
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information
Sciences

2007

Query streaming for multimedia query by content from mobile devices Query streaming for multimedia query by content from mobile devices

Kevin Adistambha
University of Wollongong, ka07@uowmail.edu.au

S. J. Davis
University of Wollongong, stdavis@uow.edu.au

Christian H. Ritz
University of Wollongong, critz@uow.edu.au

I. Burnett
Faculty of Informatics, University of Wollongong, ianb@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers

 Part of the Physical Sciences and Mathematics Commons

Recommended Citation Recommended Citation
Adistambha, Kevin; Davis, S. J.; Ritz, Christian H.; and Burnett, I.: Query streaming for multimedia query by
content from mobile devices 2007.
https://ro.uow.edu.au/infopapers/2375

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online

https://core.ac.uk/display/37007868?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F2375&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F2375&utm_medium=PDF&utm_campaign=PDFCoverPages

Query streaming for multimedia query by content from mobile devices Query streaming for multimedia query by content from mobile devices

Abstract Abstract
Formulating and processing of multimedia queries using mobile devices presents many challenges. This
is due to the limitations of the devices themselves and the cost of the bandwidth involved in transmitting
multimedia data between servers and devices. In this paper we propose a novel approach: “query
streaming” which uses Reverse Polish Notation to perform multimedia query-by-example on a mobile
device and server. An important advantage of query streaming is the ability to perform a query within the
previous result set. To solve the problem of limited resources, the concept of result set examination using
Fragment Request Units and Fragment Update Units is also explored. MPEG BiM compression is
performed on the communication messages to further minimize transmission requirements.

Disciplines Disciplines
Physical Sciences and Mathematics

Publication Details Publication Details
K. Adistambha, S. J. Davis, C. H. Ritz & I. S. Burnett, "Query Streaming for Multimedia Query by Content
from Mobile Devices," in International Conference on Signal Processing and Communication Systems,
2007, pp. 209-214.

This conference paper is available at Research Online: https://ro.uow.edu.au/infopapers/2375

https://ro.uow.edu.au/infopapers/2375

QUERY STREAMING FOR MULTIMEDIA QUERY BY CONTENT FRO M MOBILE
DEVICES

Kevin Adistambha, Stephen J. Davis, Christian H. Ritz and Ian S. Burnett

Whisper Labs, School of Electrical and Telecommunications Engineering,

University of Wollongong, Australia

ABSTRACT

Formulating and processing of multimedia queries using
mobile devices presents many challenges. This is due to
the limitations of the devices themselves and the cost of
the bandwidth involved in transmitting multimedia data
between servers and devices. In this paper we propose a
novel approach: “query streaming” which uses Reverse
Polish Notation to perform multimedia query-by-example
on a mobile device and server. An important advantage of
query streaming is the ability to perform a query within the
previous result set. To solve the problem of limited
resources, the concept of result set examination using
Fragment Request Units and Fragment Update Units is
also explored. MPEG BiM compression is performed on
the communication messages to further minimize
transmission requirements.

1. INTRODUCTION

The area of multimedia query has received considerable
attention lately, as a result of the phenomenal growth of
user created multimedia content. This explosion in user
generated content is visible in the popularity of
multimedia sharing sites such as YouTube [1], VideoJug
[2] and Flickr [3]. Predictably, searching those multimedia
items is a non-trivial task that requires metadata to be
attached to the multimedia items in question. Examples are
the low-level descriptions of MPEG-7 [4] and higher-
level, semantic metadata such as Dublin Core [5].
Attaching the correct description to the multimedia items
remains a major problem to be solved today, due to the
volume of source data to be described. Requiring a human
to sift through all the data he/she created is non-optimal
due to the intensive nature of the task and subjectivity
involved. Some automatic and semi-automatic description
generation have been developed (such as IBM’s
MARVEL [6]) but these remains experimental.

While description generation has been partially
addressed, one basic problem remains: a standard
communication language between clients and database
solutions such as MARVEL, Google Image and others.
Some research has been done in this area, notably MRML

[7], MOQL [8] and the author’s Multimedia Query Format
(MQF) [9]. However, these approaches did not
specifically consider the restrictions imposed by mobile
devices. In this paper, we investigate the use of a mobile
device to perform multimedia query (as depicted in Fig.
1).

