Click here to view linked References " Disclaimer: This is a pre-publication version. Readers are recommended to consult the full published version for accuracy and citation."

1	Ocean surface and bottom water conditions, iceberg drift and sediment transport on
2	the North Iceland margin during MIS 3 and MIS 2
3	
4	
5	
6	Andrews, J.T. ¹ , Smik, L. ² , Belt, S.T. ² , Sicre, M-A ³ , McCave, I. N. ⁴
7	
8	1. Institute of Arctic and Alpine Research, and Department of Geological Sciences,
9	University of Colorado, Boulder, CO 80303
10	2. Biogeochemistry Research Centre, School of Geography, Earth and
11	Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, PL4
12	8AA, UK.
13	3. LOCEAN, CNRS, Sorbonne Université, Campus Pierre et Marie Curie, 4 place
14	Jussieu, Paris, France.
15	4. Godwin Laboratory for Palaeoclimate Research, Department of Earth Sciences,
16	University of Cambridge, Downing Street, Cambridge CB2 3EQ, U.K.
17	
18	Orcid: Andrews: 0000-0003-3169-5979
19	Orcid : Belt: 0000-0002-1570-2924
20	Orcid : Sicre: 0000-0002-5015-1400
21	Orcid; McCave: 0000-0002-4702-5489
22 23 24 25	andrewsj@colorado.edu

- 26 Key words: Iceland Plateau, MIS 2 and 3, sea ice biomarkers, IP₂₅, alkenones,
- 27 sortable silt, sediment provenance

28

29

30 Abstract

31 Radiocarbon dates and marine tephra suggest that the upper 10 m of core MD99-2274, 32 off North Iceland, extends from ~0 to ~65 ka BP. A multi-proxy sediment and biomarker 33 study at a millennial-scale resolution is used to derive a paleoclimate scenario for this 34 area of the southwestern Nordic Seas, which during the Holocene had intermittent 35 excursions of icebergs and a seasonal cover of drifting sea ice across the site. The 36 sortable silt mean size (\overline{SS}) suggests a bottom current (1000 m depth) flow speed 37 maximum to minimum range of ~ 8 cm/s during Marine Isotope Stages 2 to 3, but the data 38 are unreliable for the Holocene. Slow-down in flow speeds may be associated with 39 massive ice and water discharges linked to the Hudson Strait ice stream (H-events) and to 40 melt of icebergs from Greenland in the Nordic seas where convection would have been 41 suppressed. Five pulses of sediment with a distinct felsic component are associated with 42 iceberg transport from E/NE Greenland. Sea ice, open water and sea surface temperature 43 (SST) biomarker proxies (i.e. IP₂₅, HBI III, brassicasterol and alkenones) all point 44 towards near-perennial sea ice cover during MIS 3 and 2, rather than seasonal sea ice or 45 open water conditions. Indeed, our biomarker and sediment data require that the seas 46 north of Iceland experienced a nearly continuous cover of sea ice, together with icebergs 47 calved from ice stream termini, which drifted southward. The cross-correlation of the 48 quartz % records between MD99-2274 and the well-dated core PS2644 in Blosseville 49 Basin indicates significant coherence in the records at a multi-millennial (~8 ky) 50 timescale. A transition to open ocean conditions is evident from the early Holocene 51 onwards, albeit with the occurrence of some drift ice and icebergs.

- 52
- 53

1. Introduction

1.1 Aims of study

58	In order to gain some understanding of the complex marine environments that prevailed
59	during the Late Quaternary we need to employ a multi-proxy approach that not only
60	characterizes ocean surface and bottom water conditions, but also provides direct
61	measurement of glacial influences on sediment supply. Several studies have been
62	reported from the North Iceland Shelf (Fig. 1) that document late glacial/Holocene
63	records (e.g. Andrews et al., 2018; McCave and Andrews, 2019a & b; Sicre et al., 2008;
64	Knudsen et al., 2003) but there are only limited references to conditions during Marine
65	Isotope Stages (MIS) 2, 3 or 4. Therefore, with the primary goal of establishing a
66	framework for environmental conditions in this sector of the Iceland Sea from MIS 2 to
67	MIS 4, we selected a previously unstudied core, MD99-2274 (Labeyrie et al., 2003) (Fig.
68	1), and sampled the upper 10 m. MD99-2274 (henceforth #2274) is a 10-cm diameter 26
69	m Calypso core retrieved from 67.582°N and 17.073°W at 1000 m water depth (Labeyrie
70	et al., 2003) during the IMAGES V cruise aboard the French RV Marion Dufresne. For
71	further context, we note that the core site is located 200 km east of the well-studied core
72	PS2644 (van Kreveld et al., 2000; Voelker, 1999; Voelker and Haflidason, 2015) and 163
73	km from core P57-7 (Sejrup et al., 1989) (Table 1, Fig. 1A). The main questions we
74	posed were: 1) what is an appropriate depth/age model, 2) is there evidence for either
75	pervasive sea ice or an ice shelf (Boers et al., 2018; Dokken et al., 2013; Petersen et al.,
76	2013), which have been called for to explain D-O cycles, 3) what were sea surface
77	temperatures (SSTs), and 4) are there substantial changes in grain-size and mineral
78	composition that can be associated with changes in bottom current flow speed and

79	changes in glacial sediment provenance? Given the location of the core (Fig. 1A) we
80	were particularly interested in whether we could discriminate between glacial sediments
81	derived from Iceland versus those from E/NE Greenland.
82	1.2 Present-day oceanography
83	The Iceland and Greenland Seas (Fig. 1A) are key areas for the formation of dense
84	overflow waters (Brakstad et al., 2019) that flow south through sills in the
85	ScotlandGreenland Ridge (Fig. 1C). The North Icelandic Jet (NIJ) flows southwestward
86	along the slope below ~1000 m (Fig. 1C) with a mean speed of 9.3 m \pm 2.7m/sec towards
87	Denmark Strait (Mauritzen, 1996; Pickart et al., 2005) where it exits to form a major
88	component of North Atlantic Deep Water "and points to the Iceland Sea as an
89	important place for this water mass formation." (Jonsson and Valdimarsson, 2004). The
90	study site lies in a sensitive area with the surface flow being the East Icelandic Current
91	(EIC), which brings cold and relatively fresh surface water as a spin-off from the East
92	Greenland Current (EGC), whereas the North Icelandic Irminger Current (NIIC), sourced
93	from the southern warmer and saltier waters of the North Atlantic Drift (Stefansson,
94	1962), continues as an eastward flow over the inner North Iceland Shelf (NIC) (Fig. 1C).
95	Sea ice in the form of drift ice has been noted to reach the area in modern times,
96	although the average position of the sea ice edge (30% sea ice cover by area) lies north of
97	our site (Divine and Dick, 2006) (Fig. 1C). Thirty years of observations on the presence
98	of icebergs (Andrews et al., 2019), their Fig. 7A) indicate that icebergs from E/NE
99	Greenland drift across the site.
100	

101 1.3 Background to study region

102 Stein and colleagues (Nam et al., 1995; Stein, 2008; Stein et al., 1996) studied a 103 comprehensive suite of cores on the Scoresby Sund Trough Mouth Fan (Fig. 1A, TMF) 104 and reported both ice-rafted debris (IRD) and d¹⁸O on the near-surface planktonic 105 foraminifera *Neoglobauadrina pachyderma* (Table 1). The cores included discrete IRD 106 peaks (counts 10 cm³ > 500 μ m), which they suggested may have been coeval with the 107 massive ice and water discharges of the Hudson Strait Heinrich (HS H-) events (Andrews 108 and Voelker, 2018b; Heinrich, 1988; Hemming, 2004; Hesse 2016). However, whether 109 the response of the Greenland, Iceland, and European ice sheets was synchronous or 110 asynchronous with the Laurentide Ice Sheet collapse events still requires clarification 111 (Dowdeswell et al., 1999; Elliot et al., 2001). Verplanck et al (2009) provided radiogenic 112 isotope data fingerprinting sediment sources from two cores on the Scoresby Sund TMF 113 (O'Cofaigh et al., 2002) (JR51-GC31 and -GC32) and another core (PS62/017-4) from 114 the Blosseville Basin (Milo et al., 2005) (Table 1). Stein et al. (1996) and Verplanck et al. (2009) described events in cores PS1730 and PS62/017-4 (Table 1, Fig. 1) that they 115 116 considered coeval with the HS H-events. Andrews and Voelker (2018) have argued that 117 the use of the term "Heinrich events" for locations such as the Nordic Seas is not 118 appropriate and should be modified. For example, the IRD-rich layer in PS2644 119 correlated with HS H-2 (Voelker et al., 1998) is now referred to as PS2644 IRD#2 120 (Andrews and Voelker, 2018). In our study, events that might correlate with HS H-events 121 will be termed #2274-IRD#.

There is no firm agreement on the extent and duration of sea ice cover in the

123	Nordic Seas during MIS 2 and MIS 3. The CLIMAP data showed an extensive cover
124	across the Nordic Seas (Ruddiman and McIntyre, 1981) whereas Sarnthein et al. (2003)
125	argue that the Nordic Seas during MIS 2 were "largely ice free" during the summer
126	months. The presence of an ice shelf buttressing the East Greenland ice streams has also
127	triggered a debate especially as to a possible answer to the cause of D-O oscillations
128	(Pettersen et al., 2013; van Kreveld et al., 2000). However, other researchers working at
129	sites in the eastern Nordic Seas have rather focused on the role of sea ice (Dokken et al.,
130	2013; Hoff et al., 2016) and changes in the structure of the water column, and concluded
131	that during Greenland interstadials in MIS 3, sea ice was limited in extent and duration.
132	The presence of thick, pervasive sea ice could potentially limit the export of
133	icebergs from E and NE Greenland Ice Streams (Reeh et al., 1999), although the sediment
134	records from numerous sediment cores retrieved from the floor of the Arctic
135	Ocean clearly document that iceberg rafting occurred throughout the Pleistocene (Clark,
136	1990a,b; Stein, 2008; Phillips and Grantz, 2001; Stokes et al., 2005), with some evidence
137	that the timing of events in some cores were similar to those for HS H-events. For
138	example, IRD peaks in cores from the Arctic Ocean were linked to the McClure Ice
139	Stream in the NW sector of the Laurentide Ice Sheet and dated at 12.9, 15.6, ~22, and 30
140	ka BP (Stokes et al., 2005). Iceberg drift is primarily a function of the integrated current
141	direction and speed over depth, plus a component associated with wind forcing on the
142	exposed "sail" (Bigg, 2016). In many ways, sea ice protects icebergs as it inhibits wave
143	action, which is the greatest cause of iceberg disintegration (Bigg, 2016; Venkatesh et al.,
144	1994).

145 1.4 Ice sheet extent MIS 1 to MIS 3

146 #2274 lies only 60 km north of the LGM limit of the Iceland Ice Sheet (IIS) (Fig. 1) 147 (Andrews and Helgadottir, 2003; Patton et al., 2017) with the onset of retreat associated 148 with calibrated radiocarbon dates of between 14 and 15 ka BP, depending on the ocean 149 reservoir correction (Andrews et al., 2018; Andrews and Helgadottir, 2003; Knudsen et 150 al., 2003). Retreat from the maximum position was rapid (Andrews et al., 2018; Norðdahl 151 and Ingolfsson, 2015; Patton et al., 2017), and the ice sheet was at or behind the 152 presentday coast by the time of the deposition of the Vedde tephra ~12.2 ka BP (Lohne et 153 al., 2013). Little detail is known about the history of this ice sheet during MIS 3 (e.g. 154 Andrews et al., 2017). Moles et al. (2019) argued that the North Atlantic Ash Zone II 155 (NAAZII) tephra, dated ca 54 ka BP (Austin and Hibbert, 2012), was erupted under >400 156 m of ice, thus indicating a reasonably extensive IIS during the Greenland ¹⁸O stadial 15.2 157 (Moles et al., 2019; Rasmussen et al., 2014), but no specific information is currently 158 available on the MIS 3 history of the ice sheet. 159 The Greenland Ice Sheet (GIS) extended to the shelf break during the LGM 160 (Funder et al., 2011b; Vasskog et al., 2015) but little is known about its history during 161 MIS 3 or MIS 4. Judging from the delivery of quartz-rich sediments to cores along 162 Denmark Strait, especially PS2644 and MD99-2323 (Andrews and Vogt, 2020a), it is 163 probable that the ice also reached a similar position at these times. Peterson et al. (2013) 164 suggested that an ice shelf may have extended out from the East Greenland Shelf across 165 Blosseville Basin, although the sedimentary evidence for this is scanty (Andrews and 166 Vogt, 2020a).

