the usual tests for presence of treatment effects may no longer be valid, and erroneous 
conclusions may result from assuming that the usual F ratios are F distributed. This is demonstrated 
using a spatial analysis of soil-water infiltration data. Emphasis is placed on modeling the spatial 
dependence structure with geostatistical techniques, and this spatial dependence structure is then used 
to test hypotheses about fixed effects using a nested linear model. 

1. INTRODUCTION 

At a given location in the field the ability of water to 
infiltrate soil depends upon the existing soil-water distribu- 
tion with depth, the rate of water application to the soil 
surface, and the soil-pore-structure distribution with depth. 
As the location varies across the field, this ability will vary 
spatially so that locations nearby are more alike with regard 
to infiltration than those far apart. This spatial dependence 
among the infiltration measurements may be used to enhance 
any statistical analysis of soil-water infiltration. Moreover, 
failure to account for spatial correlation, in general, can lead 
to erroneous inference procedures that could result in incor- 
rect scientific conclusions. 

In what is to follow we summarize the data, methodology, 
and results from the robust-resistant spatial analysis of 
soil-water infiltration data presented by Cressie and Horton 
[ 1987]. The spatial correlations among the soil-water infiltra- 
tion measurements are modeled using geostatistical meth- 
ods; kriging and cross-validation techniques are imple- 
mented to check and adjust for outliers. Finally, using a 
nested linear model with covariances determined by the 
modeled spatial correlations, various statistical hypotheses 
of interest are tested, and the consequences of overlooked 
spatial dependence are demonstrated. 

and no tillage. For more details, see Mukhtar et al. [1985] 
and Cressie and Horton [1987]. 

Water stage recorders were used to record the soil-water 
infiltration as a function of time [Mukhtar et al., 1985]. For 
the part of the experiment of interest to us here, 30-min 
cumulative infiltration measurements (in centimeters) were 
made at 24 locations (on a 3 x 8 grid arrangement) within 
each of four plots. Two sets of infiltration measurements 
were obtained, one in May and one in July, but we will 
analyze only the July data here. Figure 1 [from Cressie and 
Horton, 1987] illustrates the arrangement of the spatial sites 
and the tillage treatments. Because of limited resources, 
only one block of a randomized block design was used for 
the spatial experiment. This design is unfortunate and makes 
any conclusions tentative since strictly speaking treatment 
and plot location are confounded; further details are given 
below. However, there are a number of instances in science 
where, even with unlimited resources, replicated designs are 
an impossibility, and comparison of properties among dif- 
ferent units may still be desired (for example, comparison of 
lithological characteristics among rock units in a formation). 
At the very least the analysis that follows provides an 
illustration of a spatial analysis of variance. 

To begin the spatial analysis of soil-water infiltration, the 
data in Figure 1 are written as 

2. EXPLORATORY SPATIAL DATA ANALYSIS 

OF SOIL-WATER INFILTRATION 

The variable of interest in this study is soil-water infiltra- 
tion, as measured with a double-ring infiltrometer apparatus. 
The double-ring infiltrometer is a device consisting of two 
concentric rings: the outer ring is used to stop the horizontal 
spread of the water so that only the vertical subsidence is 
measured, and the other is used to pond the water so that the 
infiltration rate can be measured. An experiment was con- 
ducted in the summer of 1983 to determine the effects of 

tillage treatment on soil-water infiltration. This experiment 
was performed using plots that were plowed in the fall of 
1982 with the following tillage treatments: moldboard plow 
(15-20 cm), paraplow (25-30 cm), chisel-plow (15-20 cm), 

• Now at Sandia National Laboratories, Albuquerque, New Mex- 
ico. 

Copyright 1990 by the American Geophysical Union. 

Paper number 90WR01539. 
0043 - 1397/90/90 W R-01539505.00 

{Yijk:i= 1,2,3,4, j=l, 2,3, k=l,"',8} (1) 

so that Y ijk is the kth observation in the jth column of 
treatment i. Set i - 1 for the moldboard tillage treatment, i = 
2 for paraplow, i = 3 for chisel, and i = 4 for no-till. Using 
robust-resistant exploratory spatial data analysis proce- 
dures, Cressie and Horton [1987] show that in order to 
estimate the spatial dependence in the data a symmetrizing 
and variance stabilizing square-root transformation is 
needed, followed by subtraction of column medians to 
remove trend. Specifically, define 

Zijk = ( Y ijk) 1/2 (2) 

rij• = zij•- z']). (3) 

where E•/. = med {zij•: k = 1,..., 8). The square-root 
transformation was applied so that on this scale, data can be 
written as a mean effect (made up of additive components of 
spatial location and treatment effects) plus a Gaussian ran- 
dom term. (For details, see Cressie and Horton [1987].) 
Figure 2 shows stem-and-leaf plots of the median-based 