In today’s increasingly mobile environment, it is
inevitable that multimedia queries will be performed on
mobile devices. Compared to desktop PCs, such devices
have specific limitations such as small screen size, limited
memory and processing power and high bandwidth cost.
The hardware limitations of mobile devices are outside the
scope of this paper; here the focus is exclusively on
bandwidth usage and the cost associated.

Specifically, this paper addresses two areas:
• Bandwidth: Performing multimedia queries is

obviously a bandwidth-intensive operation; hence
some measures must be taken to minimize data
transmitted from the mobile devices to the server
because of the cost involved. Therefore, any
reduction in bandwidth usage would be helpful in
this case.

• Physical limitations: Size limitations of mobile
devices makes typing inconvenient, at best. A
method to refine a multimedia query based on an
existing query without having to perform another
query is therefore desirable. Hence, the aim would
be to search within a previous query result set with
minimal effort and overhead.

Figure 1. Multimedia query using mobile devices.

Figure 2. Application scenario using query streaming.

One of the fundamental difficulties with query streaming is
the need to progressively construct the query and
corresponding responses. In [9], the authors proposed
MQF as a Reverse Polish Notation (RPN) based query
format. In Section 2 of this paper we discuss RPN and its
application to query streaming before briefly overviewing
MQF. The foregoing Sections then consider combining
MQF query streaming with fragment approaches to XML
retrieval. This results in efficient querying and results set
treatment in mobile scenarios.

2. QUERY STREAMING: APPLICATIONS, RPN
AND MQF

2.1 QUERY STREAMING APPLICATIONS
Two potential application scenarios using query streaming
are now considered:

1. This scenario is illustrated in Fig. 2. Using a
mobile device, a user would like to search for a
particular song but he/she only has a portion of the
song. The server has 100 similar matches to the song
in question, and the user would like to refine the
search while avoiding the need to listen to each
potential match due to the bandwidth limitations of
mobile devices. The user might also further refine the
query by sending additional restrictions, thus
reducing the number of potential matches to a
manageable number (preferably just one).

2. In a second scenario, a user is lost (or wishes to
identify e.g. a building) in an unfamiliar city. The user
takes pictures of the surrounding environment and
sends a query-by-example to a server. The server
returns a message saying that the image sent by the
user is too general and it has 50 sites that look similar
to the picture. The client then takes another picture to
further refine the search.

2.2 USE OF REVERSE POLISH NOTATION

Reverse Polish Notation (RPN) [10], also known as the
postfix notation, is a method of arranging an equation
whereby the operators follow the operands. This contrasts
with infix notation, where the operators are between the
operands. The advantage of RPN is that the order of
operations is implicit in the equation; hence special
operators denoting that order are not required (as with
infix notation). Another advantage is that the equation can
be processed in-order using a stack.

By using a stack, a multimedia query using RPN can
effectively be streamed to a server. This results in a query
format for mobile devices that has minimal overhead. At
one level this allows simple refinement of queries for
query-by-example. However at another level the main
advantage of this technique is the ability to perform a
search within the previous set of results, as shown in Fig.
3. In Fig. 3, there is one result set at the server and this is
updateable by the client. This requires that the client and
server have an open communication port for the duration
of the query so that the server can send intermediate
results to the mobile client. By virtue of RPN, the
intermediate results will be correct, even if the client adds
complex multiple new terms, since the server does not
need to receive the whole query to begin processing. We
call this method “query streaming”.

Query streaming can be thought of as performing a
search using e.g. the iTunes search box, where adding
another letter to the search term further refines the query

Figure 3. Example of a communication sequence
between a mobile device and a server using query
streaming. There is only one updateable result set
residing in the server at all times.

without performing a new query. This is unlike a Google
search; where adding or removing a term in a search
requires a new search to be performed. For query
streaming, however, instead of querying a local database
(as in the case of iTunes), the refinement process is
performed over the network.