167

168 *1.5 Bedrock Geology and source signatures*

169	In terms of the mineral composition of #2274 sediments, the bedrock in glacial source
170	areas consists primarily of either mafic (basalt) or felsic (granites/gneisses/sandstones),
171	although finer source identification is possible (Andrews and Vogt, 2014; 2020) (Fig.
172	1A). Further, Andrews and Vogt (2014) demonstrated that the sediment mineral
173	signature of sediments offshore from the Caledonian Fold Belt was dominated by high
174	wt% of quartz, illite, and muscovite. Detrital carbonate sediments derived from the
175	Paleozoic outcrops of N Greenland and the Canadian Arctic are also recognized by color
176	and mineralogy. However, radiogenic isotopes (White et al., 2016; Verplanck et al.,
177	2009) allow more age-related differentiations, which in terms of our region (Fig. 1A and
178	B), consists of Archaean, Paleoproterozoic, Caledonian Fold Belt, and Tertiary volcanics
179	(Henriksen, 2008).
180	2. Environmental proxies and age model
180 181	2. Environmental proxies and age model 2.1 Data methods
180 181 182 183	 2. Environmental proxies and age model 2.1 Data methods The proxies used in this paper are the sea ice biomarkers IP₂₅ and HBI II (Belt et al.,
180 181 182 183 184	 2. Environmental proxies and age model 2.1 Data methods The proxies used in this paper are the sea ice biomarkers IP₂₅ and HBI II (Belt et al., 2007; Belt and Müller, 2013; Belt, 2018), brassicasterol and HBI III as indicators of open
180 181 182 183 184 185	 2. Environmental proxies and age model 2.1 Data methods The proxies used in this paper are the sea ice biomarkers IP₂₅ and HBI II (Belt et al., 2007; Belt and Müller, 2013; Belt, 2018), brassicasterol and HBI III as indicators of open water primary production (Volkman, 1986; Belt et al., 2015), alkenones (for SST) (Sicre
180 181 182 183 184 185 186	 2. Environmental proxies and age model 2.1 Data methods The proxies used in this paper are the sea ice biomarkers IP₂₅ and HBI II (Belt et al., 2007; Belt and Müller, 2013; Belt, 2018), brassicasterol and HBI III as indicators of open water primary production (Volkman, 1986; Belt et al., 2015), alkenones (for SST) (Sicre et al., 2008a), % C37:4 alkenone to identify polar surface waters, grain-size indicators of polar surface waters, grain-size indicator
180 181 182 183 184 185 186 187	 2. Environmental proxies and age model 2.1 Data methods The proxies used in this paper are the sea ice biomarkers IP₂₅ and HBI II (Belt et al., 2007; Belt and Müller, 2013; Belt, 2018), brassicasterol and HBI III as indicators of open water primary production (Volkman, 1986; Belt et al., 2015), alkenones (for SST) (Sicre et al., 2008a), % C37:4 alkenone to identify polar surface waters, grain-size indicators of bottom flow and deposition (McCave and Andrews, 2019a, b; McCave et al., 2017),
180 181 182 183 184 185 186 187 188	 2. Environmental proxies and age model 2.1 Data methods The proxies used in this paper are the sea ice biomarkers IP₂₅ and HBI II (Belt et al., 2007; Belt and Müller, 2013; Belt, 2018), brassicasterol and HBI III as indicators of open water primary production (Volkman, 1986; Belt et al., 2015), alkenones (for SST) (Sicre et al., 2008a), % C37:4 alkenone to identify polar surface waters, grain-size indicators of bottom flow and deposition (McCave and Andrews, 2019a, b; McCave et al., 2017), magnetic susceptibility, and quantitative X-ray diffraction estimates of mineral wt%
180 181 182 183 184 185 186 187 188 189	 2. Environmental proxies and age model 2.1 Data methods The proxies used in this paper are the sea ice biomarkers IP₂₅ and HBI II (Belt et al., 2007; Belt and Müller, 2013; Belt, 2018), brassicasterol and HBI III as indicators of open water primary production (Volkman, 1986; Belt et al., 2015), alkenones (for SST) (Sicre et al., 2008a), % C37:4 alkenone to identify polar surface waters, grain-size indicators of bottom flow and deposition (McCave and Andrews, 2019a, b; McCave et al., 2017), magnetic susceptibility, and quantitative X-ray diffraction estimates of mineral wt% (Andrews et al., 2017; Andrews and Vogt, 2014). The X-ray diffraction data for #2274
180 181 182 183 184 185 186 187 188 189 190	2. Environmental proxies and age model 2.1 Data methods The proxies used in this paper are the sea ice biomarkers IP ₂₅ and HBI II (Belt et al., 2007; Belt and Müller, 2013; Belt, 2018), brassicasterol and HBI III as indicators of open water primary production (Volkman, 1986; Belt et al., 2015), alkenones (for SST) (Sicre et al., 2008a), % C37:4 alkenone to identify polar surface waters, grain-size indicators of bottom flow and deposition (McCave and Andrews, 2019a, b; McCave et al., 2017), magnetic susceptibility, and quantitative X-ray diffraction estimates of mineral wt% (Andrews et al., 2017; Andrews and Vogt, 2014). The X-ray diffraction data for #2274 are available (Andrews and Vogt, 2020b) The full details of these methods are included

192

193 2.2 Depth/age model

194 The age model is based on radiocarbon dates and the occurrence of tephras (Table 2). 195 There are significant problems associated with obtaining and interpreting calibrated ages 196 because of the uncertainty of the ocean reservoir correction (ORC), which has varied 197 spatially and temporally, and might be as much as 1000 yr (Andrews et al., 2018; Skinner 198 et al., 2019; Voelker, 1999; Voelker et al., 1998). Three radiocarbon dates were obtained 199 on the near-surface planktonic foraminifera *Neogloboquadrina pachyderma* and the other 200 on lustrous shell fragments. Most tephras older than the Borrobol (ca 14.5 ka BP) (Lind et 201 al., 2016; Matthews et al., 2011) are dated by reference to GIS cores, which themselves 202 are based on a variety of assumptions and whose error increases with the estimated age 203 (Boers et al., 2017). The qXRD data (Andrews et al., 2013; 2018) suggest the presence of 204 high wt% of volcanic glass in two cores on the Iceland Shelf that might be coeval with 205 the Vedde and NAAZII tephras (Brendryen et al., 2011; Lohne et al., 2013). The tephra 206 bed at 607 cm in #2274 was identified by Haflidasson (person. commun. 2018) as being 207 similar to FMAZ IV dated at ~47.12 ka BP (Davies et al., 2008; Rasmussen et al., 2003; 208 Voelker and Haflidason, 2015) and that date is used in our depth/age models (see 209 Supplementary Material). Other discrete layers of black basaltic glass were noted in the 210 shipboard log at 99, 127.5, 717, and 740 cm (Labeyrie et al., 2003, p 477), and age 211 estimates were obtained from our depth/age model (see later). 212 We used the Bayesian radiocarbon calibration program "Bacon" (Blaauw and 213 Christen, 2005) to construct depth/age models, but we also acknowledge the many 214 problems associated with establishing accurate depth/age models (Telford et al., 2003; 215 Trachsel and Telford, 2017). The first model is based solely on the available ¹⁴C dates and

216	the 607 cm tephra (Table 2A and B), while the second one is based on an assumed age
217	estimate for the core top of 500 ± 500 (i.e. little sediment loss) and the inferred presence
218	of the Vedde and NAAZII tephras. Given the uncertainty in the OCR, we used a $DR = 0$.
219	In practice, there is relatively little difference in the median age estimates (Fig. 2A). The
220	average sediment accumulation rate (SAR) is 68 yr/cm or 14.7 cm/ky, thus our 10 cm
221	sampling density permits millennial-scale evaluations, with an average spacing between
222	samples of 0.5 cal ky. Remarkably, for MD cores of this vintage (1999), the upper part of
223	the core shows no evidence of piston-induced stretching (Skinner and McCave, 2003).
224	However, the spread between minimum and maximum age estimates is often
225	considerable given the relative paucity of dated levels, and the Bayesian approach results
226	in an age estimate for the core top of 3600 yr BP, although the estimated date of 500 \pm
227	500 yr BP finds some support in our data. The estimated ages for the logged tephra layers
228	are: ~11, 13.2, 53, and 56 ka BP. A possible age for the 99 cm basaltic tephra is the
229	10.2 ka BP Saksunarvatn tephra (Lohne et al., 2013), which is widespread on the north
230	Iceland Shelf (Krisjansdottir et al., 2007; Eiriksson and Knudson, 2002). All our
231	subsequent data have been converted to a common depth/age model using the data in
232	Table 2B; thus, robust inter-proxy comparisons can be made. To ensure that we have not
233	forced our data into an existing framework we have not tuned our model to other records
234	(Blaauw, 2012).
235	We have also obtained radiocarbon dates on several Vema cores that were taken
236	to the north of Iceland and #2274 (Fig. 1; Table 3) (Manley and Jennings, 1996). The
237	calibrated radiocarbon dates range from ~13 to > 49 ka BP ($DR = 0$) and were obtained

238 on relatively large samples of *N. pachyderma* (Table 3). Several tephras were noted in the

239	core description (Suppl. Data), thus indicating that conditions allowed for the deposition
240	of discrete tephras. The dates from these cores also provide additional information on the
241	presence of significant numbers of the planktonic foraminifera N. pachyderma (Greco et
242	al., 2019) and hence inferences about sea ice cover and light conditions.
243	3. Results
244 245	3.1 Lithology and Grain-size
246	The core log of core #2274 (Labeyrie et al., 2003. p. 477) described the sediment as
247	being principally mottled silty clay with colors ranging between 2.5Y4/2 to 5Y4/1.
248	Visible ice-rafted clasts occur but are not common. The grain-size measurements were
249	undertaken on sample splits from the qXRD samples and only 30 samples were
250	processed, resulting in a coarse resolution data set (on average one sample every 2300
251	yr). The sediments vary between a very coarse to a fine silt with average grain-sizes
252	varying between 54.3 to 6.05 μ m. Sand > 240 μ m is considered to be ice-rafted (McCave
253	and Andrews, 2019a) and occurs in low % throughout the core, except for two notably
254	coarser intervals with $IRD240 > 5\%$, (Fig. 3).
255	We have also undertaken an analysis of the sortable silt mean size (\overline{SS}) and SS%
256	in the 63-10 μ m fractions (McCave et al., 1995). The correlation coefficient between
257	these two variables is $r = 0.804$ indicating, relative to other cores (McCave and Andrews,
258	2019a,b), a somewhat noisy correlation, but a generally current-sorted signal
259	(Supplementary Fig. 1). Computation of the running correlation between SS% and \overline{SS}
260	yields high average values (r >0.9) between ~11 and 42 ka BP but values unacceptable
261	for flow speed inference occur in the Holocene and during brief interval \sim 57 ka BP (Fig.
262	3). Variations in the flow speed of bottom currents (Fig. 1C) in this region reflect

263 changes in the vigour of the ocean overturning system because the NIJ feeds into the
264 Denmark Strait overflow, a key starting point for the North Atlantic western Boundary
265 Undercurrent.

266 The overall range (minimum-maximum) in flow speed indicated by this record is 267 ~8 cm/s. Calibration of the sortable silt proxy yields a sensitivity (cm s⁻¹/ μ m) rather than 268 an absolute speed-size relationship (McCave et al., 2017). In favourable circumstances 269 actual speeds may be estimated by matching core-top \overline{SS} data to nearby current meter 270 measurements and plotting the differences downcore. Unfortunately, because the 271 Holocene data are unreliable as a speed record, we cannot relate this to the present nearby 272 flow speed measurements of 9.3 cm/sec (Jonsson, 2004). Nevertheless, low speeds 273 correspond to HS H 1 (~15 ka), 4 (~40 ka), and 6 (~60 ka) (Fig. 3) as expected from 274 previous work on the impact of Heinrich and other cold events on N. Atlantic circulation 275 (e.g. Kleiven et al., 2011), on the basis of which, speeds of <5 cm/s are probable. 276

277 3.2 Mineral composition

278 On Figure 4, we plot the changes in the weight % of key minerals as determined by 279 qXRD as well as the ratio quartz/pyroxene, which we use as a measure of felsic/mafic 280 bedrock (as opposed to quartz/plagioclase which was used by Moros et al. (2004)). The 281 quartz wt% in a surface grab from this site is ~5% (Andrews and Eberl, 2007), and the 282 median for the whole record is 5.3 % with a maximum of 16.8 %. The magnetic 283 susceptibility record for #2274 (Fig. 2A) is clearly inversely associated with the 284 variations in quartz (Fig. 2B), which, together with the K-feldspars, are diamagnetic 285 minerals (Robinson et al., 1995; Watkins and Maher, 2003). A similar inverse

286 relationship was noted in other cores from the area (Andrews and Vogt, 2020a). Hence 287 the magnetic susceptibility fluctuations support our interpretation that there are 288 substantial variations in the inputs of felsic- versus mafic-rich sediments. 289 The Holocene record mimics that from many sites on the North Icelandic Shelf 290 (NIS) in showing an increase in quartz toward the present-day (Andrews et al., 2019). 291 Quartz and pyroxene have an antiphase relationship ($r^2 = 0.47$), which in part is related to 292 the mineral data summing to 100% (i.e. a closed array), and which provides some 293 constraints on the interpretation (Aitchison, 1986; Chayes, 1971). There are five 294 sustained peaks in the quartz wt % (Fig. 4), and K-feldspar (not shown, K-feldspar values 295 track those of quartz (Andrews and Vogt, 2020a)) are therefore not included in this 296 figure), which we interpret as indicating the influx of sediment from NE Greenland and 297 possibly farther afield from Canada or Fennoscandia. Of these possible mechanisms, 298 icebergs alone carry basal and englacial debris that includes all size fractions from 299 cobbles to clay (> 1 μ m). The variations in quartz are frequently matched by the sum of 300 calcite and dolomite (carbonate) (Fig. 4) ($r^2 = 0.13$, p < 0.0001) although the correlations 301 are much more significant for dolomite ($r^2 = 0.22$) than calcite ($r^2 = 0.07$). This probably 302 represents transport of glacially derived material from the carbonate bedrock of NE and 303 N Greenland and/or the Canadian Arctic Islands and Channels (Darby and Zimmerman, 304 2008; Lakeman et al., 2018; Phillips and Grantz, 2001). The estimated ages for the 5 305 peaks are 14.4, 31.5, 40, 54.7, and 61.8 ka BP (Fig. 4) with a possible smaller episode 306 ~22.8 ka BP. These age estimates are somewhat similar to the HS H-events (Andrews 307 and Voelker, 2018a; Heinrich, 1988; Hemming, 2004) (see Fig. 3) but their duration are

308 longer than the <1 ky episodes of detrital carbonate deposition associated with the HS
309 Hevents (Andrews and Voelker, 2018a).