2695 
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MOLDBOARD PARAPLOW ½HI S EL NO- TILL 

31.55 27.90 12.50 7.54 36.64 26.47 10.24 8.93 14.77 4.30 9.75 9.49 

31.10 35.45 6.84 5.40 38.82 42.02 6.81 8.55 11.84 6.10 13.41 14.84 

38.05 53.25 13.90 13.43 10.67 20.33 3.99 1.83 7.96 4.48 15.38 10.41 

17.62 39.04 18.15 26.49 30.28 35.20 --• N 7.10 4.65 5.32 8.67 15.29 12.10 

8.64 34.14 28.53 39.82 27.52 39.65 2.12 5.29 8.31 3.54 12.56 20.59 

6.65 23.30 25.97 20.19 25.15 44.42 6.02 3.52 5.84 2.22 15.21 13.12 

5.78 18.93 38.31 6.48 31.78 60.04 6.33 4.94 8.29 8.58 8.88 18.19 

22.78 31.29 10.00 16.20 63.32 38.71 8.40 2.53 5.41 10.35 15.32 11.11 

Fig. 1. Thirty-minute cumulative soil-water infiltration data (in centimeters) and their spatial locations, together 
with tillage treatments. Distance between readings is 3 m in the east-west direction and 1.5 m in the north-south 
direction within tillage treatments and 3 m between adjacent tillage treatments moldboard and paraplow and chisel and 
no-till; 9 m separates the closets readings associated with paraplow and chisel treatments [Cressie and Horton, 1987]. 

residuals {rUk } . These residuals now appear to have come 
from a trend-free process (Cressie and Horton [1987] dem- 
onstrate lack of trend in the east-west direction) but are not 
homoskedastic between plots even after the square-root 
transformation. (As we shall see below, treatments i = 1 and 
i = 2 show much more error variation than treatments i = 3 

and i = 4.) These residuals will be used solely to provide a 
good estimate of spatial correlation. Subsequent hypothesis 
testing will be based on the square-root data (2). If the null 
hypothesis of equal treatment means (of the square-root 
data) is accepted, this will be interpreted as inferring no 
"large-scale" treatment differences. 

From the discussion above we can assume that 

z•/k = ix iiA + 8 uA (4) 

where Ix,../n is the mean of the kth observation in the fih 
column using treatment i and 8 = (8],],], 8],•,2, ß ß ß, 84,3,8)' is 
a realization of a 96 x 1 vector of random variables with 

mean zero and covariance matrix •r2E. Thus the spatial 
correlation among the soil-water infiltration measurements is 
portrayed through •, and in the next section this covariance 
structure will be estimated and modeled using geostatistical 
methods with the median-based residuals (equation (3)). 
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Fig. 2. Stem-and-leaf plots of square-root transformed, median- 
swept residuals {rijk}; 011 denotes 0.1 cm 1/2. 

3. GEOSTATISTICAL MODELING OF SPATIAL DEPENDENCE 

In this section we present a brief overview of a geostatis- 
tical analysis of soil-water infiltration measurements. We 
assume some familiarity with geostatistical methods; a com- 
plete treatment of geostatistical methodology is given by 
Journe! and Huijbregts [1978]. 

The spatial variability of soil-water infiltration may be 
characterized by the variogram [Matheron, 1963] 

2,/(h) = var [Z(s + h) - Z(s)] (5) 

where s is a vector indexing spatial location. (The semivari- 
ogram, •h), is one half of the variogram.) That this quantity 
is a function only of the separation vector, h, is part of the 
intrinsic hypothesis [Matheron, 1970]. Since the underlying 
variogram can never be known, it must be estimated from 
the data, and several such estimators are available. In the 
case presented here, for robustness reasons the empirical 
variogram was computed using the robust variogram estima- 
tor developed by Cressie and Hawkins [ 1980]. Since the data 
(equation (2)) do not have constant mean the median-based 
residuals (equation (3)) were used to estimate the variogram. 
Thus the empirical variogram in the east-west direction may 
be written 

Y• Iri, j, k + h -- ri, j, kl m/[N(h)l 
j--lk=l 

2 ;/ i(2 ah) = 
0.457 + 0.494/IS(h)l 

(6) 

h=l,..',7 

where {N(h)l = 3(8 - h), and a = 1.5 m. 
Figure 3 gives plots of the empirical semivariograms for 

each of the treatments up to a lag distance of 15 m. Spatial 
dependence, as summarized by the empirical semivario- 
grams, clearly changes with treatment. It is most pro- 

23 nounced for moldboard; among the •ments, mold- 
õ board is the plowing technique that causes the greatest soil 

disturbance. 

Semivariogram models were fitted to the robust empirical 
semivariograms using weighted least squares as described by 
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•(h) •(h) 

! i i i ! 