2.3 MQF – A GENERAL PURPOSE MULTIMEDIA
QUERY FORMAT

Our previous work in the area of multimedia query
resulted in a general purpose multimedia query format
called MQF [9]. MQF was designed as a simple container
format for use in multimedia query influenced by SOAP
[11]. Key strengths of MQF includes the use of RPN
notation, the concept of query levels to remove ambiguity
regarding the meaning of a query term sent by a client,
free-form operators and a simple design to provide
extensibility for the future.

In MQF, a query term can take one out of four
possible forms:

1. Exact: the term is to be matched exactly by the
server (e.g. an MPEG-7 description)

2. Example: the term is an example, where the
server is to match it as close as possible to its
database.

3. Semantic: the term is a semantic description of a
multimedia data. Semantic information means
that the information is higher level information
and cannot be extracted from the actual
multimedia data itself (e.g. creator information,
title, etc).

4. Free text: the query term is a natural language
based query with no predetermined structure.

MQF uses SOAP-like containers to act as terms in the
query and these are then stacked in an RPN sequence to be
processed by the server.

2.4 MODIFICATION TO MQF TO ENABLE QUERY
STREAMING

To achieve “query streaming” from mobile devices, a new
query format with built-in RPN capabilities is required.
Existing solutions based on the SQL [12] such as
SQL/MM [13] cannot be used for this purpose due to the
fact that SQL was designed for textual databases with a
rigid, known structure, and each SQL statement must be a
complete query. Hence, using SQL, a new query would
need to be formulated and cannot be streamed to the
server. In contrast, to achieve effective query streaming,
the query format must handle data with an unknown
structure. MQF [9] is a good candidate for performing
query streaming due to its built-in support of RPN and its
open format. However MQF was not originally designed
for query streaming, therefore some modifications are
required to enable query streaming using MQF.

A required modification to MQF is the inclusion of a
query streaming flag in the first query. All the proceeding
messages from the client (following the first query) must

also include information signifying that they are part of a
query stream. An example is shown in Figures 4, 5 and 6.
In Fig. 4, the client initially sends a normal MQF query
with the added attribute of stream=true in the <query>
element, signaling the server to expect an XML fragment
for the next packet of communication. In Fig. 5, the server
then replies as per MQF specification [9]. In Fig. 6, the
client then sends a refinement of the query. In this case,
the client would like an image created by John Doe based
on the server replies in Fig. 5. Note that the client sends
only the <query> element, with the query identification
number as an attribute to let the server know that this
packet is part of the specific numbered query stream. This
identification number enables a device to potentially open
multiple query streams to the server.

By using RPN, the communication sequence shown in
Figures 4, 5 and 6 is possible and efficient since the server
can process the terms as they arrive on the server in
sequence.

3. QUERY STREAMING USING FRAGMENT

REQUESTS

3. 1 FRAGMENT REQUEST AND UPDATE UNITS

Fragment Request Units (FRUs) [14], which is part of
the MPEG-B standard [15], are created by the users to
request fragments of XML from a remote XML document.

<mqf>
 <queryId>id_123</queryId>
 <from>client.uri</from>
 <query stream=”true”>
 <replyType>image/jpeg</replyType>
 <item queryLevel=”example”>
 <mpeg7:MediaData64>
 AaBbCc/==
 </mpeg7:MediaData64>
 </item>
 </query>
</mqf>

Figure 4. Initial communication from the client.

<mqf>
 <queryId>id_123</queryId>
 <from>server.uri</from>
 <replies>
 <reply>
 <item>
 http://server/image1.jpg
 </item>
 <index>1</index>
 </reply>
 <reply>
 <item>
 http://server/image2.jpg
 </item>
 <index>2</index>
 </reply>
 </replies>
</mqf>

Figure 5. Server reply.

<query streamId=”id_123”>
 <item queryLevel=”exact”>
 <dc:Creator>John Doe</dc:Creator>
 </item>
</query>
Figure 6. Client refinement: adding a term to the query.

Modification
to enable
subsequent
queries.

Modification to enable
query streaming for the
initial query.

Mobile device

Initial query

Search for a

song similar

to this given

example

100 matching

results found

on the server

What are the

genres in the

matches?