310	Previous work on sediment sources in this area (Verplanck et al., 2009) provide
311	temporally limited but critical information using radiogenic isotopes on the $<\mbox{or}>63\mu\mbox{m}$
312	fractions. Debris flow from the two Scoresby Sund TMF sites (JR51-GC31,-32, Table 1,
313	Fig. 1B) lay along the 1.7 Ga Paleoproterozoic isochron; the samples contained abundant
314	quartz and lesser amounts of basalt (Verplanck et al., 2009, p.53). However, the
315	sediments in the Blosseville Basin (core 17-4, Fig. 1A, Table 1), some 150 km
316	downstream (Fig. 1A), and considered to be coeval with HS H events-1, -2, and -3, all
317	cluster along the 0.5 Ga isochron (Calendonide bedrock, that outcrops on the eastern edge
318	of NE Greenland north of Scoresby Sund (Fig. 1B)). The same isotopic signature
319	characterized the non-HS H sediments in this core. Pb systematics indicate that the
320	Holocene sediment samples at sites 907 (Table 1) and JR51-GC28 are dominated by the
321	0.5 Ga Calendonides (White et al., 2016). Given the sediment SedUnMix results (Fig. 5)
322	and the reported radiogenic isotopic data (Verplanck et. al., 2009; White et al., 2016), the
323	variations in quartz are most probably associated with sediment discharge events from
324	glacial erosion and transport in ice streams flowing through the numerous fiords north of
325	Scoresby Sund and primarily within the Caledonian Fold Belt outcrop (Evans et al., 2002,
326	2009; Stein, 2008).
277	The SodUnMix analysis included sodiments from NE Greenland (Calendoides

The SedUnMix analysis included sediments from NE Greenland (Calendoides, ~73N; Andrews et al., 2016), E Greenland (basalt), and Iceland. The analysis of possible bedrock sources for the #2274 compositional changes indicated (as might be expected given the bedrock geology of E and NE Greenland, and Iceland) that the NE Greenland

331	source had a granite and gneissic composition, whereas E Greenland and Iceland were
332	linked to basalt and also dolerite (Brooks and Nielsen, 1982; Henriksen, 2008; Higgins et
333	al., 2008; Kristjansson et al., 1979). The results (Fig. 5) indicate that felsic-rich sediments
334	from NE Greenland or farther afield (Arctic Canada, Fennoscandia) (Verplanck et al.,
335	2009) were deposited in a series of events that mimic the influx of quartz to the site (Figs.
336	2B and 4); the correlation between the NE Greenland Calendonides source estimates in
337	#2274 and the quartz wt% explains 79% of the variance. The average "unaccounted" or
338	"unexplained" composition averaged 20 ± 5 % and degree of fit or average absolute bias
339	is 2.3 ± 0.4 wt% indicating that the input mineral source regions provide a good fit to the
340	#2274 mineral compositions. Figure 5 highlights two periods when the mineral
341	composition indicates little deposition of sediment that could be ascribed to a felsic
342	source centered around 20 and 57 ka BP, the latter being a time of substantial deposition
343	of tephra at this site and also a time when glacial ice covered at least some of Iceland
344	(Moles et al., 2019). Source estimates from E. Greenland (sites seaward of the early
345	Tertiary basalt outcrop on the Geikie Plateau) and SW Iceland resulted in nearly identical
346	patterns over the last ~65 ka BP (Fig. 5), but the results from considering Icelandic basal
347	glacial marine diamictons (Dmm) as a source are different. The reasons for these two
348	differing estimates are presently unclear.
240	The many second diverses in the second of the second it with the second se

The provenance time-series thus suggests that we can identify four episodes in the arrival of foreign sourced sediments; 1) from ~65 to 38 ka BP when distinct pulses of NE Greenland sourced sediments arrived; 2) 38 to 17 ka BP when there was an overall decrease in this source with virtually no quartz noted ~20 ka BP; 3) a large pulse of these sediments centered ~ 15 ka BP; and 4) the last 10 ka or so that shows a steady increase in

354	this source. This latter event is also noted in MD99-2269 (Fig. 7) and is matched by
355	changes in the sea ice biomarker IP_{25} (Cabedo-Sanz et al., 2016).
356	3.3 Biomarkers
357	The sea ice biomarkers IP_{25} and HBI II were absent or below the limit of detection in the
358	majority of the sediment sections analyzed with only a few exceptions (Fig. 6). Of the
359	two, HBI II was always more abundant, consistent with findings from previous studies
360	from the study region and elsewhere in the Arctic (e.g. Massé et al., 2011; Xiao et al.,
361	2013; Bai et al., 2019). In some cases, only HBI II could be identified and quantified,
362	with IP ₂₅ likely also present in such horizons but below the detection limit.
363	Alkenones and brassicasterol were found at very low concentrations in glacial
364	sediments contrasting with higher abundances in Holocene sediments. Further, the open
365	water biomarker HBI III was only detected in Holocene sediments (data not shown).
366	While alkenone-SSTs ranged from 7 to 9°C during the Holocene, they are unexpectedly
367	high in the glacial portion of the record, spanning from 8 to 16°C.
368	
369	4. Discussion

370 4.1 Icebergs and IRD during MIS 3 and MIS 2

There is no general theory about the association of sea ice and icebergs and there is no observational census of the icebergs being transported in the EGC as there is for the Labrador Shelf off Newfoundland, apart from a 30-yr count of icebergs on the Iceland shelves (Jónsdóttir *in* Andrews et al., 2019). However, Cabedo-Sanz et al. (2016) and Darby et al. (2017) showed that Holocene variations in the wt% of quartz and the sea ice biomarker IP₂₅ co-varied in cores to the west and south of #2274, yet this was not the case

377	at #2274 during MIS 2 and MIS 3 (Figs. 4 and 6). In N Greenland, semi-permanent
378	seaice conditions prevail today and did so intermittently during the Holocene (Funder et
379	al.,
380	2011a) and it is reasonable to assume that sea-ice would have been more extensive during
381	MIS 2 and MIS 3 when the GIS may have reached the shelf break. However,
382	cosmogenic dates pertaining to the extent of the Northeast Greenland Ice Stream at
383	~78°N (Larsen et al., 2018) have been used to argue that this ice stream was behind its
384	present margin "41-26 ka."
385	Several authors have argued for the presence of an ice shelf fringing the E/NE
386	GIS (Boers et al., 2018; Petersen et al., 2013). However, sediments recovered from
387	beneath ice shelves are invariably fine-grained and lack ice-rafted debris (Domack et al.,
388	1999; Jennings et al., 2019; McKay et al., 2016), whereas the sediments from the
389	Scoresby Sund TMF (Fig. 1) and margin contain clear IRD (Stein et al., 1996) (Fig. 5; see
390	also Table 3). Radiocarbon dates in Stein et al., (1996a) were based on 2000 N.
391	pachyderma specimens per sample, and the numerous MIS 2 and MIS 3 radiocarbon
392	dates on N. pachyderma from PS2644 (Sarnthein et al., 2003; Voelker, 1999; Voelker et
393	al., 1998, 2000) were obtained on 10 mg samples of 800-2300 tests in 1-cm sediment
394	samples. Although the complete ecology of N. pachyderma is not well known, a study of
395	plankton hauls (Greco et al., 2019) indicates a relationship between sea ice cover and
396	chlorophyll, hence suggesting that "light or light-dependent processes might influence
397	the ecology of this species." In addition, several of these cores have discrete tephra layers
398	indicating rapid accumulation of tephras by particles falling through the water column,
399	versus a more dispersed occurrence if the tephra was deposited on multi-year sea ice.

400 Together these data indicate that the sea ice, at times during MIS2 and 3 and probably
401 seasonally, must have had extensive leads and open-water areas(see also Fig. 4 in
402 Sadatzki et al., 2020).

403	Stein et al (1996) present detailed IRD data (counts 10 cm ³ > 500 μ m) from a
404	series of radiocarbon dated cores on the Scoresby Sund TMF (Fig. 1; PS1726 and
405	PS1730, Fig. 1B) that reflect delivery of coarse sediments in a discrete series of episodes
406	(data from www.Pangaea.de). Stein (2008) noted coarse sediment intervals that were
407	attributed to iceberg-rafting at ~4-15, 16, 17-18, 20-21, and 22-23 ka BP. There are no
408	mineral composition data for PS1730, but data exist for PS2644, which is 300 km away
409	(Table 1, Fig. 1B) (Andrews and Vogt, 2020a; Vogt, 2017). A comparison between
410	PS2644 and #2274 (Fig. 8A) indicates that PS2644, closer to the Scoresby Sund Ice
411	Stream, has more quartz wt% but there are some notable corresponding peaks in both
412	series. However, we note that the quartz wt% were obtained via two different but
413	comparable quantitative methods (Andrews and Vogt, 2020a; Vogt, 2017; Zou, 2016). To
414	evaluate similarities and differences between these two sites we used cross-wavelet
415	analysis (Roesch and Schmidbauer, 2018; Hammer et al., 2001) (Fig. 8). The wavelet
416	analysis of the two quartz records (Fig. 8A) demonstrates both important coeval events as
417	well as obvious differences. In addition, the overall match between these sites for the
418	earlier part of the record adds confidence to our age model, and also emphasizes the
419	important differences between 35 and 65 ka. The reconstructed wavelets for PS2644
420	show three major pulses of quartz at ~13, 20, and 29 ka BP, and these are matched by
421	much lower peaks at #2274. Conversely, there are no distinct peaks during MIS 3 in
422	PS2644 but there are in #2274. The sense of the directional arrows in Figure 8B is that

423	PS2644 either leads or is in phase with #2274, and there is a hint of a significant shorter
424	period ~60 ka BP with the two records being anti-phase. The cross-wavelet power
425	spectrum (Fig. 8B) confirms the presence of a significant zone of coherence extending
426	from ~10-34 ka BP with the average cross-wavelet power peaking at ~8 ky (Fig. 8C); this
427	is of course similar to the periodicity of HS H-events (see Clark et al., 2007) (e.g. Fig. 3)
428	but lacks the diagnostic carbonate provenance indicators (Andrews and Voelker, 2018).
429	Possibly because of our 0.6 ky sample spacing (Fig. 8A), there is no obvious D-O signal
430	in the quartz PS2644 data, whereas it is evident in the d 18 O Np data (Suppl. Fig. 3). The
431	difference in signals between #2274 and PS2644 during MIS 3 (Fig. 8A) suggests a
432	change in either the delivery of quartz-rich sediments or a dampening down of sediment
433	delivery.
434	The sortable silt evidence indicates that even at the glacial maximum there was
435	flow along the slope in the precursor to the NIJ. As this presently heads toward the
436	Denmark Strait outflow, we suggest that the Nordic Seas acted as a source of deep waters
437	(probably formed in the east where Atlantic inflow continued (Sarnthein et al, 1994)) that
438	overflowed to the North Atlantic where they formed a deep water mass (Howe et al.,
439	2016; Keigwin and Swift, 2017). The classical view of Nordic Sea behaviour during cold
440	periods is that freshwater from melting ice-sheets and -bergs suppresses convection
441	resulting in a severe reduction or even cessation of the AMOC inflow and overflow (e.g.
442	a recent model, including consideration of the EGC, analysing this is from Liu et al,
443	(2018)). However an emerging view is of a slowdown (not cessation) of Nordic Sea
444	overflows in cold periods (Howe et al., 2016; Keigwin and Swift, 2017). A very recent
445	view is that ice discharges in the North Pacific precede Heinrich events and may be

446	implicated as a triggering mechanism (Walczuk et al., 2020). In the Nordic Seas Atlantic
447	water inflow persisted throughout the Pleistocene glacials over the Norwegian slope
448	(Sarnthein et al., 1994; Newton et al., 2018). The evidence here indicates a persistent
449	outflow along the N Iceland Slope with reductions during HS H- events 1, 4, and 6. Flow
450	speed decreases have been noted for both shallow and deep flows in this region during
451	stadials and glacial intervals of the late and mid-Quaternary (Kleiven et al., 2011;
452	McCave and Andrews, 2019b). The Younger Dryas often shows speed decreases but
453	some cores record increased flow (McCave and Andrews, 2019b), as is seen here. These
454	disparities remain a puzzle.
455	
456	4.2 Rationalizing mineralogical and biomarker proxies for sea ice reconstruction When
457	detected, the concentrations of IP_{25} and HBI II were mainly much lower than those
458	reported previously for mid-late Holocene (ca. 6-0 cal. ka) and deglacial (ca. 15-11 ka)
459	sites from the NIS (Cabedo-Sanz et al., 2016; Xiao et al., 2017). However, the presence
460	and concentration of IP_{25} at ca. 3.7 ka aligns with previous data reported from core
461	JR51GC35 (located 76 km SW of #2274 (Figs.1B and 7; Table 1)) for the mid-Holocene
462	(Cabedo-Sanz et al., 2016), consistent with the delivery of drift ice across the NIS at that
463	time (Fig. 7). The otherwise general absence of IP_{25} and HBI II in #2274 points towards
464	an environment unfavorable for sea ice diatom growth, namely ice-free conditions or a
465	setting of near-permanent ice cover. To distinguish between these two scenarios, we
466	measured three other biomarker types indicative of open water conditions, i.e.
467	brassicasterol, HBI III and alkenones. In the case of brassicasterol, a phytosterol
468	characteristic of marine diatoms (Volkman, 1986), concentrations in selected sediments

469	from #2274 were relatively high in the Holocene section and typically two orders of
470	magnitude lower in older (>14 ka) intervals, indicative of much lower glacial primary
471	productivity reflecting near-perennial sea ice cover. Similarly, HBI III, a biomarker
472	derived from certain open water diatoms (Belt et al., 2017), was only detected in
473	Holocene sections (data not shown). Consistent with these findings, concentrations of
474	alkenones derived from coccolithophorid blooming in mid-late summers were also
475	substantially lower in the older sections compared to those in the Holocene (Fig. 6).
476	Further, the relatively high percentage contribution of the tetra-unsaturated alkenone
477	$C_{37:4}$ prior to the Holocene (mean value 36% compared to 6% for the Holocene) is
478	consistent with a dominance of polar waters (Sicre et al., 2002; Bendle et al., 2005)
479	potentially laden with sea ice. Alkenone-derived SST estimates for the Holocene (ca. 7-
480	9° C) are in line with those reported from other high-resolution studies from the NIS (e.g.
481	Bendle and Rosell-Melé, 2007; Sicre et al., 2008b; Kristjansdottir et al. 2016). In
482	contrast, SST estimates prior to the Holocene were somewhat higher (ca. 8–16°C; mean
483	11.4°C) although the accuracy of such estimates might be lower than for the Holocene
484	owing to the relatively high contributions from $C_{37:4}$ (Bendle and Rosell-Melé, 2004).
485	Anomalously warm SSTs associated with low alkenone concentrations during glacial
486	time have been reported in previous studies and attributed to advection of detrital
487	alkenones (Sicre et al., 2005; Knutz et al., 2011). Such advection by surface currents can
488	introduce significant bias in regions where there are large productivity and SST
489	gradients, thereby overprinting any local signal (Bendle and Rosell-Melé, 2004; Conte et
490	al., 2006). With extremely low alkenone production due to the presence of ice at #2274,
491	transport of allochthonous alkenones within the IC likely explains the deviation in SSTs

492 towards seemingly unrealistic warmer values. In any case, the most robust aspects of the493 biomarker data

494 point towards near-perennial sea ice cover prior to the Holocene, although the presence of both phytosterols and alkenones (albeit at low concentrations) indicates the occurrence of 495 496 at least partial open water conditions, potentially restricted to leads or regions of partial 497 ice melt within otherwise heavily consolidated pack ice. Such conditions would likely 498 have led to short-term and reduced primary production during relatively short summer 499 seasons and limited to the near-surface layer due to a strongly-stratified water column 500 resulting from partial ice melt. Both such uppermost surface layer production conditions 501 in leads and advection of allochthonous alkenones within the IC would account for the 502 anomalously high glacial SSTs.

