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Abstract: NewWave-type focused wave groups are commonly used to simulate the design wave
for a given sea state. These extreme wave events are challenging to reproduce numerically by
the various Numerical Wave Tanks (NWTs), due to the high steepness of the wave group and the
occurring wave-wave interactions. For such complex problems, the validation of NWTs against
experimental results is vital for confirming the applicability of the models. Intercomparisons among
different solvers are also important for selecting the most appropriate model in terms of balancing
between accuracy and computational cost. The present study compares three open-source NWTs in
OpenFOAM, SWASH and HOS-NWT, with experimental results for limiting breaking focused wave
groups. The comparison is performed by analysing the propagation of steep wave groups and their
extracted harmonics after employing an accurate focusing methodology. The scope is to investigate
the capabilities of the solvers for simulating extreme NewWave-type groups, which can be used as
the “design wave” for ocean and coastal engineering applications. The results demonstrate the very
good performance of the numerical models and provide valuable insights to the design of the NWTs,
while highlighting potential limitations in the reproduction of specific harmonics of the wave group.

Keywords: extreme waves; focused waves; dispersion; harmonic analysis; CFD; OpenFOAM;
SWASH; HOS

1. Introduction

The existence of abnormally large waves was mainly based on anecdotes from
mariners, who referred to them as “walls of water”, “holes in the sea”, “three sisters”
and “mad dogs” [1]. Hard evidence for the presence of unexpectedly large waves in the
ocean, which are commonly referred to as extreme waves, came with measurements of the
surface elevation at offshore platforms [2].

To present, a universal scientific consensus on the definition of extreme waves and
their inclusion in the design process are yet to be reached. There are threshold criteria used
to characterize extreme waves, but they are set to an extent empirically and say little about
the underlying physics that distinguish extremes from normal large waves. This distinction
was examined in a recent analysis of 122 million individual waves measured in the field,
showing that there are several similarities between the average shape of extreme waves
and that of normal very large waves [3]. Thus, from an engineering design perspective,
the distinction between very large and extreme waves may be less relevant, and what is
required to model these waves is the spectral characteristics of the design storm and its
return period. The former can be found from historic data and the use of spectral models for
hindcasting and forecasting. Then, a series of random-phase simulations can be performed
for finding the largest wave events that the design storm can give at the location of interest.
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A simpler way to do this was suggested by Tromans et al. [4], who used a probabilistic
analysis to demonstrate that the average shape of very large waves for a given sea state
approaches a “global form” that can be estimated analytically. This analysis is known
as the NewWave theory and it computes the average shape of large waves as the scaled
autocorrelation function of the underlying linear spectrum. The advantage of NewWave is
its deterministic nature, which minimizes the need for random simulations. Consequently,
NewWave is used extensively in experimental and numerical wave flumes for representing
the largest waves in the ocean in the form of focused wave groups. NewWave also allows to
select the most appropriate “design wave” for the examined marine structure by adjusting
the relative phasing of the wave components in the group to simulate the greatest possible
impacts on the structure [5].

Nonetheless, the simulation of NewWave-type groups also entails challenges, espe-
cially for cases with high wave steepness and nonlinearity. This nonlinearity triggers the
emergence of both resonant and bound wave interactions in short propagation distances of
a few wavelengths [6–9]. The bound waves create a locally steeper wave group than that
predicted by linear theory, and the resonant interactions alter the dispersive properties of
the components of the wave group, resulting in considerable changes in the amplitudes and
phases of the underlying free waves. Similar effects are also observed for directional sea
states where the energy spreads to higher frequencies and laterally to the main direction
as a result of resonant interactions [10]. A consequence of these changes is the loss of
symmetry of the shape of the wave group at focus, which results in a less steep wave,
with apparent subsequent issues in determining the maximum impact on the examined
structure. To improve the quality of the wave focusing, various empirical methodologies
have been suggested that correct the phases of the wave group. Even after applying these
methodologies, temporal and spatial shifts of the produced results are still commonly nec-
essary to determine the location and time of the maximum crest of the focused wave [9,11].
To tackle these shortcomings, the focusing methodology of Stagonas et al. [12] is used in
the present study, which can focus accurately the phases and amplitudes of the wave
components. Part of the methodology is the decomposition of the wave signal into its
harmonics, which further allows for more in depth observations of the physical behaviour
of the dispersion of the wave group, which is a core element of the present study.