Result set genres

are Rock,

Country,

Classical

Server reply

FRU request

FUU reply

Content server

Genre is

country

1 match sent

to the device

Refine query

Server reply

Result set

Updated

Result set

1

2

3

4

5

6

2a

Figure 7. Query refinement using FRU.

<mqf>
 <queryId>id_123</queryId>
 <from>client.uri</from>
 <query stream=”true”>
 <replyType>audio/mpeg</replyType>
 <item queryLevel=”example”>
 <mpeg7:MediaData64>
 AaBbCc/==
 </mpeg7:MediaData64>
 </item>
 </query>
</mqf>

Figure 8. Initial query: Search for a song similar to this given

example (Fig. 7–step 1).

<mqf>
 <queryId>id_123</queryId>
 <from>server.uri</from>
 <replies>
 <text>100 results matched</text>
 </replies>
</mqf>

Figure 9. Server reply: 100 matching results (Fig. 7–step 2).

The FRUs are created in XML (valid to the FRU schema)
from a selection of commands (known as RXEP [16]
commands). Briefly, basic FRU commands are as follows:
Src, Query, XMLPull and Stream. These commands allow

a client to select a document, query a document, issue
XML Pull commands on a document and stream sub-
branches of a document (for further details see [14]).

FRUs are capable of requesting any fragment of the
XML document (based on fragment size and location),

<mqf>
 <queryId>id_123</queryId>
 <from>server.uri</from>
 <replies>
 <reply>
 <item>
 <mpeg7:MediaUri>
 http://server/1.mp3
 </mpeg7:MediaUri>
 </item>
 <description>
 <mpeg7:Genre>Rock</mpeg7:Genre>
 </description>
 <index>1</index>
 </reply>
 ...
 <reply>
 <item>
 <mpeg7:MediaUri>
 http://server/100.mp3
 </mpeg7:MediaUri>
 </item>
 <description>
 <mpeg7:Genre>Country</mpeg7:Genre>
 </description>
 <index>100</index>
 </reply>
 </replies>
</mqf>

Figure 10. Result set residing in the server (Fig. 7-step 2a).

<FRU>
 <Query>//mpeg7:Genre</Query >
</FRU>

Figure 11. FRU request asking the server to specify the

genres in the result set (Fig. 7-step 3).

<FragmentUpdateUnit>
 <FUCommand>addNode</FUCommand>
 <FUContext>
 /mqf/replies/reply/description
 </FUContext>
 <FUPayload>
 <mpeg7:Genre>Rock</mpeg7:Genre>
 <mpeg7:Genre>Classical</mpeg7:Genre>
 <mpeg7:Genre>Country</mpeg7:Genre>
 </FUPayload>
</FragmentUpdateUnit>

Figure 12. FUU reply showing the genres in the result set

(Fig. 7-step 4).

<query streamId=”id_123”>
 <item queryLevel=”exact”>
 <mpeg7:Genre>Country</mpeg7:Genre>
 </item>
</query>

Figure 13. Client sends query refinement, specifying the

server to consider only music from the Country genre and
updates the result set (Fig. 7-step 5).

thus providing clients with random access. This allows a
client to jump into any node in an XML document, or to
simply, “navigate backwards” (such an operation may be
entirely client side if previous XML fragments have been
cached locally). An example of FRU instantiation is
shown in Fig. 11. FRU provides the request mechanism
and the responses to FRUs are provided as Fragment
Update Units (FUU). These FUUs are specified in MPEG-
7 Part 1 [17].

MPEG-7 Part 1 specifies a textual delivery method for
delivering multimedia descriptors that are described in
XML. This method is known as Textual Encoding format
for MPEG-7 (TeM). TeM relies on the principle that an
XML document can be divided into smaller XML
fragments, which can be reassembled at the client. The
local version of the XML document on the client side is
manipulated through TeM specific commands [17] sent by
the server. TeM is capable of fragmenting an XML
document and delivering these XML fragments to a client
to recreate the original XML document structure. The
fragments are encapsulated in XML using Fragment
Update Unit (FUU) elements.

FRU and FUU can therefore work together, with the
client sending a FRU request using XPath [18] and
receiving the requested XML fragment via a FUU. The
client is then able to reconstruct a partial XML
instantiation of interest using only relevant information
provided by the FUU, instead of receiving the whole XML
document from the server (which would be prohibitive for
mobile devices).