0 3 6 9 12 15 18 

h 

Fig. 3a. Robust empirical semivariogram in the east-west direc- 
tion for the moldboard tillage treatment. The superimposed dashed 
line represents the fitted parametric semivariogram model, fitted by 
weighted least squares. 

0 - 
i ! i i i 

0 3 6 9 12 15 18 

Fig. 3c. Robust empirical semivariogram in the east-west direc- 
tion for both chisel and no-tillage treatments combined. The super- 
imposed dashed line represents the fitted parametric semivariogram 
model fitted by weighted least squares. 

Cressie [1985]. Since chisel and no-till semivariogram esti- 
mators were strikingly similar, they were pooled, and a semi- 
variogram model was fit to the combined data. The following 
semivariogram models were fitted for the east-west direction: 

Moldboard 

Yl(h) = 3'0308{ (•)(17.2;80 ) 
0 -< h -< 17.2980 

¾i(h) = 3.0308 h -> 17.2980 

(7) 

Paraplow 

¾:(h) = 0 h = 0 

y2(h) = 1.6620 h > 0 
(8) 

Chisel 

Y3(h) = 0 h = 0 

¾3(h) = 0.2881 h > 0 
(9) 

No-till 

Y4(h) = 0 h = 0 

y4(h) = 0.2881 h > 0 
(10) 

•(h) 

3 - 

2 - 

1 - 

0 - 

0 3 6 9 12 15 18 

Fig. 3b. Robust empirical semivariogram in the east-west direc- 
tion for the paraplow tillage treatment. The superimposed dashed 
line represents the fitted parametric semivariogram model, fitted by 
weighted least squares. 

Figure 3 illustrates each of these models superimposed on 
the empirical semivariograms. Since each model has a sill 
yi(oo), the spatial dependence may be equally described 
through a stationary covariance function 

C(h) = or/2 - Yi(h): h > 0 (11) 

where •r/2 = 
Very few lags were available in the north-south direction 

from which to estimate the semivariograms. Those that 
were, justified an isotropy assumption for the spatial depen- 
dence within each plot. To examine the spatial dependence 
between neighboring plots, sample correlation coefficients 
were computed. They indicated a lack of dependence, 
leading to an (estimated) covariance model for •; in (4), given 
by (12) below. Let the data be a realization of Z' = (Zi, Z[, 
Z•, Z•), where Zj = (Zi, i,1, Zi, l,2,''' , Z/,3,8). Then, our 
(estimated) model for the covariance structure of Z is 

var (Z) = 0 -2 ! •2 qb •4 • o-2• (12) • •3 

a 96 x 96 block diagonal matrix where each block is 24 x 24. 
Matrices •;2, •;3, •;4 are proportional to the identity matrix 
124' •2 = 1.6620124, corresponding to paraplow, and •;3 = 
•;4 = 0.2881124 , corresponding to chisel and no-till. Only the 
matrix •;1, corresponding to the moldboard tillage treatment, 
shows spatial dependence' •1 is made up of elements 
obtained from the stationary covariance function 

C(h) = 3.0308- yl(h) (13) 

where ¾1(h) is given by (7). The notation qb is used to 
represent a matrix (of any order) with zero entries. Although 
two of the three variogram models correspond to no spatial 
dependence, there is no added difficulty in the general case 
of spatial correlation: •;2, •;3, and •;4 can be estimated in a 
way analogous to that of •;1. 

The semivariogram model for the transformed moldboard 
data (7) was cross validated [Stone, 1976; Delfiner, 1976] 
using kriging. A stem-and-leaf plot of one cross-validation 
statistic is presented in Figure 4, and an associated normal 
probability plot [e.g., Barnett, 1975] is shown in Figure 5. 
Note from these diagrams that the fit of the semivariogram 
model is reasonable and would be quite good if it were not 
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Fig. 4. Stem-and-leaf plot of the cross-validation statistic applied 
to the moldboard data; -0 9 denotes -0.9 cm 1/2. 

for the extreme value of 3.70. One reason for this extreme 

point is that rl,3, 7 (and z•,3,7 from (2)) is large relative to its 
nearest neighbors. These "spatial outliers" are hard to 
detect as extreme or unusual observations in a stem-and-leaf 

plot of the data since it ignores the (relative) spatial locations 
of the observations; i.e., the stem-and-leaf plot is insensitive 
to spatial information in the data. 

As with any outlier, spatial outliers should never be 
deleted without good reason [Anscombe, 1960], although too 
many extreme observations will destroy even the most 
robust statistical analysis. Winsorization provides a compro- 
mise [see Huber, 1979; Hawkins and Cressie, 1984]. 