What solvers are used in the design practice? Despite the scientific progress in the under-
standing of large waves, the engineering design practice still lags behind, as highlighted
in the recent position paper of DNV GL [13]. To change this, further studies for the propa-
gation of steep waves are required, which will support the industry in revising the present
practices with the aim to improve safety at sea. Traditionally, studies of steep waves were
performed experimentally, but nowadays that powerful numerical solvers have emerged,
NWTs have become a norm [14]. These solvers mainly employ the basic governing equa-
tions of fluid flows, namely the Navier-Stokes Equations (NSE), with appropriate boundary
conditions for wave generation and absorption. The applicability of these NWTs depends
on the assumptions and simplifications at the governing equations and the complexity of
the numerical methods employed. The selection of the most suitable NWT relies on the
complexity of the examined problem and the available resources. Computational Fluid
Dynamics (CFD) solvers are considered the gold standard in wave modelling, being able
to resolve complex fluid structure interactions problems and overturning waves. However,
the main issue with CFD solvers is the high computational cost, which restricts them from
operational coastal and ocean engineering applications. For such cases, faster solvers can
be employed for the wave propagation, but they are limited to weakly nonlinear phenom-
ena with parameterized or no wave breaking. These models can be used in combination
with the computationally expensive CFD solvers for reducing the overall cost when large
domains are considered, as a part of an integrated modelling system [15,16]. A critical
point of passing down information from one model to the other refers to the accurate
reproduction of the wave signal itself.
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The scope of the present work is to investigate the performance of the operational
model SWASH [17] and the pseudo-spectral model HOS-NWT [18], which are based
on the Nonlinear Shallow Water Equations (NLSWE) and Potential Flow Theory (PFT)
respectively, for the challenging problem of wave transformation due to nonlinear wave-
wave interactions. The two numerical models of low computational cost are compared with
experimental results and the CFD NWT designed in OpenFOAM, which demonstrated
high accuracy for the present problem with limiting breaking [5] and breaking wave
groups [19]. The two weakly nonlinear solvers can then be coupled with CFD, or simply
be employed for preliminary studies and for performing the iterations of the focusing
methodology for the correction of the input signal for the CFD. To confirm the applicability
of the weakly nonlinear solvers for these purposes, the dispersion of steep waves and the
induced nonlinearities should be performed to a similar level of accuracy as that of the
CFD solver. The present work achieves this by effectively and consistently correcting the
wave signal using the focusing methodology [12], and by examining in depth the wave
propagation trough the comparison of the surface elevation of the wave group and the
extracted harmonics at different locations in the flume. Such intercomparisons for wave
propagation among NWTs are crucial also for the subsequent estimation of the wave loads
and structural responses, as highlighted in the recent study of Ransley et al. [20]. To the best
of the authors’ knowledge, a cross-validation of the surface dynamics among the models
OpenFOAM, SWASH and HOS-NWT has not been performed until now, and it contributes
to the evaluating the capacity of the models for academic and operational applications.

The paper is organised as follows: Section 2 describes the experimental set-up and the
focusing methodology. Section 3 introduces the numerical models OpenFOAM, SWASH
and HOS-NWT, including details about the design of the NWTs and their convergence
analyses. The numerical results are compared with the experimental results in Section 4
for the evolution of every harmonic of the wave group and their performance is discussed.
A comparison between the extracted 2nd order harmonics and the analytical 2nd order the-
ory solution is also included in the Appendix A. General conclusions and recommendations
are drawn at the last section of the paper.

2. Methods and Testing Conditions
2.1. Experimental Conditions

The experiments were performed in the 20 m long flume at University College London
(UCL). The flume was equipped with flap-type absorbing wavemakers, which operated
with linear transport functions to produce a target spectrum or surface displacement at
the desired location in the flume. The wave energy was dissipated by a parabolic beach at
the opposite end of the flume to minimize any reflections. The selected working depth of
the flume was 1 m. A schematic of the characteristics of the physical flume is depicted in
Figure 1, including also the correction locations for the amplitudes and the phases of the
extracted linear harmonics, AM and PF, respectively. The surface elevation was recorded
with resistive wave gauges (WGs) at the locations mentioned in Table 1. The accuracy of
the physical WGs was ±1 mm and their sampling frequency is 100 Hz.