503 Our conclusion of near-perennial sea ice during MIS 3 and MIS 2 is broadly 504 consistent with outcomes from a recent 120,000 yr reconstruction of sea-ice conditions 505 for the North Atlantic (Maffezzoli et al., 2019) based on the analysis of enriched bromine 506 (Brenr) in an ice core from the Renland Ice Cap (RIC) 560 km WNW from #2274 (Figs. 1 507 and 7 [RIC]). Albeit at a much broader spatial resolution (i.e. 50-85° N), Maffezzoli et al. 508 (2019) proposed that MIS 3 and MIS 2 experienced a (variable) mix of multi-year and 509 first-year sea ice, before transitioning to mainly first-year ice and open water conditions 510 following the termination of the LGM. Interestingly, the greater range of sea ice cover 511 inferred from the RIC Brenr record is not at all clear in our #2274 record, but is evident in 512 a biomarker record from the eastern Nordic Seas, with extensive/near-perennial sea ice 513 cover during stadials and H-events (i.e. comparable to #2274) but ice-free conditions

514 during interstadials (since ca. 90 ka BP); such differences between marine sites in the 515 western and eastern Nordic Seas presumably reflects the variable influence of warm 516 Atlantic water, limited to the eastern Nordic Seas (Hoff et al., 2016). Such regional 517 differences are also evident from a more recent biomarker study in the eastern Nordic Seas, 518 with significant reductions (increases) to sea ice extent during Greenland Interstadials 519 (Stadials) between ca. 41 and 32 ka (Sadatzki et al., 2020). The most prominent signature 520 of first-year ice in the Br_{enr} records occurred during the Younger Dryas and it is noteworthy 521 that a transition from permanent to increasing seasonal sea ice at the NIS was reported for 522 this interval following a biomarker-based reconstruction of surface oceanographic 523 conditions from core #2272 (Fig. 1; 7; Xiao et al., 2017). Further, based on relatively high 524 concentrations of IP₂₅ in MD99-2272 during the Younger Dryas and the preceding Bølling-525 Allerød, Xiao et al. (2017) concluded that biomarker production was likely associated with 526 locally formed first year ice rather than from advected drift ice, the latter being a feature of 527 modern-day oceanography. In contrast, our new data from #2274 indicate still near-528 permanent sea ice cover at this time (Fig. 7). As such, we interpret the combined ice core 529 and marine sediment core data to suggest that as climate conditions ameliorated at the end 530 of the LGM, near-permanent sea ice cover transitioned to first-year seasonal sea ice in the 531 southern part of the region, especially during the Bølling-Allerød and Younger Dryas, 532 likely due to increasing influence of the IC (Xiao et al., 2017); however, the spatial extent 533 of this area of first year ice, located southward of the near-permanent sea ice front that 534 characterizes MIS 3 and MIS 2, remains uncertain at this point (see Fig. 7 sub-panel). 535 Large-scale sea ice reduction then characterized the early Holocene (Fig. 7), with a marked 536 increase in all open water primary productivity biomarker proxies (Fig. 6). Increasing drift 537 ice subsequently became a characteristic of the NIS from the mid Holocene onwards (Fig.538 7; Cabedo-Sanz et al., 2016).

539	Conclusions
540	The multi-proxy sediment data from core #2274 130 km off the north Iceland coast
541	appears at first sight to yield conflicting interpretations depending on whether sediment
542	mineral composition or biomarker proxy data are being considered; however, these can
543	be resolved through a more detailed consideration of the mode(s) of iceberg drift and
544	trajectory through largely consolidated and near-pervasive sea ice. The low- resolution
545	sampling for grain-size restricts detailed interpretation but the sediments are mostly
546	moderately sorted in the silt range allowing a valid record of bottom flow speed. This
547	shows low flow speeds during H-events 1, 4 and 6 related to decrease in Nordic Sea
548	overflow, but not cessation, and a peak in the Younger Dryas.
549	The mineral composition of the < 2 mm grain-size sediment samples shows 5
550	peaks with wt% of quartz values significantly higher than Holocene values. The
551	variations in the quartz wt% are also reflected in the estimated contributions of sediment
552	from Precambrian and Caledonian bedrock sources of NE Greenland. These data require
553	sediment transport to the #2274 site during MIS 3 and MIS 2. If the transport is by
554	icebergs then the sea ice cover had to allow icebergs to drift southward, as they do at
555	present (Figs. 1C, 7). A framework of near-permanent sea ice is confirmed from ultra-low
556	seasonal sea ice and open water biomarker concentrations. On the other hand, the
557	occurrence of non-zero concentrations of some phytoplanktic biomarkers, and numbers of
558	near-surface planktonic foraminfera (Table 3) points to some short-term open water

559	conditions, either from limited sea ice melt or following the opening of leads; the
560	presence of drifting icebergs may be significant in this respect (Fig. 7).
561	An underlying question for HS H-events is whether North Atlantic-wide glacial
562	marine sediment events were triggered as a response to events in Hudson Strait or
563	whether the events are part of a shared response to broader regional oceanographic
564	conditions (e.g. Marcott, et al., 2011; Bassis et al., 2017; Velay-Vitow et al.,
565	2019). Thus, were "coeval" HS H- events on the East Greenland margin (Stein et al.,
566	1996; Andrews et al., 1998; Voelker, 1999), or lagged events (e.g. Baffin Bay: Simon et
567	al., 2014 Jennings et al., 2018), triggered in response to events in the Hudson Strait ice
568	stream? If our quartz and IRD events (Figs. 3 and 8) are indeed coeval with HS H-
569	events, this implies that the stability of ice streams on the NE and E Greenland shelf (and
570	N Iceland) and Hudson Strait may all have been affected by basin-wide subsurface
571	warming in response to a reduction in the Atlantic meridional overturning circulation
572	(Shaffer et al., 2004; Clark et al., 2007; Marcott et al., 2011).
573	
574	Acknowledgements

We thank Dr Anne E. Jennings for picking and providing the foraminifera for the
radiocarbon dates, and Dr Haflidi Haflidasson for the identification and geochemical
analysis of the tephra. Professor Grant Bigg provided guidance on the role of icebergs
and sea ice. We thank the Centre National de la Recherche Scientifique (CNRS) for
MAS salary and the crew of the *RV* Marion Dufresne for coring operations during the
IMAGESV cruise. Data from this study will be archived at: www.Pangaea.de, along with
other IMAGESV data for MD99-2274. We acknowledge the availability and our use of

- data from PS1726, PS1730, and PS2644, which we accessed through www.Pangaea.de.
- 583 Finally, we thank three anonymous reviewers who provided critical
- and helpful feedback on previous versions of the manuscript.

585 Tables

- 586 Table 1 Location of the cores referenced in this study and showing distance from
- 587 MD992274. Cores located on Fig. 1A and B unless noted as NA. The last 5 sites are
- 588 cores that specify sediment sources based on radiogenic isotopic data (Verplanck et al.,
- 589 2009; White et al., 2016).
- 590
- 591 Table 2 A and B: Data for two possible depth/age models for MD99-2274 used in the
- 592 Bayesian "Bacon" model—see text. cc = 0 when date derived from other sources and
- 593 does not require calibration; cc = 2 when ocean reservoir correction DR = 0 is used
- 594 (marine IntelCal 13; Reimer et al., 2013).
- 595
- 596 Table 3: Depth/age data and calibrated ages for radiocarbon dates on near-surface
- 597 planktonic foraminifera (see Figs. 1 and 5). Ocean reservoir correction DR = 0.

598

- 599 Suppl. Table: Geochemistry of the tephra layer (see text). Courtesy Dr. H. Haflidasson)600
- 601 **Figure Captions**
- Figure 1: A) location of MD99-2274 and some other cores noted in the paper (Table 1)
- 603 (ODV, Schlitzer, 2011). The shaded areas represent the late glacial maximum (LGM)
- 604 extent of the ice sheets north of Denmark Strait; the words "basalt" and "felsic" define

605	the primary sediment mineral sources and the arrows show probable flow paths for
606	icebergs. BB = Blosseville Basi; TMF = Scoresby Sund Trough Mouth Fan; B)
607	Additional cores referenced in the paper (see also Table 1). Note that "Cald" on this
608	figure references the southern outcrop of the Greenland Caledonides (Higgins et al.,
609	2008). SS = Scoresby Sund; RIC = Renland Ice Cap. C) Surface and bottom currents and
610	historical April sea-ice edge (1870-1920) (dashed white line; Divine and Dick, 2006).
611	NIIC = North Iceland Irminger Current; EGC = East Greenland Current; EIC = East
612	Iceland Current; Yellow lines: Bottom Currents DSOW = Denmark Strait Overflow
613	Water; NIJ = North Iceland Jet., S = Separated East Greenland Current; OC = Iceland Sea
614	Ocean Convection site (after Harden et al., 2016).
615	
615 616	Figure 2: A) Downcore plot of magnetic susceptibility (SI-5) and Bayesian ((Blaauw and
615 616 617	Figure 2: A) Downcore plot of magnetic susceptibility (SI-5) and Bayesian ((Blaauw and Christen, 2016) depth age plots for MD99-2274 (see Table 2)the red curve is for the
615 616 617 618	Figure 2: A) Downcore plot of magnetic susceptibility (SI-5) and Bayesian ((Blaauw and Christen, 2016) depth age plots for MD99-2274 (see Table 2)the red curve is for the initial available data blue curve is for the estimated ages with the addition of an estimated
615 616 617 618 619	Figure 2: A) Downcore plot of magnetic susceptibility (SI-5) and Bayesian ((Blaauw and Christen, 2016) depth age plots for MD99-2274 (see Table 2)the red curve is for the initial available data blue curve is for the estimated ages with the addition of an estimated core top age and the presence of the Vedde and NAAZII tephras (see text). The Marine
 615 616 617 618 619 620 	Figure 2: A) Downcore plot of magnetic susceptibility (SI-5) and Bayesian ((Blaauw and Christen, 2016) depth age plots for MD99-2274 (see Table 2)the red curve is for the initial available data blue curve is for the estimated ages with the addition of an estimated core top age and the presence of the Vedde and NAAZII tephras (see text). The Marine Isotope Stage (MIS) boundaries are indicated. Location of radiocarbon dates and tephras
 615 616 617 618 619 620 621 	Figure 2: A) Downcore plot of magnetic susceptibility (SI-5) and Bayesian ((Blaauw and Christen, 2016) depth age plots for MD99-2274 (see Table 2)the red curve is for the initial available data blue curve is for the estimated ages with the addition of an estimated core top age and the presence of the Vedde and NAAZII tephras (see text). The Marine Isotope Stage (MIS) boundaries are indicated. Location of radiocarbon dates and tephras are noted. B) Plot of the departures from the median values of magnetic susceptibility
 615 616 617 618 619 620 621 622 	Figure 2: A) Downcore plot of magnetic susceptibility (SI- ⁵) and Bayesian ((Blaauw and Christen, 2016) depth age plots for MD99-2274 (see Table 2)the red curve is for the initial available data blue curve is for the estimated ages with the addition of an estimated core top age and the presence of the Vedde and NAAZII tephras (see text). The Marine Isotope Stage (MIS) boundaries are indicated. Location of radiocarbon dates and tephras are noted. B) Plot of the departures from the median values of magnetic susceptibility (2.03 * 10 ⁻³ SI) and quartz wt% (5.3). Note that the quartz axis is reversed.
 615 616 617 618 619 620 621 622 623 	Figure 2: A) Downcore plot of magnetic susceptibility (SI- ⁵) and Bayesian ((Blaauw and Christen, 2016) depth age plots for MD99-2274 (see Table 2)the red curve is for the initial available data blue curve is for the estimated ages with the addition of an estimated core top age and the presence of the Vedde and NAAZII tephras (see text). The Marine Isotope Stage (MIS) boundaries are indicated. Location of radiocarbon dates and tephras are noted. B) Plot of the departures from the median values of magnetic susceptibility (2.03 * 10 ⁻³ SI) and quartz wt% (5.3). Note that the quartz axis is reversed.

- for a raw data dots) and IRD% >240 μ m. Minima in \overline{SS} are seen at the time of Hudson Strait H
- 626 events -H6, -H4 and -H1 while -H4, -H2, early -H1 and the YD (-H0) are marked by

627	alcusted IPD % Plue here are regions where the data are unreliable indicators of flow
027	elevated IRD %. Blue bars are regions where the data are unreliable indicators of flow
628	speed according to the \overline{SS} -SS% correlation criterion of McCave and Andrews, (2019a)
629	
630	Figure 4: Plots of the variations in the weight% of minerals in MD99-2274, the
631	quartz/pyroxene ratio, and magnetic susceptibility. The green shaded areas represent
632	Holocene values, hence points above represent departures. Numbers 1 through 5 identify
633	IRD quartz peaks. The vertical blue shading areas represent times when the weight% of
634	quartz exceeds Holocene limits.
635	
636	Figure 5: Plots of the sediment source percentages and the degree of fit (DOF), that is the
637	average absolute bias in the SedUnMix calculation of (observed mineral wt% - predicted
638	mineral weight%) for each sample. The top panel shows the location of measurable
639	quantities of gravel, and sites of tephra layers and the radiocarbon dates on near-surface
640	planktonic foraminifera (Table 3). Numbers on the NE Greenland panel represent the
641	peaks in that source and the yellow bars locate areas with minimal input from that area.
642	
643	Figure 6: Biomarker data (A) IP ₂₅ and HBI II concentrations; (B) $\sum C_{37:3}+C_{37:2}$ alkenone
644	and brassicasterol concentrations; C) SST $^{\circ}$ C estimates and the %C _{37:4} ; and D) Weight %
645	quartz and different coarse sediment fractions.
646	
647	Figure 7: Schematic presentation of changes in sea ice and iceberg distribution. The first
648	panel (upper left) shows core locations (see Table 1 and Fig. 1A and B) and the adjoining
649	panel the inferred conditions during MIS 3 and 2 with pervasive sea ice and embedded

650 icebergs. The remaining panels show the proposed evolution in the state of sea ice and

- 651 iceberg supply (red triangles) during deglaciation into the Holocene (adapted from
- 652 Cabedo-Sanz et al., 2016; Xiao et al., 2017). SS =Scoresby Sound, RIC=Renland Ice

653 Cap.

654

655

- 656 Figure 8: Analysis of the quartz wt% records from PS2644 (Vogt, 2017) and MD99-2274
- at a common 0.6 ky spacing. A) Original quartz data (black line) and the wavelet
- reconstructions for the two records; B) Cross-wavelet power spectrum of quartz wt% for
- 659 PS2644 and MD99-2274. The cone of confidence indicated by the light grey areas;
- 660 0.05% probability area demarcated by white line. Arrows pointing to the right mean that
- the two records are in phase, arrows pointing down mean that x leads y, arrows pointing
- to the left indicate the records are anti-phase and pointing up indicates that #2274 leads
- 663 PS2644. C) Cross-wavelet (Fig. 8B) average power. The 0.05 significance period is red
- and delimited by the dashed slanting line. The horizontal dashed line indicates the peak

665 periodicity (~8.5 ky).

666

667

668 Suppl. Figure 1: Data for VM30-130 (see Fig. 1 and Table 3).

669

670 Suppl. Figure 2: Showing the reduced major axis association between sortable silt mean 671 size (\overline{SS}) and SS%.