Winsorization is a data-editing technique where unusual 
observations are not deleted but are replaced by less ex- 
treme versions. That is, replaced z•/k with 

z(S) med {zo.k: k= 1 --' 8}+ •0'• + co'•/k ijk = , , 
o 

ro. k > c 

z/(j• =med {zo.•: k = 1,..' , 8} + rij• c (14) 

z/(j• = med {zo.•: k = 1, "' , 8} + }0'k- co-//• 
o 

r•/k < -c 

where •/k is the kriging predictor with kriging standard 
deviation o-uk, r•.k is the cross-validation statistic, ro.ø• - 
(•i• - r•ik)/rri/k, and c is a tuning constant controlled by the 
user. Common values for c lie in the range of 1.5-3.0, the 
smaller the value of c, the more the data tend to be edited 
(c = oo corresponds to no editing at all). 

Actually, if the data are Gaussian, a normal probability 
plot gives a nice way of obtaining c adaptively: From the 
probability plot, choose c to be the X coordinate of the 
unusual point in question, which moves the point to the 

,.3- 

2- 

I - 

0- 

--1 - 

•2 - 

--,.3 i• i i i i -- -1 o I 2 

Fig. 5. Normal probability plot of cross-validation statistic. 
Horizontal axis denotes expected quantile; vertical axis denotes 
observed quantile. 

target 45 ø line. Applying this to the spatial outlier of the 
moldboard data, we obtain c -- 2.04. However, since there is 
some deviation about the normal line, we chose a less severe 

(s) = c = 2.5. Then z•,3,7 = 6.19 cm•/2 is replaced by z•,3,7 
3.99 + {-0.5106 + (2.5)(0.7313)} = 5.31 cm •/2, which back 
on the original scale, gives Y}•I,7 = 28.22 cm. This can be 
compared with Yl,3,7 = 38.31 cm. After checking the exper- 
imental records, no reason for this outlier was apparent; a 
large subsurface crack might account for the higher than 
expected infiltration rate. 

In the analysis to follow the data will be edited according 
to the computations above, and for notational convenience 
we now drop the superscript "(s)." In the next section we 
shall proceed with inference on the mean effects {ILijk} of 
model (4). To do this we shall assume the model for var (Z) 
given by (12); however, one should not forget that it has in 
fact been obtained by model fitting to empirical semivario- 
grams. Moreover, the data set is not a large one. That is why 
we have included in (4) a proportionality constant rr 2, to be 
determined by the data. The estimates of the variance and 
covariance parameters may be seen as the first stage of a 
procedure that reestimates the parameters from generalized 
least squares residuals; those residuals are obtained using 
the initial estimate of the variance matrix. Carroll et al. 

[1988] give evidence to support a small number of iterations 
(here 1) and an initial robust estimator of the large-scale 
effects (here the column medians). Although Armstrong and 
Diamond [1984], Myers [19851, Kitanidis [19861, and Zim- 
merman and Cressie [1990] have investigated the effect of 
parameter uncertainty on kriging, more research is needed to 
determine the effects of using fitted variance matrix param- 
eters as if they were known. 

4. INFERENCE ON MEAN EFFECTS 

One of the goals of this paper is to formulate valid and 
efficient inference procedures for the mean function, ixij•,, of 
the model in (4). On the basis of the analyses in sections 2 
and 3 the following additive linear model seems appropriate: 

Z•7k = I x + ti + B(/ + Sijk (15) 

where 

Zijk square root of the kth datum in the jth column of 
treatment i; 

/x overall averages soil-water infiltration; 
t i effect due to treatment i; 

/30. effect associated with the jth column of treatment i; 
eijk random term with zero mean and covariance matrix 

rr2E given by (12). 
This model is general enough to account for north-south 
trend and differential treatment effects; east-west trends are 
assumed negligible (see section 2). Moreover, it is expressed 
in terms of the square-root data since the analysis of vari- 
ance procedures (performed below) require an assumption of 
normality. Although the distribution of the data in (2) differs 
from that of a normal distribution, Cressie and Whitford 
[1986] have shown that analysis of variance procedures are 
relativelyrobust against long-tailed depa•ures from normat 
ity but are not robust against departures from symmetry. 
With the soil-water infiltration data the square-root transfor- 
mation was used to achieve the necessary symmetry. 
Hypotheses tested on the transformed data can be inter- 
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preted in terms of the model and ultimately in terms of the 
original question posed. 

It is convenient to write the model in (15) using matrix 
notation: 

Z=Xll + e 

where 

Z 96 x 1 data vector; 

Z (Zi,i,1, Zl,l,2, ß ß ß , Zl,l,8, Z1,2,1, ß ß ß , Z4,3,8)'; 
13 (/-•, tl,"', t4, /31,•, /3•, 2, ]•1,3, ]•2,1, ''', 
X incidence matrix of O's and l's [see Searle, 1971, p. 