3.2 COMBINING QUERY STREAMING,
FRAGMENT REQUEST UNIT AND FRAGMENT
UPDATE UNIT

There is a problem inherent in the scenario 1 described in
Section 2.1. What if the user received 100 matches and
does not know the genre associated with the song? The

user then could not formulate the correct query request
update without guessing. Since the mobile user cannot
view all 100 results due to the many limitations of mobile
devices, querying the result set itself (server side) to
formulate a query update became an important feature
requirement. By combining query streaming and FRUs, a
search could be easily refined on the server using FRUs
without actually changing the intermediate result set
generated by the query.

Thus a different version of scenario 1 in Section 2.1
could then be: Instead of sending another refinement to the
query, the client specifies, using FRUs, that the song in
question is part of the “Country” genre. The user can then
explore the result set in the server by sending FRU request
specifying that only music in the country genre be
considered, and instructing the server to check how many
songs matches that specification. Consequently, the user
performs a secondary search in the server’s result set
before performing a query refinement. This FRU
capability (to browse an XML tree without knowing the
underlying schema) is useful in the case of queries to a
server with an unknown metadata description scheme.

An example of the updated use case scenario is shown
in Fig. 7, with the associated example XML instantiation
shown in Fig. 8-14. The client is a mobile device with
limited hardware capability and high bandwidth cost, and
the user has no idea of the genre associated with the
example given (Fig. 8), and the server specified that it has
100 matches (Fig. 9). The client subsequently sends an
FRU request to the server asking it to specify what genres
are available in the result set (Fig. 11) and the server
replies accordingly using FUU (Fig. 12). The client is
certain that what he/she wanted is from the country genre,
and thus sends the query update (Fig. 13). The server is
left with only one match after the update, and sends the
data to the client directly (Fig. 14). The client, as a result,
does not waste bandwidth sifting through all the matches
returned by the server (which is an inherent problem with
query-by-example applications).

4. COMPRESSING QUERY COMMUNICATIONS

While FRUs and FUUs provide an efficient XML solution
for query streaming, a weakness of XML is its verbosity
size. The size of XML is obviously a problem when
dealing with mobile devices with expensive bandwidth,
especially considering that any binary data embedded
within an XML document must be converted into its
ASCII equivalent, thus expanding its size by 33%. MPEG
recognized this limitation and MPEG-7 overcomes this
limitation by providing a tool to convert XML to a smaller
binary format during transport over a network(this is
called BiM [17]).

<mqf>
 <queryId>id_123</queryId>
 <from>server.uri</from>
 <replies>
 <reply>
 <item>
 <mpeg7:MediaData64>
 DdEeFfGg1234//==
 </mpeg7:MediaData64>
 </item>
 <index>1</index>
 </reply>
 </replies>
</mqf>

Figure 14. The server sends the one matching result to the

client (Fig. 7-step 6).

BiM is a tree-based compression technique that
utilizes knowledge that schema information should be
common to all users and, hence, can be regarded as a
priori information [19]. The consequence is that all XML
files conformant to that schema can be significantly
compressed through binary encoding of the tags [20]. BiM
operates on the principle that every child node of the
schema tree can be assigned a binary code [17]. This
allows the binary rather then the textual transmission of
the XML tag. BiM also applies datatype specific
compression based on the information provided by the
XML Schema. If the XML document contains embedded
binary data encoded in ASCII, the data is converted to its
original binary representation by BiM.

For transport purposes, we compressed the examples
in Fig. 8, 9, 13 and 14 using BiM. The results are shown in
Table 1. The embedded binary data size in the experiment
is 3828 bytes in text format and 2794 bytes in binary
format.

The results in Table 1 show that on average, the size
of the MQF is 992 bytes. These MQF sizes are
compressed by BiM to an average size 118 bytes. Hence,
for the four example messages, BiM offers a 46%
reduction in data transmission and 86% saving for MQF.
However, for longer query and responses, significantly
higher savings can be made.