672

673 Suppl. Figure 3: d¹⁸O N. pachyderma plots of cores from the Blosseville Basin/Scoresby 674 Sund Trough Mouth Fan (see Fig. 1 and 8) from cores PS1730 (Stein et al., 1996a,b, 675 and PS2644 (Voelker, 1999). 676 References 677 Aitchison, J., 1986. The statistical analysis of compositional data. Chapman and Hall, 678 London. 679 Andrews, J.T., Bjork, A.A., Eberl, D.D., Jennings, A.E., Verplanck, E.P., 2015. 680 Significant differences in late Quaternary bedrock erosion and transportation: East 681 versus West Greenland ~ 70° N and the evolution of glacial landscapes. Journal of 682 Quaternary Science 30, 452-463. 683 Andrews, J.T., Cabedo-Sanz, P., Jennings, A.E., Olafsdottir, S., Belt, S.T., Geirsdottir, 684 A., 2018. Sea ice, ice-rafting, and ocean climate across Denmark Strait during rapid 685 deglaciation (similar to 16-12 cal ka BP) of the Iceland and East Greenland shelves. 686 Journal of Ouaternary Science 33, 112-130. 687 Andrews, J.T., Cooper, T.A., Jennings, A.E., Stein, A.B., Erlenkeuser, H., 1998: Late 688 Quaternary iceberg-rafted detritus events on the Denmark Strait-Southeast 689 Greenland continental slope ($\sim 65^{\circ}$ N): related to North Atlantic Heinrich events? 690 Marine Geology 149, 211-228. 691 Andrews, J.T., Dunhill, G., Vogt, C., Voelker, A.H.L., 2017. Denmark Strait during the 692 Late Glacial Maximum and Marine Isotope Stage 3: Sediment sources and transport 693 processes. Marine Geology 390, 181-198. 694 Andrews, J.T., Eberl, D.D., 2007. Quantitative mineralogy of surface sediments on the 695 Iceland shelf, and application to down-core studies of Holocene ice-rafted sediments. 696 Journal of Sedimentary Research 77, 469-479. 697 Andrews, J.T., Eberl, D.D., 2012. Determination of sediment provenance by unmixing 698 the mineralogy of source-area sediments: The "SedUnMix" program. Marine 699 Geology 291, 24-33. 700 Andrews, J.T., Helgadottir, G., 2003. Late Ouaternary ice cap extent and deglaciation of 701 Hunafloaall, NorthWest Iceland: Evidence from marine cores. Arctic, Antarctic, and 702 Alpine Research 35, 218-232.

703 Andrews, J.T., Jónsdóttir, I., Geirsdóttir, A., 2019. Tracking Holocene drift-ice limits on 704 the NW/SW Iceland shelf: comparing proxy data with observation and historical 705 evidence. Arctic, Antarctic, and Alpine Research. 51, 96-114. 706 Andrews, J.T., Kristjansdottir, G.B., Eberl, D.D., Jennings, A.E., 2013. A quantitative 707 Xray diffraction inventory of tephra and volcanic glass inputs into the Holocene 708 marine sediment archives of Iceland: A contribution to V.A.S.T. Polar Research 1-709 15. 710 Andrews, J.T., Stein, R., Moros, M., Perner, K., 2016. Late Quaternary changes in 711 sediment composition on the NE Greenland margin (~73 degrees N) with a focus on 712 the fjords and shelf. Boreas 45, 381–397. 713 Andrews, J.T., Voelker, A., 2018. "Heinrich events" (& sediments): A history of 714 terminology and recommendations for future usage. Quaternary Science Reviews 715 187, 31-40. 716 Andrews, J.T., Vogt, C., 2014. Source to Sink: Statistical identification of regional 717 variations in the mineralogy of surface sediments in the western Nordic Seas (58°N -718 75°N; 10° W -- 40°W). Marine Geology 357, 151-162. 719 Andrews, J.T., Vogt, C., 2020a. Variations in felsic- versus mafic-sources in the Western 720 Nordic Seas during MIS 1 to MIS 4 Marine Geology 424, 106164. 721 Andrews, J.T. and Vogt, C. 2020b: Results of bulk sediment X-ray diffraction analysis and 722 quantification of mineral phases based on the RockJock quantitative analysis. Pangaea. 723 https://doi.pangaea.de/10.1594/PANGAEA.923135 724 Austin, W.E.N., Hibbert, F.D., 2012. Tracing time in the ocean: a brief review of 725 chronological constraints (60-8 kyr) on North Atlantic marine event-based 726 stratigraphies. Quaternary Science Reviews 36, 28-37. 727 Bai, Y., Chen, J.F., Sicre, M.-A., Jin, H., Ren, J., Li, H., Xue, B., Ji, Z., Zhuang, Y., 728 Klein, V., Zhao, M., 2019. Seasonal and spatial variability of sea ice and 729 phytoplankton biomarker flux in the Chukchi Sea (Western Arctic). Progress in 730 Oceanography 171, 22-37. 731 Bassis, J.N., Petersen, S.V. Cathles, L.M., 2017. Heinrich events triggered by ocean 732 forcing and modulated by isostatic adjustment. Nature 542, 332-334.

733	Belt, S.T., 2018. Source-specific biomarkers as proxies for Arctic and Antarctic sea ice,
734	Organic Geochemistry 125, 277–298, doi: 10.1016/j.orggeochem.2018.10.002.
735	Belt, S.T., Masse, G., Rowland, S.J., Poulin, M., Michel, C., LeBlanc, B., 2007. A novel
736	chemical fossil of palaeo sea ice: IP ₂₅ . Organic Gechemistry 38, 16-27.
737	Belt, S.T., Müller, J., 2013. The Arctic sea ice biomarker IP ₂₅ : a review of current
738	understanding, recommendations for future research and applications in palaeo sea
739	ice reconstructions. Quaternary Science Reviews 79, 9-25.
740	
741	Belt, S.T., Cabedo-Sanz, P., Smik, L., Navarro-Rodriguez, A., Berben, S.M. P., Knies, J.,
742	Husum, K., 2015. Identification of paleo Arctic winter sea ice limits and the marginal
743	ice zone: optimised biomarker-based reconstructions of late Quaternary Arctic sea
744	ice. Earth and Planetary Science Letters 431, 127-139.
745	Belt, S.T., Brown, T.A., Smik, L., Tatarek, A., Wiktor, J., Stowasser, G., Assmy, P.,
746	Allen, C.A., Husum, K., 2017. Identification of C25 highly branched isoprenoid
747	(HBI) alkenes in diatoms of the genus Rhizosolenia in polar and non-polar marine
748	phytoplankton. Organic Geochemistry 110, 65–72
749	Bendle, J., Rosell-Melé, A., 2004. Distributions of UK'37 and UK37 in the surface waters
750	and sediments of the Nordic Seas: implications for paleoceanography. Geochemistry,
751	Geophysics, Geosystems, Q11013. doi:10.1029/2004GC000741.
752	Bigg, G.R., 2016. Icebergs. Their Science and links to Global Change. Cambridge
753	University Press.
754	Blaauw, M., 2012. Out of tune: the dangers of aligning proxy archives. Quaternary Science
755	Reviews 36, 38-49.
756	Blaauw, M., Christen, J.A., Bacon Manual, 2016v2.2, p. 11 pp.
757	Blaauw, M., Christen, J.A., 2005. The problems of radiocarbon dating. Science 308,
758	1552-1553.
759	Boers, N., Ghil, M., Rousseau, D.D., 2018. Ocean circulation, ice shelf, and sea ice
760	interactions explain Dansgaard-Oeschger cycles. Proceedings of the National
761	Academy of Sciences of the United States of America 115, E11005-E11014.

762	Boers, N., Goswami, B., Ghil, M., 2017. A complete representation of uncertainties in
763	layer-counted paleoclimate archives. Climate of the Past 13, doi:10.5194/cp-131169-
764	2017
765	Brakstad, A., Vage, K., Havik, L., Moore, G.W.K., 2019. Water Mass Transformation in the
766	Greenland Sea during the Period 1986-2016. Journal of Physical Oceanography 49,
767	121140.
768	Brendryen, J., Haflidason, H., Sejrup, H.P., 2011. Non-synchronous deposition of North
769	Atlantic Ash Zone II in Greenland ice cores, and North Atlantic and Norwegian Sea
770	sediments: an example of complex glacial-stage tephra transport. Journal of
771	Quaternary Science 26, 739-745.
772	Brooks, C.K., Nielsen, T.F.D., 1982. The Phanerozoic development of the
773	Kangerdlugssuaq area, East Greenland. Meddelelser on Gronland, Geoscience 9, 1-
774	30.
775	Cabedo-Sanz, P., Belt, S.T., Jennings, A.E., Andrews, J.T., Geirsdóttir, Á., 2016.
776	Variability in drift ice export from the Arctic Ocean to the North Icelandic Shelf over
777	the last 8000 years: A multi-proxy evaluation. Quaternary Science Reviews 146,
778	99115.
779	Chayes, F., 1971. Ratio correlation. University of Chicago Press, Chicago.
780	Clark, D.L., 1990a. Arctic Ocean ice cover; Geologic history and climatic significance,
781	The Geology of North America. Geological Society of America, pp. 53-62.
782	Clark, D.L., 1990b. Stability of the Arctic Ocean ice-cover and Pleistocene warming
783	events: Outlining the problem, in: Bleil, U., Thiede, J. (Eds.), Geological History of
784	the Polar Oceans: Arctic Versus Antarctic. Kluwer Academic Publishers,
785	Netherlands, pp. 273-287.
786	Clark, P. U., Hostetler, S. W., Pisias, N. G., Schmittner, A., and Meissner, K. J., 2007.
787	Mechanisms for a \sim 7 kyr climate and sea-level oscillation during marine isotope stage
788	3. In Schmittner, A., Chiang, J., and Hemming, S. (eds.), Ocean Circulation:
789	Mechanisms and Impacts. Geophysical Monograph 173. Washington, DC: AGU, pp.
790	209–246.

791 Conte, M. H., M.-A. Sicre, C. Rühlemann, J. C. Weber, S. Schulte, D. Schulz-Bull, T.

792 Blanz, 2006. Global temperature calibration of the alkenone unsaturation index 793 $(U^{K'}_{37})$ in surface waters and comparison with surface sediments, *Geochemistry*, 794 Geophysics, Geosystems 7, 002005, doi:10.1029/2005GC001054. 795 Darby, D.A., Andrews, J.T., Belt, S.T., Jennings, A.E., Cabedo-Sanz, P., 2017. Holocene 796 cyclic records of ice-rafted debris and sea ice variations on the East Greenland and 797 NW Iceland margins. Antarctic, Arctic, and Alpine Research 49, 649-672. 798 Darby, D.A., Zimmerman, P., 2008. Ice-rafted detritus events in the Artic during the last 799 glacial interval, and the timing of the Innuitian and Laurentide ice sheet calving 800 events. Polar Research 27, 114-127. 801 Davies, S.M., Wastegard, S., Rasmussen, T.L., Svensson, A., Johnsen, S.J., Steffensen, 802 J.P., Andersen, K.K., 2008. Identification of the Fugloyarbanki tephra in the NGRIP 803 ice core: a key tie-point for marine and ice-core sequences during the last glacial 804 peroid. Quaternary Science Reviews 23, 409-414. 805 Divine, D.V., Dick, C., 2006. Historical variability of the sea ice edge position in the 806 Nordic Seas. Journal of Geophysical Research 111, 14pp. 807 doi:10.1029/2004JC002851. 808 Dokken, T.M., Nisancioglu, K.H., Li, C., Battisti, D.S., Kissel, C., 2013. 809 DansgaardOeschger cycles: Interactions between ocean and sea ice intrinsic to the 810 Nordic seas. 811 Paleoceanography 28, 491-502. 812 Domack, E.W., Jacobson, E.A., Shipp, S., Anderson, J.B., 1999. Late 813 PleistoceneHolocene retreat of the West Antarctic Ice-Sheet system in the Ross Sea: 814 Part 2 - Sedimentologic and stratigraphic signature. Geological Society of America 815 Bulletin 111, 1517-1536. 816 Dowdeswell, J.A., Elverhoi, A., Andrews, J.T., Hebbeln, D., 1999. Asynchronous de-817 position of ice-rafted layers in the Nordic seas and North Atlantic Ocean. Nature 400, 818 348-351. 819 Eberl, D.D., 2003. User guide to RockJock: A program for determining quantitative 820 mineralogy from X-ray diffraction data. United States Geological Survey, Open File 821 Report 03-78, 40 pp, Washington, DC.

822 Elliot, M., Labeyrie, L., Dokken, T., Manthe, S., 2001. Coherent patterns of ice-rafted 823 debris deposited in the Nordic regions during the last glacial (10-60 ka). Earth and 824 Planetary Science Letters 194, 151–163. 825 Evans, J., Dowdeswell, J. A., Grobe, H., Niessen, F., Stein, R., Hubberten, H.-W. & 826 Whittington, R. J. 2002: Late Quaternary sedimentation in Kaiser Joseph Fjord and 827 the continental margin of East Greenland. In Dowdeswell, J. A. & O Cofaigh, C. 828 (eds.): Glacier-Influenced Sedimentation on High-Latitude Continental Margins, 829 Special Publication 203, 149–179. The Geological Society of London, London. 830 Evans, J., Dowdeswell, J. A., Grobe, H., Niessen, F., Stein, R., Hub- berten, 831 H.-W. & Whittington, R. J. 2002: Late Quaternary sedi- mentation in 832 Kejser Joseph Fjord and the continental margin of East Greenland. Ι 833 Dowdeswell, J. A. &O Cofaigh, C. (eds.): n 834 Glacier-Influenced Sedimentation on High-Latitude Continental 835 Margins, 149–179. The Geological Society of London, Special 836 Publication 203, London. 837 Evans, J., O Cofaigh, C., Dowdeswell, J. A. & Wadhams, P. 2009: 838 Marine geophysical evidence for former expansion and flow of the 839 Greenland Ice Sheet across the north-east Greenland continental shelf. 840 Journal of Quaternary Science 24, 279–293. 841 Evans, J., Dowdeswell, J. A., Grobe, H., Niessen, F., Stein, R., Hub-842 berten, H.-W. & Whittington, R. J. 2002: Late Quaternary sedi-843 mentation in Kejser Joseph Fjord and the continental margin of 844 East Greenland. I n Dowdeswell, J. A. & O Cofaigh, C. (eds.): 845 Glacier-Influenced Sedimentation on High-Latitude Continental 846 Margins, 149–179. The Geological Society of London, Special 847 Publication 203, London. 848 Evans, J., O Cofaigh, C., Dowdeswell, J. A. & Wadhams, P. 2009: 849 Marine geophysical evidence for former expansion and flow of the 850 Greenland Ice Sheet across the north-east Greenland continental shelf. 851 Journal of Quaternary Science 24, 279–293.