145], that specifies E(Zijk) = I• + ti + 13ij; 
e associated vector of random terms with variance 

matrix rr2• given by (12). 

(16) 

4.1. Estimation of Main Effects 

The first step toward inference on XI3 is to specify an 
estimation procedure. If spatial dependence is ignored, or 
overlooked (as is often the case), the ordinary least squares 
estimator of XI3, namely, 

X•OLS • (17) 

(where (X'X)- is a generalized inverse of X'X; see Rao 
[ 1973, section 4a]) might be used. A stem-and-leaf plot of the 
ordinary least squares residuals from fitting the model (16) 
(with the one outlier Winsorized; see section 3) is presented 
in Figure 6a. Although the shape of this stem-and-leaf plot 
appears to be Gaussian, a corresponding residual plot (Fig- 
ure 6b) shows that the variability of the residuals increases 
with increasing mean and thus suggests that a weighted 
estimation procedure is necessary. 

In the case of the soft-water infiltration data, because of 
the heteroskedasticity and the spatial dependence, a gener- 
alized least squares estimator of XI5, namely, 

X•GLS • X(X,•-lx)-x,•-lz (18) 

is more appropriate [Rao, 1973, section 4a]. The stem-and- 
leaf plot of the residuals from the generalized least squares fit 
(Figure 7a) looks to be roughly Gaussian (although some- 
what more granular than Figure 6a), and the associated 
residual plot (Figure 7b) does not suggest carrying out any 
further transformation or weighting. Comparing the residual 
plots in Figures 6b and 7b, we see that without the weighting, 
differences in the estimated means for each treatment are 

masked, whereas after the weighting the treatment divisions 
are more clearly defined. This is particularly true for ex- 
pected values corresponding to the moldboard data (recall 
that plots receiving the moldboard treatment are the only 
ones with significant spatial dependence). In Figure 7b the 
residuals from the moldboard plots are those with the 
smallest expected values. 

It is interesting to see how the Winsorization of the data 
has improved the weighted estimation of XI3. Figure 8 shows 
a stem-and-leaf plot of residuals obtained from the general- 
ized least squares estimator (18) with the original (unedited) 
square-root data given in (2). The one very large residual of 
3.23 cm •/2 can be traced back to Yl,3,7 = 38.31 cm, the same 
value that gave a large value for the cross-validation statistic 
in section 3. Residuals obtained from fitting with the unusual 
observation deleted (not shown here) behave very much like 
the residuals obtained using the edited values. However, 
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Fig. 6a. Stem-and-leaf plot of residuals obtained from least 
squares fitting of model (16) using Winsorized data. The stem 2 and 
corresponding leaves denote data in the interval [0.20, 0.40) cm 1/2 

since Winsorization uses some of the information contained 

in the original data point, it offers a satisfactory compromise. 

4.2. A Spatial Analysis of Variance 

From the generalized least squares approach to estimation 
of the mean parameters in (15), we obtain a general analysis 
of variance in Table 1 where 

SSv (model) = •(•LsX'V-1Z- mv (19) 

i i i 

5 •5 7 

Fig. 6b. Residual plot (residual versus expected in cm 1/2) ob- 
tained from ordinary least squares fitting of model (15) using 
Winsorized data. 
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Fig. 7a. Stem-and-leaf plot for residuals obtained from general- 
ized least squares fitting of model (16) using Winsorized data. The 
stem 2 and corresponding leaves denote data in the interval [0.20, 
0.40) cm 1/2. 

SSv (columns in treatments) = SSv (model) 

- SSv (treatments) (20) 

SSv (residual) = Z'V-1Z- I•6LsX'V-1Z (21) 

SSv (corrected total)= Z'V-•Z- rnv (22) 

•GLS = (X'V-1X) -- X'V-1Z 

mv = (I'V-•I)-(Z'V-•II'V-•Z) (23) 

V is an N x N positive-definite matrix; I is a N x 1 vector 
of l's; SSv (treatments) is equal to an SSv (model) type of 

Fig. 7b. Residual plot (residuals versus expected in cm 1/2) ob- 
tained from generalized least squares fitting of model (15) using 
Winsorized data. 
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Fig. 8. Stem-and-leaf plot of residuals obtained from general- 
ized least squares fitting of model (16) using unedited data. The stem 
2 and corresponding leaves denote data in the interval [0.20, 0.40) 

1/2 
cm . 

expression where the model is now Z•/k =/x + t i + e•k, fit by 
generalized least squares; I(= 4) denotes the number of 
treatments, J(= 3) is the number of columns within each 
treatment, and N(= 96) is the total number of observations. 