A similar experimental set-up was used by Vyzikas et al. [5], but in the present study
the accuracy is improved by repeating the experiments with only WG7 (PF) in the physical
flume, to avoid even the marginally influences to the wave profile by the other intrusive
physical WGs.

Table 1. Location of the wave gauges, as distance in m from the wavemaker (AM: amplitude matching;
PF: phase focal).

WG1 (AM) WG2 WG3 WG4 WG5 WG6 WG7 (PF)

1.63 5.17 9.40 11.50 13.80 13.90 14.10
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Figure 1. Schematic of the physical wave flume at UCL.

The NWTs, described in Section 3, are designed as numerical mirrors of the physical
flume. There are however several differences that should be highlighted since they can
explain the reasons for some of the discrepancies seen in the analysis of the results in
Section 4. The main differences refer to (a) the wave generation, which is performed by
a flap-type moving wave paddle in the laboratory and an inlet boundary condition in
the numerical models, and (b) the absorption of the waves at the end of the flume, which
is achieved by a parabolic beach in the physical flume and appropriate outlet boundary
conditions with active or passive absorption in the NWTs. More specifically, in the NWT
of OpenFOAM, the wave absorption is achieved locally at the outlet boundary, which is
located at 20 m, corresponding to the end of the mechanical absorption at the physical
flume, while in the NWTs of SWASH and HOS-NWT, the wave absorption is achieved by
a sponge layer, extending the computational domains beyond 20 m. It should be noted
here that neither the physical or numerical wave absorption methods can absorb 100% of
the incident energy, resulting in reflections. In the NWTs, this can be partially attributed
to the limitations of the numerical techniques used as well as the complex velocity field
incorporated in a focused wave group, which is more complicated to handle than that of
regular waves. Therefore, to mitigate this, the focusing location should be sufficiently far
from the outlet boundary in order to avoid contamination of the measured signal with
reflections, which then require more time to return from the outlet and be present at the
focal location during the time window of interest.

Regarding the wavemaker conditions, in all flumes, linear wave generation is used,
which for the case of the stationary numerical boundary takes the form of Equations (1)
and (2) for the surface elevation and the velocities, respectively.

η =
N

∑
i=1

αicos(κix−ωit + ψi) (1)

u =
N

∑
i=1

αiωi
cosh(κiz)
sinh(κid)

cos(κix−ωt + ψi),

w =
N

∑
i=1

αiωi
sinh(κiz)
sinh(κid)

sin(κix−ωit + ψi)

(2)

where η is the free surface elevation; u and w the horizontal and vertical velocity compo-
nents, (the normal to the NWT component v = 0); ψ the phase of each wave component i; z
the distance from the bottom of the NWT; x = 0 m, horizontal distance from inlet boundary
and t the time.

The testing conditions refer to a broadbanded Gaussian amplitude spectrum. The spec-
trum is discretised by 320 equidistant frequency components ranging from 0.0078 Hz to
2.50 Hz, with a frequency increment d f = 0.0078 Hz. Practically however, the components
at frequencies higher than 1.5 Hz have zero amplitude. A large number of components
guarantees adequate discretization of the spectrum, which can be crucial for the accurate
reconstruction of the free water surface and the velocity profile at the inlet, which affect
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the later dispersion of the wave group [11]. Moreover, for periodic focusing wave groups,
the number of components and the repeat period (=1/d f ) should be such that zero surface
elevation is achieved before and after the wave group and thus, the consecutive wave
groups do not overlap and no wave-wave interactions occur [21]. Within the examined
frequency range, the components near the spectral peak propagate in intermediate water
depth, while the components at higher and lower frequencies propagate in deeper and
shallower water regimes, respectively. This gives wider interest to the present study, since
its validity is not constrained to very specific testing conditions.