852	Evans, J., Dowdeswell, J. A., Grobe, H., Niessen, F., Stein, R., Hubberten, HW. &
853	Whittington, R. J. 2002: Late Quaternary sedi- mentation in Kejser Joseph Fjord and
854	the continental margin of East Greenland. In Dowdeswell, J. A. & O Cofaigh, C.
855	(eds.): Glacier-Influenced Sedimentation on High-Latitude Continental Margins,
856	149–179. The Geological Society of London, Special Publication 203, London.
857	Evans, J., O Cofaigh, C., Dowdeswell, J. A. & Wadhams, P. 2009: Marine geophysical
858	evidence for former expansion and flow of the Greenland Ice Sheet across the
859	northeast Greenland continental shelf. Journal of Quaternary Science 24, 279–293.
860	Funder, S., Goosse, H., Jepsen, H., Kaas, E., Kjaer, K.H., Korsgaard, N.J., Larsen, N.K.,
861	Linderson, H., Lysa, A., Moller, P., Olsen, J., Willerslev, E., 2011a. A 10,000-year
862	record of Arctic Ocean sea-ice variability-view from the beach. Science, 333,
863	747750.
864	Funder, S., Kjeldsen, K.K., Kjaer, K.H., O Cofaigh, C., 2011b. The Greenland Ice Sheet
865	during the past 300,000 years: A review. p. 699-713 In, Ehlers, J., Gibbard, P.L., and
866	Hughes, P.D., (Eds), Quaternary Glaciations - Extent and Chronology: A Closer
867	Look. Elsevier, Amsterdam
868	Greco, M., Jonkers, L., Kretschmer, K., Bijma, J., Kucera, M., 2019. Depth habitat of the
869	planktonic foraminifera Neogloboquadrina pachyderma in the northern high latitudes
870	explained by sea-ice and chlorophyll concentrations. Biogeosciences 16, 3425-3437.
871	Hammer, O, Harper, D.A.T., and Ryan, P.D., 2001. PAST: Paleontological statistics
872	software package for education and data analysis. Palaelontological Electonica,
873	http://palaeo-electorica.org
874	Harden, B.E., Pickart, R.S., Valdimarsson, H., Vage, K., de Steur, L., Richards, C., Bahr,
875	F., Torres, D., Borve, E., Jonsson, S., Macrander, A., Osterhus, S., Havik, L.,
876	Hattermann, T., 2016. Upstream sources of the Denmark Strait Overflow:
877	Observations from a high-resolution mooring array. Deep-Sea Research Part I-
878	Oceanographic Research Papers 112, 94-112
879	Hassani, H., 2007. Singular Spectrum Analysis: Methodology and comparison. Journal of
880	Data Science 5, 239-257.
881	Heinrich, H., 1988. Origin and consequences of cyclic ice rafting in the Northeast
882	Atlantic Ocean during the past 130,000 years. Quaternary Research 29, 143-152.

- 883 Hemming, S.R., 2004. Heinrich Events: Massive late Pleistocene detritus layers of the
- North Atlantic and their global climate imprint. Reviews of Geophysics 42,
 RG1005/2004.
- Henriksen, H., 2008. Geological history of Greenland. Geological Survey of Denmarkand Greenland, Copenhagen.
- Hesse, R., 2016. Ice-proximal Labrador Sea Heinrich layers: a sedimentological
- approach. Canadian Journal of Earth Sciences 53, 71-100.
- Higgins, A.K., Gilotti, J.A., Smith, P.M., 2008. The Greenland Caledonides. Evolution of
 the Northeast margin of Laurentia. Geological Society of America, Boulder, CO, p.
 368.
- Hoff, U., Rasmussen, T.L., Stein, R., Ezat, M.M., Fahl, K., 2016. Sea ice and
- 894 millennialscale climate variability in the Nordic seas 90 kyr ago to present. Nature895 Communications 7. 12247.
- Howe, J.N.W., Piotrowski, A.M., Noble, T.L., Mulitza, S., Chiessi, C.M., Bayon, G.,
- 897 2016. North Atlantic Deep Water production during the Last Glacial Maximum.
- 898 Nature Commun. 7, 11765. doi: 10.1038/ncomms11765
- Jennings, A.E., Andrews, J.T. et al., 2018. Baffin Bay paleoenvironments in the LGM
 and HS1: Resolving the ice-shelf question. Marine Geology. 402, 5-16.
- 901 Jennings, A.E., Reilly, B., Andrews, J.T., Hogen, K., Walczak, M., Stoner, J., Mix, A.C.,
- Jakobsson, M., 2019. Modern ice shelf facies and Early Holocene counterparts in
- 903 Petermann Fjord and Northern Nares Strait, International Association Sedimentology904 IAS, Rome.
- Jonsson, S., and Valdimarsson, H. 2004. A new path for the Denmark Strait overflow
 water from the Iceland Sea to Denmark Strait. Geophysical Research Letters 31, 4pp.
 doi:10.1029/2003GL019214, 012004.
- Jonsson, S., Valdimarsson, H., 2005. The flow of Atlantic water to the North Icelandic
 Shelf and its relation to the drift of cod larvae. ICES Journal of Marine Science 62,
 1350-1359.
- 911 Jonsson, S., Briem, J., 2003. Flow of Atlantic water west of Iceland and onto the north
- 912 Atlantic shelf. ICES Marine Science Symposia 219, 326-328.

913	Keigwin L.D. and Swift S.A. 2017 Carbon isotone evidence for a northern source of
014	doon motor in the alogical mostern North Atlantic Duranding of the Net
914	deep water in the glacial western North Atlantic. Proceedings of the National
915	Academy of Sciences of the United States of America 114, 2831-2835.
916	Knudsen, KL., Eiriksson, J., 2002. Application of tephrachronology to the timing and
917	correlation of palaeoceanographic events recorded in Holocene and Late Glacial
918	shelf sediments off North Iceland. Marine Geology 191, 165-188.
919	Konert, M., Vandenberghe, J., 1997. Comparison of laser grain size analysis with pipette
920	and sieve analysis: a solution for the underestimation of the clay fraction.
921	Sedimentology 44, 523-535.
922	Knudsen, KL., Jiang, D., Jansen, E., Eiriksson, J., Heinemeier, J., Seidenkrantz, MS.,
923	2003. Environmental changes off North Iceland during the deglaciation and the
924	Holocene: foraminifera, diatoms and stable isotopes. Marine Micropaleontology 953,
925	1-33.
926	Knutz, P.C., H. Ebbesen, S. Christiansen, MA. Sicre, and A. Kuijpers, 2011. The triple
927	stage deglacial retreat of the southern Greenland Ice Sheet driven steps by vigorous
928	Irminger Current, and its significance for the Younger Dryas cooling,
929	Paleoceanography, 26, PA3204, doi:10.1029/2010PA002053, 2011
930	Kristjansdottir, G.B., Stoner, J.S., Gronvold, K., Andrews, J.T., Jennings, A.E., 2007.
931	Geochemistry of Holocene cryptotephras from the North Iceland Shelf (MD992269):
932	Intercalibration with radiocarbon and paleomagnetic chronostratigraphies.
933	The Holocene 17, 155-176.
934	Kristjansson, L., Saemundsson, K., Thorarinsson, S., Saemundsson, K., Thorarinsson, S.,
935	Einarsson, P., Bjornsson, S., Simonarson, L., Fridleifsson, I., Jaksobsson, S.P.,
936	Bjornsson, H., 1979. Special Issue: Geology of Iceland. Jökull 29, 1-101.
937	Labeyrie, L., Jansen, E., Cortijo, E., 2003. Les rapports de campagnes a la mer
938	MD114/IMAGES V. Institut Polaire Francais Paul-Emile Victor, Brest.
939	
940	Labeyrie, L.D. and Cortijo, E. 2005: Physical properties of sediment core MD99-2274.
941	Pangaea. https://doi.org/10.1594/PANGAEA.253605

- 942 Lakeman, T.R., Pienkowski, A.J., Nixon, F.C., Furze, M.F.A., Blasco, S., Andrews, J.T.,
- 943 King, E.L., 2018. Collapse of a marine-based ice stream during the early Younger
- 944 Dryas chronozone, western Canadian Arctic. Geology 46, 211-214.
- Larsen, N.K., Levy, L.B., Carlson, A.E., Buizert, C., Olsen, J., Strunk, A., Bjork, A.A. and Skov,
- 946 D.S. (2018) Instability of the Northeast Greenland Ice Stream over the last 45,000 years.
- 947 Nature Communications, 9.doi: 10.1038/s41467-018-04312-7
- Lind, E.W., Lilja, C., Wastegard, S., Pearce, N.J.G., 2016. Revisiting the Borrobol
 Tephra. Boreas 45, 693-643.
- Liu, Y., Hallberg, R., Sergienko, O., Samuels, B.L., Harrison, M., & Oppenheimer, M.
- 951 2018. Climate response to the meltwater runoff from Greenland ice sheet: evolving
- 952 sensitivity to discharging locations. Climate Dynamics, 51, 1733–1751. doi

953 10.1007/s00382-017-3980-7

- Lohne, O.S., Mangerud, J., Birks, H.H., 2013. Precise C-14 ages of the Vedde and
- 955 Saksunarvatn ashes and the Younger Dryas boundaries from western Norway and
- their comparison with the Greenland Ice Core (GICC05) chronology. Journal ofQuaternary Science 28, 490-500.
- 958 Maffezzoli, N., Vallelonga, P., Edwards, R., Saiz-Lopez, A., Turetta, C., Kjaer, H.A.,
- Barbante, C., Vinther, B., Spolaor, A., 2019. A 120 000-year record of sea ice in the
 North Atlantic? Climate of the Past 15, 2031-2051.
- 961 Manley, W.F., Jennings, A.E., 1996. Radiocarbon Date List VIII: Eastern Canadian
- Arctic, Labrador, Northern Quebec, East Greenland Shelf, Iceland Shelf, and
 Antarctica. INSTAAR, University of Colorado, p. 163 pp.
- 964 Marcott, S.A., Clark, P.U., Padman, L., Klinkhammer, G.P., Springer, S.R., Liu, Z., Otto-
- 965 Bliesner, B.L., Carlson, A.E., Ungerer, A., Padman, J., He, F., Cheng, J. and
- 966 Schmittner, A., 2011: Ice-shelf collapse from subsurface warming as a trigger for
- 967 Heinrich events. Proceedings of the National Academy of Sciences of the United

968 States of America 108, 13415-13419

- 969 Marshall, N.R., Piper, D.J.W., Saint-Ange, F., Campbell, D.C., 2014. Late Quaternary
- 970 history of contourite drifts and variations in Labrador Current flow, Flemish Pass,
- 971 offshore eastern Canada. Geology Marine Letters 34, 457-470.
- 972 doi:10.1007/s00367014-0377-z.

- 973 Mauritzen, C., 1996. Production of dense overflow waters feeding the North Atlantic
- 974 across the Greenland-Scotland Ridge. 1. Evidence for a revised circulation scheme.
 975 Deep-Sea Research I 43, 769-806.
- 976 Massé, G., Rowland, S.J., Sicre, M.-A., Jacob, J., Jansen, E., Belt, S.T., 2008. Abrupt
- 977 climate changes for Iceland during the last millennium: Evidence from high resolution
- 978 sea ice reconstructions. Earth and Planetary Science Letters 269, 565–569. Matthews,
- 979 I.P., Birks, H.H., Bourne, A.J., Brooks, S.J., Lowe, J.J., Macleod, A., PyneO'Donnell,
- 980 S.D.F., 2011. New age estimates and climatostratigraphic correlations for
- 981 the Borrobol and Penifiler Tephras: evidence from Abernethy Forest, Scotland.
 982 Journal of Quaternary Science 26, 247-252.
- McCave, I.N., Andrews, J.T., 2019a. Distinguishing current effects in sediments
 delivered to the ocean by ice. I. Principles, methods and examples. Quaternary
 Science Reviews 212, 92-107.
- McCave, I.N., Andrews, J.T., 2019b. Distinguishing current effects in sediments
 delivered to the ocean by ice. II. Glacial to Holocene changes in North Atlantic high
 latitude upper ocean flows. Quaternary Science Reviews 223, no. 105902, 21pp.
- McCave, I.N., Hall, I.R., Bianchi, G.G., 2006. Laser vs settling velocity differences in silt
 grainsize measurements: estimation of palaeocurrent vigour. Sedimentology 53,
 91928.
- 992 McCave, I.N., Manighetti, B. and Robinson, S.G., 1995. Sortable silt and fine sediment
- 993 size/composition slicing: parameters for palaeocurrent speed and palaeoceanography.994 Paleoceanography 10, 593-610.
- McCave, I.N., Thornalley, D.J.R., Hall, I.R., 2017. Relation of sortable silt grain-size to
 deep-sea current speeds: Calibration of the 'Mud Current Meter'. Deep-Sea Research
 Part I 127, 1-12.
- McCave, I.N., Syvitski, J.P.M, 1991. Principles and methods of geological particle size
 analysis, in: Syvitski, J.P.M. (Ed.), Principles, methods and application of particle
 size analysis. Cambridge University Press, pp. 3-21.
- 1001 McKay, R., Golledge, N.R., Maas, S., Naish, T., Levy, R., Dunbar, G., Kuhn, G., 2016.
- 1002 Antarctic marine ice-sheet retreat in the Ross Sea during the early Holocene.
- 1003 Geology 44, 7-10.

- 1004 Millo, C., Sarnthein, M., Erlenkeuser, H., Frederichs, T., 2005. Methane-driven Late
- Pleistocene delta C-13 minima and overflow reversals in the southwestern Greenland Sea.
 Geology 33, 873–876.
- 1007 Moles, J.D., McGarvie, D., Stevenson, J.A., Sherlock, S.C., Abbott, P.M., Jenner, F.E.,
- Halton, A.M., 2019. Widespread tephra dispersal and ignimbrite emplacement from a
 subglacial volcano (Torfajokull, Iceland). Geology 47, 577-580.
- 1010 Moros, M., McManus, J., Rasmussen, T., Kuijpers, A., Dokken, T., Snowball, I., Nielsen,
- 1011 T., Jansen, E., 2004. Quartz content and the quartz-to-plagioclase ratio determined
- 1012 by X-ray diffraction: a proxy for ice rafting in the northern North Atlantic? Earth and
- 1013 Planetary Science Letters 218, 389-401.
- 1014 Newton, A.M.W., Huuse, M., and Brocklehurst, S.H. 2018. A persistent Norwegian
- 1015 Atlantic Current through the Pleistocene glacials. Geophysical Research Letters 45,
- 1016 5599–5608. https://doi.org/10.1029/2018GL077819
- 1017 Nam, S.-I., Stein, R., Grobe, H., Hubberten, H., 1995. Late Quaternary glacial/interglacial
- 1018 changes in sediment composition at the East Greenland continental margin and their
- 1019 paleoceanographic implications. Marine Geology 122, 243-262.
- 1020 Norðdahl, H., Ingolfsson, O., 2015. Collapse of the Icelandic ice sheet controlled by
 1021 sealevel rise? Arktos, 1 pp 1-18.
- 1022 O'Cofaigh, C., Taylor, J., Dowdeswell, J.A., Rosell-Mele, A., Kenyon, N.H., Evans, J.,
- 1023 Mienert, J., 2002. Geological evidence for sediment reworking on high-latitude
- 1024 continental margins and its implications for palaeoceanography: insights from the
- 1025 Norwegian– Greenland Sea. In: Dowdeswell, J.A., Ó Cofaigh, C. (Eds.),
- 1026 Glacierinfluenced sedimentation on high-latitude continental margins. Geological Society
- 1027 London Special Paper, 20. Geological Society, London, pp. 325–348.
- Paillard, D., Labeyrie, L., Yiou, P., 1996. Macintosh program performs time-seriesanalysis. EOS 77, 379.
- 1030 Patton, H., Hubbard, A., Bradwell, T., Schomacker, A., 2017. The configuration,
- 1031 sensitivity and rapid retreat of the Late Weischelian Icelandic Ice Sheet.
- 1032 EarthScience Reviews 166, 223-245.
- 1033 Petersen, S.V., Schrag, D.P., Clark, P.U., 2013. A new mechanism for
- 1034 DansgaardOeschger cycles. Paleoceanography 28, 24-30.