Consider now an analysis of variance (ANOVA) table for 
each of three models: (1) the full spatial model where V = 
•r2E, given by (12); this model incorporates heteroskedastic- 
ity among the plots as well as spatial dependence; (2) the 
heteroskedastic model where V = diag (•r:Z), and Z is given 
by (12); this model allows only for unequal variances be- 
tween plots and ignores spatial correlation; and (3) the 
classical model with V = •r:I; this model assumes indepen- 
dence and homoskedasticity between plots. Tables 2a-2c 
give the analysis of variance for each of these models. 

TABLE 1. A General Analysis of Variance 

Source of Variation 

Degrees 
of 

Freedom Sum of Squares 

Model 

treatments 

columns in treatments 
Residual 
Corrected total 

/J-1 
I-1 

l(J- 1) 
N - IJ 
N-1 

ss4model} 
SS (treatments) 
SS (columns in treatments) 
SS (residual) 
SS (corrected total) 
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TABLE 2a. Analysis of Variance Associated With Z0k = /x + t i 
+ /30 + e0k, for the Full Spatial Model 

Degrees of Sum of 
Source of Variation Freedom Squares 

Model 11 183.23 
treatments 3 95.40 
columns in treatments 8 87.83 

Residual 84 94.12 
Corrected total 95 277.35 

TABLE 2c. Analysis of Variance Associated With Z0• = /x + t i 
+ /30 + e0•, for the Classical Model 

Degrees of Sum of 
Source of Variation Freedom Squares 

Model 11 157.83 
treatments 3 114.31 

columns in treatments 8 43.52 
Residual 84 72.83 
Corrected total 95 230.66 

Notice the similarity in the decomposition of the sum of 
squares for the heteroskedastic and classical models and the 
difference between these decompositions and that associated 
with the full spatial model. The model fitting and cross 
validation carded out in previous sections indicate that the 
full spatial model is more appropriate than the other two. 

In the following sections, hypothesis tests for the param- 
eters of the model (15) are developed. Differences between 
analyses based on the full spatial model and the nonspatial 
models will again be the most marked. 

4.3. Testing the Hypothesis of Equality 
of Column Means Within Treatments 

One common hypothesis frequently tested in an analysis 
of variance is the hypothesis of equal treatment means. 
However, in the spatial context this may not be a well- 
formulated hypothesis if there is spatial trend, i.e., if the 
mean depends on spatial location and is not constant from 
plot to plot. Thus we should check first the assumption of no 
spatial trend within each treatment. From (15) this amounts 
to checking for constant column means; specifically, test 

H0: /3• =/3 •2 -/3 •3 (24a) 

•21-- •22 = •23 (24b) 

/•31 = /•32 = /•33 (24C) 

]341 = ]342 = ]343 (24d) 

against the general alternative (15). This hypothesis may be 
tested by computing the ratio 

SSv (columns in treatments)/I(J- 1) 
F = (25) 

$Sv (residual)/(N- IJ) 

(the sums of squares may be found in the ANOVA table) and 
comparing it to an F distribution on [I(J - 1), N - /J] 
degrees of freedom. Note that if spatial correlation is 
present, but ignored, then an F statistic like (25), but based 
on ordinary least squares, does not have an F distribution. 

TABLE 2b. Analysis of Variance Associated With Z0i c = /x + t i 
+/30 + e0k, for the Heteroskedastic Model 

Degrees of Sum of 
Source of Variation Freedom Squares 

Model 11 168.16 
treatments 3 115.52 

columns in treatments 8 52.64 
Residual 84 69.99 
Corrected total 95 238.15 

Computing the ratio using the appropriate values from 
Tables 2 a-2 c, we obtain F = 9.80 for the full spatial model, 
F = 7.90 for the heteroskedastic model, and F = 6.27 for the 
classical model. 

Comparing the first of these numbers F = 9.80 to an F 
distribution (actually, the only comparison that is valid) with 
8 and 84 degrees of freedom, we see that this value is 
significant at the 0.01 level, leading us to reject the null 
hypothesis of constant column means within treatments. 
Therefore we conclude that there is significant spatial trend. 

4.4. Testing the Hypothesis of Equality 
of Average Treatment Effects 

Now that the hypothesis of constant column mean within 
a treatment has been rejected, we can compare average 
treatment-plot effects by averaging over the columns within 
each treatment and testing the hypothesis 

]31j= t2 +• •2j H0: tl-4-•/=l /=1 

= t3 + • ]33j = t4 + • •4j (26) 
j=l j=l 

against the general alternative (15). Since average treatment 
effects are confounded with location, rejection of H 0 may be 
due to a difference in average treatment effects or may be 
due to a difference in spatial locations. 

To test the hypothesis in (26), we refer to the general 
analysis of variance table at the beginning of this section and 
use 

$$v (treatments)/(I - 1) 
F = (27) 

SSv (residual)/(N- IJ) 

Computing the ratio for the full spatial model, the heteroske- 
dastic model and the classical model, we obtain 28.05, 44.95, 
and 43.95, respectively. 