5. CONCLUSION
This paper proposed a new method for performing
multimedia query-by-example using the concept of query
streaming in combination with FRUs for use in mobile
devices with limited bandwidth resources. It is shown that
using MQF compressed with BiM, the overhead could be
compressed by more than 50%, thus saving expensive
mobile bandwidth. MQF, combined with FRUs and FUUs,
also provides a flexible multimedia query by content
method for mobile devices with limited hardware
resources via query streaming and result set examination.

6. ACKNOWLEDGMENTS
The authors thank Gerrard Drury for useful conversations
that led to the work presented in this paper.

12. REFERENCES

[1] "YouTube: broadcast yourself," http://www.youtube.com.
[2] "VideoJug - Life Explained. On Film,"

http://www.videojug.com.
[3] "Flickr: photo sharing," http://www.flickr.com.
[4] ISO/IEC, "MPEG-7 Part 5: Multimedia Description Schemes

(MDS)," ISO/IEC 15938-5 2001.
[5] "Dublin Core Metadata Initiative," http://dublincore.org.
[6] IBM, "IBM Multimedia Analysis and Retrieval System

(MARVEL)," http://mp7.watson.ibm.com/marvel.
[7] W. Muller, H. Muller, S. Marchand-Maillet, T. Pun, D.

Squire, Z. Pecenovic, C. Giess, and A. P. d. Vries, "MRML:
A Communication Protocol for Content-Based Image
Retrieval," Visual Information and Information Systems, pp.
300-311, 2000.

[8] J. Li, M. Ozsu, and D. Szafron, "Moql: A multimedia object
query language," Technical Report TR-97-01, Department of
Computing Science, University of Alberta, January 1997.,
1997.

[9] K. Adistambha, C. H. Ritz, and I. S. Burnett, "MQF: An
XML Based Multimedia Query Format," presented at
International Conference on Multimedia and Expo, Beijing,
China, 2007.

[10] M. McIlroy, "Reverse Polish Notation," From MathWorld--A
Wolfram Web Resource, created by Eric W. Weisstein,
http://mathworld.wolfram.com/ReversePolishNotation.html.

[11] W3C, "Simple Object Access Protocol,"
http://www.w3.org/TR/soap, 2000.

[12] ISO/IEC, "Database Language: SQL," ISO/IEC 9075, 1999.
[13] J. Melton and A. Eisenberg, "SQL Multimedia Application

Packages," ACM SIGMOD Record, pp. 97-102, 2001.
[14] S. J. Davis and I. S. Burnett, "Collaborative editing using an

XML protocol," presented at IEEE TENCON, Melbourne,
Australia, 2005.

[15] ISO/IEC, "Fragment Request Unit," ISO/IEC 23001-2, 2006.
[16] S. J. Davis and I. S. Burnett, "On-demand partial schema

delivery for multimedia metadata," presented at International
Conference on Multimedia and Expo, Toronto, Canada,
2006.

[17] ISO/IEC, "MPEG-7 Part 1: Systems," ISO/IEC 15938-1
2002.

[18] W3C, "XML Path Language (XPath) 2.0,"
http://www.w3.org/TR/xpath20, 2007.

[19] U. Niedermeier, J. Heuer, A. Hutter, W. Stechele, and A.
Kaup, "An MPEG-7 Tool for Compression and Streaming of
XML Data," presented at International Conference on
Multimedia and Expo (ICME), 2002.

[20] M. Cokus and D. Winkowski, "XML Sizing and
Compression Study for Military Wireless Data," presented at
XML Conference and Exposition, Baltimore, USA, 2002.

Table 1. MQF compression result using BiM.

Original XML size (Bytes) BiM compressed (Bytes) Example file
Total size Binary

attachment
size (text
format)

MQF size Total size Binary
attachment
size (binary

format)

MQF size

Figure 8 – initial query with
embedded binary

5181 3828 1353 2835 2794 41

Figure 9 – initial server reply 375 - 375 40 - 40
Figure 13 – query refinement 378 - 378 136 - 136
Figure 14 – final server reply with
embedded binary

5690 3828 1862 3051 2794 257

	Query streaming for multimedia query by content from mobile devices
	Recommended Citation

	Query streaming for multimedia query by content from mobile devices
	Abstract
	Disciplines
	Publication Details

	ICSPCS07