- 1035 Phillips, R.L., Grantz, A., 2001. Regional variations in provenance and abundance of 1036 icerafted clasts in Arctic Ocean sediments: implications for the configuration of late 1037 Ouaternary oceanic and atmospheric circulation in the Arctic. Marine Geology 172, 1038 91-115. 1039 Pickart, R.S., Torres, D.J., Fratantoni, P.S., 2005. the East Greenland spill jet. Journal of 1040 Physical Oceanography 35, 1037-1053. 1041 Prahl, F.G., Muelhausen, L.A., Zahnle, D.L., 1988, Further evaluation of long-chain 1042 alkenones as indicators of paleoceanographic conditions. Geochimica et 1043 Cosmochmicia Acta 52, 2303-2310. 1044 Rasmussen, S.O., Bigler, M., Blockley, S.P., Blunier, T., Buchardt, S.L., Clausen, H.B., 1045 Cvijanovic, I., Dahl-Jensen, D., Johnsen, S.J., Fischer, H., Gkinis, V., Guillevic, M., 1046 Hoek, W.Z., Lowe, J.J., Pedro, J.B., Popp, T., Seierstad, I.K., Steffensen, J.P., 1047 Svensson, A.M., Vallelonga, P., Vinther, B.M., Walker, M.J.C., Wheatley, J.J., 1048 Winstrup, M., 2014. A stratigraphic framework for abrupt climatic changes during 1049 the Last Glacial period based on three synchronized Greenland ice-core records: 1050 refining and extending the INTIMATE event stratigraphy. Quaternary Science
 - 1051 Reviews 106, 14-28.

1052 Rasmussen, T.L., Wastegard, S., Kuijpers, A., van Weering, T.C.E., Heinemeier, J.,

- 1053 Thomsen, E., 2003. Stratigraphy and distribution of tephra layers in marine sediment
- 1054 cores from the Faeroe Islands, North Atlantic. Marine Geology 199, 263-277.
- 1055 Reeh, N., 2004. Holocene climate and fjord glaciations in Northeast Greenland:
- 1056 implications for IRD deposition in the North Atlantic. Sedimentary Geology 165,1057 333-342.

1058 Reeh, N., Mayer, C., Miller, H., Thomsen, H.H., Weidick, A., 1999. Present and past

- climate control on fjord glaciations in Greenland: Implications for IRD-deposition in
 the sea. Geophysical Research Letters 26, 1039-1042.
- 1061 Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Grootes,
- 1062 P.M., Guilderson, T.P., Haflidason, H., Hajdas, I., Hatt?, C., Heaton, T.J., Hoffmann, D.L.,
- 1063 Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer,
- 1064 R.W., Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, C.S.M. and van

1065	der Plicht, J. (2013) IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0-
1066	50,000 Years cal BP. Radiocarbon, 55, 1869-1887.
1067	Robinson, S.G., Maslin, M.A., McCave, I.N., 1995. Magnetic susceptibility variations in
1068	Upper Pleistocene deep-sea sediments of the N.E. Atlantic: Implications for ice
1069	rafting and palaeocirculation at the Last Glacial Maximum. Paleoceanography 10,
1070	221-250.
1071	Roesch, A. and Schmidbauer, H.W.C., 2018: WaveletComp: Computational Wavelet
1072	Analysis. R package 1.1. https//CRAN.R-project.org/package=Wavelet.Comp.
1073	Ruddiman, W.F., McIntyre, A., 1981. The North Atlantic Ocean during the last
1074	deglaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 35, 145-214.
1075	Sadatzki, H., Maffezzoli, N., Dokken, T.M., Simon, M.H., Berben, S.M.P., Fahl, K.,
1076	Kjær, H.A., Spolaor, A., Stein, R., Vallelonga, P., Vinther, P.M., Jansen, E., 2020.
1077	Rapid reductions and millennial-scale variability in Nordic Seas sea ice cover during
1078	abrupt glacial climate changes. Proceedings of the National Academy of Sciences
1079	202005849. doi.org/10.1073/pnas.2005849117.
1080	Sarnthein, M., Winn, K., Jung, S., Duplessy, J. C., Labeyrie, L., Erlenkeuser, H., and
1081	Ganssen, G., 1994. Changes in East Atlantic deepwater circulation over the last
1082	30,000 years – An eight-time-slice record. Paleoceanography 9, 209–267.
1083	Sarnthein, M., Pflaumann, U., Weinelt, M., 2003. Past extent of sea ice in the northern
1084	North Atlantic inferred from foraminiferal paleotemperature estimates.
1085	Paleoceanography 18, doi:10.1029/2002PA000771.
1086	Schlitzer, R., 2011. Ocean Data View, http://odv.awi.de,2011.
1087	
1088	Sejrup, H.P., Sioholm, J., Furnes, H., Beyer, I., Eide, L., Jansen, E., Mangerud, J., 1989.
1089	Quaternary tephrachronology on the Iceland Plateau, north of Iceland. Journal of
1090	Quaternary Science 4, 109-114.
1091	Shaffer, G., S.M. Olsen, and C.J. Bjerrum, 2004. Ocean subsurface warming as a
1092	mechanism for coupling Dansgaard-Oeschger climate cycles and ice-rafting events.
1093	Geophysical Research Letters 31, L24202, doi:10.1029/2004GL020968.

- 1094 Sicre, M.-A., Bard, E., Ezat, U., Rostek, F., 2002. Alkenone distributions in the North
- 1095 Atlantic and Nordic sea surface waters. Geochemistry, Geophysics, Geosystems,
- 1096 Article 2001GC000159.
- 1097 Sicre, M.-A., Labeyrie, L., Ezat, U., Duprat, J., Turon, J-L, Schmidt, S., Michel, E.,
- Mazaud A., 2005. Southern Indian Ocean response to Northern Hemisphere Heinrich
 events. Earth and Planetary Science Letters 240, 724-731, doi: 10.1016.
- 1100 Sicre, M.-A., Jacob, J., Ezat, U., Rousse, S., Kissel, C., Yiou, P., Eiriksson, J., Knudsen,
- 1101 K.-L., Jansen, E., Turon, J.-L., 2008a. Decadal variability of sea surface temperatures
- off North Iceland over the last 2000 years. Earth and Planetary Science Letters 268,1103 137-142.
- Sicre, M-A., Yiou, P., Eiriksson, J., Ezat, U., Guimbaut, E., Dahhaoui, I., Knudsen, K.L.,
 Jansen, E., Turon, J.-L., 2008b. A 4500-year reconstruction of sea surface
- 1106 temperature variability at decadal time scales off North Iceland. Quaternary Science1107 Reviews 27, 2041-2047.
- 1108 Simon, Q., Hillaire-Marcel, C., St-Onge, G., Andrews, J.T., 2014. North-eastern
- Laurentide, western Greenland and southern Innuitian ice stream dynamics duringthe last glacial cycle. Journal of Quaternary Science 29, 14-26.
- 1111 Skinner L.C. & I.N. McCave. Analysis and modelling of the behaviour of gravity and
- piston corers based on soil mechanical principles. Marine Geology 199, 181-204.
- 1113 Skinner, L. C., Muschitiello, F., & Scrivner, A. E., 2019. Marine reservoir age variability
- 1114 over the last deglaciation: Implications for marine carbon cycling and prospects for
- regional radiocarbon calibrations. Paleoceanography and Paleoclimatology 34,

1116 1807–1815. https://doi.org/10.1029/2019PA003667

- 1117 Stefansson, U., 1962. North Icelandic Waters. Rit Fiskideildar III. Bind, Vol 3, 269.
- 1118 Stein, R., 2008. Arctic Ocean Sediments. Processes, Proxies, and Paleoenvironment.
- 1119 Elsevier, New York.
- Stein, R., Nam, S.-I., Grobe, H., Hubberten, H., 1996a. Late Quaternary glacial history
 and short-term ice-rafted debris fluctuations along the East Greenland continental
 margin, in: Andrews, J.T., Austin, W.A., Bergsten, H., Jennings, A.E. (Eds.), Late

- 1123 Quaternary paleoceanography of North Atlantic margins. Geological Society,
- 1124 London, pp. 135-151.
- Stein, R., Nam, S.-II., Grobe, H., Hubberten, Hans-Wolfgang, H., 1996b. Sedimentologyand stable isotope ratios of cores from the East Greenland continental margin.
- 1127 PANGAEA, https://doi.org/10.1594/PANGAEA.733965,
- 1128 Stokes, C.R., Clark, C.D., Darby, D.A., Hodgson, D.A., 2005. Late Pleistocene ice export
- events into the Arctic Ocean from the M'Clure Strait Ice Stream, Canadian Arctic
- 1130 Archipelago. Global and Planetary Change 49, 139-162.
- Telford, R.J., Heegaard, E., Birks, H.J.B., 2003. All age-depth models are wrong: but
 how badly? Quaternary Science Reviews 23, 1-5.
- Trachsel, M., Telford, R.J., 2017 All age-depth models are wrong, but are getting better.
 Holocene 27, 860-869 van Kreveld, S., Sarthein, M., Erlenkeuser, H.,
- 1135 Grootes, P., Jung, S., Nadeau, M.J.,
- 1136 Pflaumann, U., Voelker, A., 2000. Potential links between surging ice sheets,
- circulation changes, and the Dansgaard-Oeschger cycles in the Irminger Sea, 60-18
 ka. Paleoceanography 15, 425-442.
- 1139 Vasskog, K., Langebroek, P.M., Andrews, J.T., Nilsen, J.E.O., Nesje, A., 2015. The
- 1140 Greenland Ice Sheet during the last glacial cycle: Current ice loss and contribution to
- sea-level rise from a palaeoclimatic perspective. Earth-Science Reviews 150, 45-67.
- 1142 Velay-Vitow, J., Peltier, W.R., and Stuhne, G., 2019. Tides of the Glacial Ocean and
- their role in Heinrich Event instability. Geophysical Research Abstracts. 21,
- 1144 EGU2019-3733.
- 1145 Venkatesh, S., Murphy, D.L., Wright, G.F., 1994. On the deterioration of icebergs in the
 1146 marginal ice-zone. Atmosphere-Ocean 32, 469-484.
- 1147 Verplanck, E.P., Farmer, G.L., Andrews, J., Dunhill, G., Millo, C., 2009. Provenance of
- Quaternary glacial and glacimarine sediments along the southeast Greenland margin.
 Earth and Planetary Science Letters 286, 52-62.
- 1150 Voelker, A.H.L., 1999. Zur Deutung der Dansgaard-Oeschger Ereignisse in
- 1151 ultahochauflosenden Sedimentprofilen aus dem Europaischen Nordmeer,
- 1152 DansgaardOeschger events in ultra-high resolution sediment records from the Nordic
- 1153 Seas.

- 1154 Universitat Kiel, Kiel, p. 271.
- 1155 Voelker, A.H.L., Grootes, P.M., Nadeau, M-J., and Sarnthein, M., 2000. Radiocarbon
- levels in the Iceland Sea from 25–53 kyr and their link to the earth's magnetic field
 intensity. Radiocarbon 42, p 437–452
- 1158 Voelker, A.H.L., Haflidason, H., 2015. Refining the Icelandic tephrachronology of the
- 1159 last glacial period The deep-sea core P52644 record from the southern Greenland1160 Sea. Global and Planetary Change 131, 35-62.
- 1161 Voelker, A.H.L., Sarnthein, M., Grootes, P.M., Erlenkeuser, H., Laj, C., Mazaud, A.,
- 1162 Nadeau, M-J., Schleicher, M., 1998: Correlation of marine 14C ages from the Nordic
- 1163 Seas with the GISP2 isotope record: implications for 14C calibration beyond 25 ka
- 1164 BP. Radiocarbon 40, 517-534.
- 1165 Volkman, J.K., 1986. A review of sterol markers for marine and terrigenous organic
 1166 matter. Organic Geochemistry 9, 83–99.
- 1167 Vogt, C., 2017. Bulk mineral assemblage via Quantitative Phase Analysis with X-ray
 1168 diffraction of sediment core PS2644-5 KAL. PANGAEA.
- 1169 <u>https://doi.org/10.1594/PANGAEA.875919</u>
- Walczuk, M.H. & 13 others, 2020. Phasing of millennial-scale climate variability in the
 Pacificand Atlantic oceans. Science, 370, 716–720.
- 1172 Watkins, S.J., Maher, B.A., 2003. Magnetic characterization of present-day deep-sea
- sediments and sources in the North Atlantic. Earth and Planetary Science Letters 214,379-394.
- 1175 White, L.F., Bailey, I., Foster, G.L., Allen, G., Kelley, S.P., Andrews, J.T., Hogan, K.,
- 1176 Dowdeswell, J.A., Storey, C.D., 2016. Tracking the provenance of
- 1177 Greenlandsourced, Holocene aged, individual sand-sized ice-rafted debris using the
- 1178 Pb-isotope compositions of feldspars and Ar-40/Ar-39 ages of hornblendes. Earth
- and Planetary Science Letters 433, 192-203.
- 1180 Xiao, X., Fahl, K., Stein, R., 2013. Biomarker distributions in surface sediments from the
- 1181 Kara and Laptev seas (Arctic Ocean): indicators for organic-carbon sources and
- seaice coverage. Quaternary Science Reviews 79, 40–52.