Notice that the values of the F ratio for the heteroskedas- 

tic and classical models are much larger than that of the full 
spatial model. This is because when V fails to account for the 
spatial correlation, SSv (residual) is much too small. Hence 
the resulting F ratios (which are not F distributed) are much 
too large. In general, by assuming (wrongly) the classical 
model or the heteroskedastic model when the data are 

exhibiting positive spatial dependence, more frequent dec- 
larations of significant treatment differences are obtained 
than the data warrant. 

Using the full spatial model and comparing F = 28.05 to an 
F distribution on 3 and 84 degrees of freedom, we reject the 
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TABLE 3. F Ratios for Testing the Hypothesis Analogous to 
(26) for Each of the Six Contrast Pairs 

Contrast 

Model M-P M-C M-N P-C P-N C-N 

Full spatial 0.14 3.36 1.66 90.73 53.70 22.13 
Heteroskedastic 2.00 45.66 23.29 95.67 52.99 22.13 
Classical 2.22 68.70 31.88 95.67 52.99 22.13 

M, P, C, N denote moldboard, paraplow, chisel, and no-till, 
respectively. Nominal degrees of freedom are 1 and 42, and •.0.05 - "1,42 -- 
4.07. 

null hypothesis (26) and conclude that there are average 
treatment-plot differences. 

4.5. Pairwise Contrasts 

We now look to pairwise contrasts to determine which 
pairs of treatments are significantly different with regard to 
the amount of soil-water infiltration. Consider, for example, 
testing equality of average treatments effects between the 
moldboard and paraplow treatments. Thus test 

3 1 • •lj-' t2 +• •2j (28) H0: tl+•j=l j=l 
against a general alternative, where the vector of mean-effect 
parameters is now 

1•1,2-' (/Z, tl, t2, •1,1, •1,2, •1,3, •2,1, •2,2, •2,3)' 

Then using the 48 x 1 data vector 

Zl, 2 -- (Zi,i,1, Zl,l,2, øøø , Z1,3,8, Z2,1,1, øøø , Z2,3,8)' 

and by norating cov (Zl,2) as rr12,2•1,2, an ANOVA table with 
I = 2, J = 3, and N = 48 may be constructed. The hypothesis 
(28) may be tested by computing the associated F ratio (27), 
where the 48 x 48 positive definite matrix V1, 2 plays the role 
of V in (19) through (23). 

In this case, the full spatial model corresponds to taking 

2 2 •/•1 •2) Vl, 2 = iT1,2 •1,2 = tT1,2• • 
where •1 and •2 are as in (12) and O'12,2 is a proportionality 
constant. The heteroskedastic model corresponds to V1, 2 = 
diag (O'12,2•1,2), and the classical model corresponds to V1,2 = 

Hypotheses similar to that of (28) are considered for the 
other five pairs: moldboard-chisel, moldboard-notill, para- 
plow-chisel, paraplow-notill, and chisel-notill; the data 
vectors, the mean-effect parameters, and the covariance 
matrices are defined analogously to that of the moldboard- 
paraplow contrast above. Table 3 gives the associated values 
of (27) for each of the six contrasts and for each of the full 
spatial, heteroskedastic, and classical models. Recall from 
section 3 that the moldboard data showed the greatest spatial 
dependence. From Table 3 w(•ee that theF ratios for 
comparison of contrasts involving moldboard using the full 
spatial model are much lower than those for the heteroske- 
dastic and classical models. Consequently, if we adopted 
(wrongly) either a heteroskedastic or classical model in the 

analysis of soil-water infiltration, we would be likely to 
conclude significant average treatment differences, when in 
fact such differences are not supported by the data. Intu- 
itively, the positive spatial correlation exhibited by the 
moldboard data reduces the effective number of observa- 

tions, which in turn may not allow rejection of a null 
hypothesis involving moldboard's treatment mean with 
other treatment means. 

Now consider the generalized least squares estimators of 
the treatment-plot effects, namely, 

3 

1 •'• /tij, i=l,...,4 ii+•j=l 
computed from the elements of •GLS in (18). These are 2.022 
cm 1/2 for moldboard, 2.478 cm 1/2 for paraplow, -0.228 cm 1/2 
for chisel, and 0.494 cml/2 for no-till. From these estimates 
(as well as from the statistics in Table 3), one can see two 
distinct groups' moldboard-paraplow and chisel-no-till. 
There is not a significant treatment-plot difference between 
moldboard and paraplow, but there is a significant treatment- 
plot difference between chisel and no-till. From Table 3 and 
the generalized least squares estimates of treatment-plot 
effects, paraplow is declared the superior treatment, fol- 
lowed by no-till and then chisel. Although moldboard looks 
to be an excellent treatment, there is not enough evidence 
(as a result of the presence of spatial correlation) to declare 
it different from any of the other three treatments. 