1183	Xiao, X., Zhao, M., Knudsen, K.L., Sha, L., Eiríksson, J., Gudmundsdóttir, E., Jiang, H.,
1184	Guo, Z., 2017. Deglacial and Holocene sea-ice variability north of Iceland and
1185	response to ocean circulation changes. Earth and Planetary Science Letters 472, 14-
1186	24.
1187	Zou, H., 2016. An X-Ray Diffraction Approach: Bulk Mineral Assemblages as
1188	Provenance Indicator of Sediments from the Arctic Ocean. University of Bremen,
1189	Bremen, pp. 116. https://elib.suub.uni-bremen.de/edocs/00105354-1.pdf.
1190	
1191	
1192	Mathada
1195	Methous
1194	
1195	Magnetic susceptibility: Magnetic susceptibility was measured on-board the Marion
1196	Dufresne (Labeyrie and Cort, 2005) in 2-cm increments (hence ~150yr sampling on
1197	average). Measurements were taken on the 1.5 m core sections. In this area of Iceland, the
1198	marine deposits are strongly affected by erosion and transport of basalt, which results in
1199	very high values of magnetic susceptibility. The export of sediments from the erosion of
1200	bedrock with much lower magnetic susceptibilities, such as granites and other felsicrich
1201	bedrock in NE Greenland and from more distant sources (Verplanck et al., 2009; White et
1202	al., 2016) will lower the magnetic susceptibility readings. It is important to note that
1203	although magnetic susceptibility is straightforward to measure, data interpretation is
1204	complex, being a product of sediment density, grain-size, and mineralogy (Robinson et
1205	al., 1995; Stoner and Andrews, 1999; Watkins and Maher, 2003).
1206	Quantitative X-ray Diffraction (qXRD): The weight % (wt%) of the non-clay
1207	and clay mineral composition of the < 2 mm sediment fractions is based on the US

1208	Geological Survey method (Eberl, 2003), which has been used extensively in this region
1209	(e.g. Andrews et al., 2017; Andrews and Eberl, 2007; Andrews and Vogt, 2014). One
1210	gram of sediment (dry weight) is spiked with 0.111 g of zincite, prepared (Eberl, 2003),
1211	run in the X-ray diffractometer, and the resulting intensity data processed in the Excel
1212	macro-program Rockjock v6. We investigate the wt% and presence/absence of 34
1213	minerals and reduced this number by combining individual mineral wt% into larger
1214	groups, such as k-feldspars, plagioclase, dolomite, and amorphous minerals. Importantly
1215	in the context of this paper we had earlier shown that qXRD can recognize the presence
1216	of tephra and volcanic glass, with some ability to distinguish between basaltic and
1217	rhyolithic glass (Andrews et al., 2013).
1218	To gain a better understanding of possible changes in the provenance of the
1219	mineral compositions we processed the mineral wt% data in a sediment unmixing
1220	program "SedUnMix" (Andrews and Eberl, 2012). Two models were considered, the first
1221	with qXRD results from #2274 with four appropriate bedrocks, namely: basalt, dolerite,
1222	gneiss, and granite; and secondly with the mineral compositions of glacial marine
1223	sediment samples from potential source areas, namely: NE Greenland, E. Greenland, and
1224	Iceland (Suppl. Table of bedrock and marine sediment sources). The program calculates a
1225	"degree of fit" and also derives error estimates on each source within a sample. Ideally,
1226	the sum of the sources should equal 100% but marked deviations from this suggest that
1227	one or more sources have not been included, and/or that the sources are not representative
1228	of the sediment samples.
1229	Grain-size: Sediment was wet-sieved at 2 mm and the grain-size volume

1230 percentages in 96 intervals between 0.01 and 2000 μ m were obtained via a Malvern laser

1231	system. Comparisons between the Malvern and other grain-size systems have been
1232	documented and found comparable (McCave et al., 2006; McCave and Syvitski, 1991).
1233	However, the objections of McCave et al. (2006) to laser sizers on the grounds of grain
1234	shape (Konert and Vandenberghe, 1997) are not valid for equant grains such as those
1235	produced by glacial grinding, as pointed out by Piper (Marshall et al., 2014), and thus
1236	size data are believed valid in the setting of MD2274. Grain-size curves have provided
1237	vital information on sediment transport and deposition in this region, and methods have
1238	been developed to reconstruct variations in bottom current speed for sediments delivered
1239	to the ocean from dominantly glacial sources (McCave and Andrews, 2019a, b) The
1240	calibration of sortable silt mean (mean of 10-63 μ m), a sensitivity, by McCave et
1241	al.,(2017) has been applied to changes in the grainsize record.
1242	Biomarkers : Biomarkers were extracted from freeze-dried subsamples (~2-4 g).
1243	Prior to extraction, samples were spiked with an internal standard (9-octylheptadec-8-ene,
1244	9-OHD, 10 μ L; 10 μ g mL ⁻¹) to permit quantification of the highly branched isoprenoid
1245	(HBI) biomarkers IP ₂₅ , HBI II and HBI III. 5α -androstan- 3β -ol; (0.1 µg) was also added
1246	to permit quantification of brassicasterol in some cases. Samples were then saponified in
1247	a methanolic KOH solution (~5 mL H ₂ O:MeOH (1:9); 5% KOH) for 60 min (70 °C).
1248	Hexane (3×2 mL) was added to the saponified mixtures, with supernatant solutions,
1249	containing non-saponifiable lipids (NSLs), transferred by glass pipettes to glass vials, and
1250	solvent removed using a gentle stream of N ₂ . Dried NSLs were re-suspended in hexane
1251	(0.5 mL) and fractionated using column chromatography (SiO ₂ ; 0.5 g). Non-polar lipids,
1252	including IP ₂₅ and HBI II, were eluted with hexane (6 mL), while more polar lipid

1254	additional NSLs were fractionated to yield non-polar (hexane; 6 mL) and polar fractions
1255	containing sterols (hexane:methyl acetate 4:1; 6 mL). Each non-polar fraction was further
1256	purified to remove saturated components using silver-ion chromatography (Belt et al.,
1257	2015), with saturated compounds eluted with hexane (2 mL) and unsaturated compounds,
1258	including IP ₂₅ and other HBIs, collected in a subsequent acetone fraction (3 mL).
1259	Analysis of fractions containing IP25 and other HBIs was carried out using gas
1260	chromatography-mass spectrometry (GC-MS) following the methods and operating
1261	conditions described prevously (Belt et al., 2012). Mass spectrometric analysis was
1262	carried out in total ion current (TIC) and selected ion monitoring (SIM) modes. The
1263	identification of IP_{25} and HBI II was based on their characteristic GC retention indices
1264	(e.g. $RI_{HP5MS} = 2081,2082$ and 2044 for IP_{25} , HBI II and HBI III, respectively) and mass
1265	spectra (Belt, 2018). Quantification of all HBIs was achieved by comparison of mass
1266	spectral responses of selected ions (e.g. IP ₂₅ , m/z 350; HBI II, m/z 348; HBI III, m/z 346)
1267	in SIM mode with those of the internal standard (9-OHD, m/z 350) and normalized
1268	according to their respective instrumental response factors, derived from solutions of
1269	known biomarker concentration, and sediment masses (Belt et al., 2012). Fractions
1270	containing sterols were derivatized with N,O-bis(trimethylsilyl)trifluoroacetamide
1271	(BSTFA; 100 μ L; 70°C for 60 min) immediately prior to analysis by GC–MS. Sterols
1272	were identified by comparison with GC-MS responses compared to those of standards.
1273	Sterol quantification was achieved as per the approach described above for HBIs.
1274	Polar factions containing alkenones obtained from elution with MeOH (6 mL) were
1275	further purified with 2 mL of hexane:methyl acetate (95:5 v/v) and 2 mL of hexane:methyl
1276	acetate (90:10 v/v). Alkenones were analyzed using a Thermo Trace GC Ultra gas

1277	chromatograph equipped with a CPSil5 capillary column (50m length, 0.32 i.d. and 0.25
1278	mm film thickness), an FID detector and a septum programmable injector (SPI). Helium
1279	was used as carrier gas. 5a-cholestane was added as an external standard prior to GC
1280	injection. SST estimates were determined using the following equation (Prahl et al., 1988).
1281 1282	
1283 1284 1285	$\frac{K'}{U37} \frac{C!":\$}{=C!":\$ + C!":!} = 0.034 T + 0.039$
1286	
1287	References
1288	Andrews, J.T., Dunhill, G., Vogt, C., Voelker, A.H.L., 2017. Denmark Strait during the
1289	Late Glacial Maximum and Marine Isotope Stage 3: Sediment sources and transport
1290	processes. Marine Geology 390, 181-198.
1291	Andrews, J.T., Eberl, D.D., 2007. Quantitative mineralogy of surface sediments on the
1292	Iceland shelf, and application to down-core studies of Holocene ice-rafted sediments.
1293	Journal of Sedimentary Research 77, 469-479.
1294	Andrews, J.T., Eberl, D.D., 2012. Determination of sediment provenance by unmixing
1295	the mineralogy of source-area sediments: The "SedUnMix" program. Marine
1296	Geology 291, 24-33.
1297	Andrews, J.T., Vogt, C., 2020. Variations in felsic- versus mafic-sources in the Western
1298	Nordic Seas during MIS 1 to MIS 4 Marine Geology 424, 106164.
1299	Belt, S.T., 2018. Source-specific biomarkers as proxies for Arctic and Antarctic sea ice,
1300	Organic Geochemistry 125, 277–298, doi: 10.1016/j.orggeochem.2018.10.002.
1301	Belt, S.T., Brown, T.A., Navarro-Rodriguez, A., Cabedo-Sanz, P., Tonkin, A., Ingle, R.,
1302	2012. A reproducible method for the extraction, identification and quantification of
1303	the Arctic sea ice proxy IP ₂₅ from marine sediments. Analytical Methods 4, 705–713.

- 1304 Belt, S.T., Cabedo-Sanz, P., Smik, L., Navarro-Rodriguez, A., Berben, S.M. P., Knies, J.,
- 1305 Husum, K., 2015. Identification of paleo Arctic winter sea ice limits and the marginal
- 1306 ice zone: optimised biomarker-based reconstructions of late Quaternary Arctic sea
- ice. Earth and Planetary Science Letters 431, 127-139.
- 1308 Eberl, D.D., 2003. User guide to RockJock: A program for determining quantitative
- 1309 mineralogy from X-ray diffraction data. United States Geological Survey, Open File
- 1310 Report 03-78, 40 pp, Washington, DC.
- Konert, M., Vandenberghe, J., 1997. Comparison of laser grain size analysis with pipetteand sieve analysis: a solution for the underestimation of the clay fraction.
- 1313 Sedimentology 44, 523-535.
- 1314 Marshall, N.R., Piper, D.J.W., Saint-Ange, F., Campbell, D.C., 2014. Late Quaternary
- 1315 history of contourite drifts and variations in Labrador Current flow, Flemish Pass,
- 1316 offshore eastern Canada. Geology Marine Letters 34, 457-470.
- 1317 doi:10.1007/s00367014-0377-z.
- 1318 McCave, I.N., Andrews, J.T., 2019a. Distinguishing current effects in sediments
- delivered to the ocean by ice. I. Principles, methods and examples. QuaternaryScience Reviews 212, 92-107.
- 1321 McCave, I.N., Andrews, J.T., 2019b. Distinguishing current effects in sediments
- delivered to the ocean by ice. II. Glacial to Holocene changes in North Atlantic high
 latitude upper ocean flows. Quaternary Science Reviews 223, no. 105902, 21pp.
- McCave, I.N., Hall, I.R., Bianchi, G.G., 2006. Laser vs settling velocity differences in silt
 grainsize measurements: estimation of palaeocurrent vigour. Sedimentology 53,
 919928.
- McCave, I.N., Manighetti, B. and Robinson, S.G., 1995. Sortable silt and fine sediment
 size/composition slicing: parameters for palaeocurrent speed and palaeoceanography.
 Paleoceanography 10, 593-610.
- 1330 McCave, I.N., Thornalley, D.J.R., Hall, I.R., 2017. Relation of sortable silt grain-size to
- deep-sea current speeds: Calibration of the 'Mud Current Meter'. Deep-Sea ResearchPart I 127, 1-12.

1333	McCave, I.N., Syvitski, J.P.M, 1991. Principles and methods of geological particle size
1334	analysis, in: Syvitski, J.P.M. (Ed.), Principles, methods and application of particle
1335	size analysis. Cambridge University Press, pp. 3-21.
1336	
1337	
1338	
1339	Robinson, S.G., Maslin, M.A., McCave, I.N., 1995. Magnetic susceptibility variations in
1340	Upper Pleistocene deep-sea sediments of the N.E. Atlantic: Implications for ice
1341	rafting and palaeocirculation at the Last Glacial Maximum. Paleoceanography 10,
1342	221-250.
1343	Stoner, J.S., Andrews, J.T., 1999. The North Atlantic as a Quaternary magnetic archive,
1344	in: Maher, B., Thompson, R. (Eds.), Quaternary Climates, Environments and
1345	Magnetism. Cambridge University Press, Cambridge, UK, pp. 49-80.
1346	Verplanck, E.P., Farmer, G.L., Andrews, J., Dunhill, G., Millo, C., 2009. Provenance of
1347	Quaternary glacial and glacimarine sediments along the southeast Greenland margin.
1348	Earth and Planetary Science Letters 286, 52-62.
1349	Watkins, S.J., Maher, B.A., 2003. Magnetic characterization of present-day deep-sea
1350	sediments and sources in the North Atlantic. Earth and Planetary Science Letters 214,
1351	379-394.
1352	White, L.F., Bailey, I., Foster, G.L., Allen, G., Kelley, S.P., Andrews, J.T., Hogan, K.,
1353	Dowdeswell, J.A., Storey, C.D., 2016. Tracking the provenance of
1354	Greenlandsourced, Holocene aged, individual sand-sized ice-rafted debris using the
1355	Pb-isotope compositions of feldspars and Ar-40/Ar-39 ages of hornblendes. Earth
1356	and Planetary Science Letters 433, 192-203.
1357	
1358	

Click here to access/download;Figure;THIS Fig. 1A,B,C Oct.tif "Disclaimer: This is a pre-publication version. Readers are recommended to consult the full published version for accuracy and citation."

Click here to access/download;Figure;Fig. 2A & B Aug 2274.tif ± "Disclaimer: This is a pre-publication version. Readers are recommended to consult the full published

version for accuracy and citation."

Click here to access/download;Figure;Fig. 3- MD2274 August.tif " Disclaimer: This is a pre-publication version. Readers are recommended to consult the full published version for accuracy and citation."

±

Click here to access/download;Figure;Fig 8A,B,C August.tif " Disclaimer: This is a pre-publication version. Readers are recommended to consult the full published version for accuracy and citation."