5. SUMMARY 

Measurements of soil-water infiltration Were used to illus- 
trate the effects of overlooked spatial correlation. Spatial 
dependence was modeled using geostatistical methods, and 
kriging and cross validation were used to check model fit and 
adjust for outliers. A nested linear model with fixed effects 
was used as a basis for inference procedures. A spatial 
analysis of variance was proposed and used to test the 
hypothesis of large-scale trend, as well as the hypothesis of 
equality of average treatment effects. Because F ratios do 
not follow an F distribution when spatial correlation is 
present but overlooked, making inferences based on such 
ratios can lead to erroneous conclusions. 

Acknowledgments. This research constitutes part of the first 
author's Ph.D. dissertation. It was supported in part by the National 
Science Foundation under grant number DMS-8703083. 

REFERENCES 

Anscombe, F. J., Rejection of outliers, Technometrics, 2, 123-147, 
1960. 

Armstrong, M., and P. Diamond, Testing variograms for positive- 
definiteness, Math. Geol., 18, 711-728, 1984. 

Barnett, V., Probability plotting methods and order statistics, Appl. 
$tat., 24, 95-108, 1975. 

Carroll, R. J., C. F. J. Wu, and D. Ruppert, The effect of estimating 
weights in weighted least squares, J. Am. Stat. Assoc., 83, 
1045-1054, 1988. 

c•essiel N., Fitting vafi0gra• models by weighted least squares, 
Math. Geol., 17, 563-586, 1985. 

Cressie, N., and D. M. Hawkins, Robust estimation of the vario- 
gram, I, Math. Geol., 12, 115-125, 1980. 

Cressie, N. A. C., and R. Horton, A robust-resistant spatial analysis 
of soil water infiltration, Water Resour. Res., 23, 911-917, 1987. 



GOTWAY AND CRESSIE: A SPATIAL ANALYSIS OF VARIANCE 2703 

Cressie, N., and H. J. Whitford, How to use the two-sample t-test, 
Biometrical J., 28, 131-148, 1986. 

Delfiner, P., Linear estimation of nonstationary spatial phenomena, 
in Advanced Geostatistics in the Mining Industry, edited by M. 
Guarascio et al., pp. 49-68, D. Reidel, Hingham, Mass., 1976. 

Hawkins, D. M., and N. Cressie, Robust kriging--A proposal, 
Math. Geol., 16, 3-18, 1984. 

Huber, P. J., Robust smoothing, Robustness in Statistics, edited by 
R. L. Launer and G. N. Wilkinson, pp. 34-45, Academic, San 
Diego, Calif., 1979. 

Journel, A. G., and C. J. Huijbregts, Mining Geostatistics, Aca- 
demic, San Diego, Calif., 1978. 

Kitanidis, P. K., Parametric uncertainty in estimation of spatial 
functions: Bayesian analysis, Water Resour. Res., 22, 499-507, 
1986. 

Matheron, G., Principles of geostatistics, Econ. Geol., 58, 1246- 
1266, 1963. 

Matheron, G., The theory of regionalized variables and its applica- 
tions, Cah. 5, Cent. de Morphol. Math., Ecole des Mines de Paris, 
1970. 

Mukhtar, S., J. L. Baker, R. Horton, and D.C. Erbach, Soil water 

infiltration as effected by the use of the paraplow, Trans. ASAE, 
28, 1811-1816, 1985. 

Myers, D. E., Some aspects of robustness, Sci. Terre, Ser. Inf. 
Geol. 24, 63-79, 1985. 

Rao, C. R., Linear Statistical Inference and Its Applications, John 
Wiley, New York, 1973. 

Searle, S. R., Linear Models, John Wiley, New York, 1971. 
Stone, M., Cross-validatory choice and assessment of statistical 

prediction, J. R. Stat. Soc., Ser. B., 114-147, 1976. 
Zimmerman, D. L., and N. Cressie, Mean-squared prediction error 

in the spatial linear model with estimated covariance parameters, 
Ann. Inst. Stat. Math., in press, 1990. 

N. A. C. Cressie, Department of Statistics, Iowa State Univer- 
sity, Ames, IA 50011. 

C. A. Gotway, Division 7223, Sandia National Laboratory, P.O. 
Box 5800, Albuquerque, NM 87185. 

(Received July 31, 1989; 
revised June 18, 1990; 

accepted July 10, 1990.) 


	A spatial analysis of variance applied to soil-water infiltration
	Recommended Citation

	A spatial analysis of variance applied to soil-water infiltration
	Abstract
	Keywords
	Disciplines
	Publication Details

	A Spatial Analysis of Variance Applied toSoil&hyphen;Water Infiltration