The Gaussian shape of the amplitude spectrum is given by Equation (3), with standard
deviation σ = 0.13 and peak frequency fp = 0.64 Hz. In the present study, a strongly
nonlinear limiting breaking wave group is examined, which has a linearly predicted
amplitude of ATh = 0.154 m. The wave conditions are listed in Table 2. Groups of lower
steepness have been also tested, giving even better results, as expected.

Ea( f ) =
1

σ
√

2π
e

[
−( f− fp)2

2σ2

]
(3)

Table 2. Wave conditions.

Gaussian Spectrum

Peak frequency ( fp) 0.64 Hz
Standard Deviation (σ) 0.13
kpd 1.75
Linear crest amplitude ATh (m) 0.154

The reason for selecting a Gaussian spectrum as the target spectrum is its practical
advantages compared with more realistic wave spectra, such as JONSWAP. For experiments,
the full range of frequencies included in the spectrum can be efficiently generated by the
physical wavemaker, while for spectra with a high frequency tail truncating the high
frequency part at 2 or 3 fp is common practice and entails a rather sharp drop in the
energy content of wave components with unknown consequences in the spectral evolution.
In contrast, the selected Gaussian spectrum is the broadest possible, spanning smoothly in
frequencies from 0 to 2 fp, and, as the wave group propagates in the flume, a high frequency
tail is developed, as demonstrated by Vyzikas et al. [5]. Additionally, a Gaussian spectrum
has a compact shape of the timeseries of the free surface, consisting of one main crest and
two deep troughs at focus, similar to PM spectra. On the other hand, the time history of the
free surface for JONSWAP wave groups consists of many crests and troughs, being wider,
and thus, requiring a longer flume for the simulation, to avoid reflections.

2.2. Phase Decomposition

The basic principle of the focusing methodology used in the present study is the correc-
tion of the extracted linear harmonics [12]. Thus, the success of the focusing methodology
lies upon the accurate extraction of these harmonics, which can be achieved by means of
the four-wave decomposition method. Some possible alternatives are discussed in this
section to illustrate the relative advantages of the four-wave decomposition.

The phase or harmonic decomposition methods used in ocean and coastal engineering
are based on the principle that the free surface elevation can be expressed by a Stokes
expansion to power series, assuming that the nth order harmonic can be found from the
envelope of the linear harmonics by raising the latter to the nth order [22]. To decompose the
recorded wave signal to its harmonics, a number of wave groups with different phase shifts
should be obtained, and their appropriate algebraic combination returns the harmonics
of the signal. Generally speaking, a larger number of wave groups with different phases
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shifts guarantee greater accuracy in the extraction of harmonics by reducing the need for
frequency filtering to the signal.

The most widely used harmonic separation method is the two-phase decomposition,
which requires a crest focused (CF) and a trough focused (TF) wave group to separate
the signal in odd and even harmonics. The TF can be simply created by adding a phase
shift of π to the CF group, which is designed to have zero phases at focus. The extracted
odd harmonics contain the linear, 3rd order and 5th order harmonics, while the extracted
even harmonics contain the 2nd sum, 4th and 6th order harmonics. The linear harmonics
are thus perturbed by the 3rd and the 5th order harmonics and cannot be readily isolated,
unless the spectrum is sufficiently narrowbanded, resulting in no overlap between the
linear and 3rd order harmonics. Under such conditions only, frequency filtering can be
employed. However, this is rarely the case for realistic broadbanded spectra or for steep
wave groups, whose free-wave spectrum may broaden considerably during focusing.
As such, discrepancies are common in the literature, due to the limitation of the two-wave
decomposition [22–25].

A more advanced method to extract the harmonics is the four-wave decomposition,
as given in Equations (4). The separation is achieved by adding two extra shifts of π/2 and
3π/2 to the two-wave decomposition method. The four-wave decomposition method was
first suggested by Fitzgerald et al. [26] for forces on cylinders, in order to observe potential
ringing effects. The method was extended to wave records by Stagonas et al. [12], follow-
ing the same principle. Similar methods were used to study wave-structure interaction
problems [27–29]. However, in those works, the decomposition was not combined with a
focusing methodology and discrepancies in the results were observed.

The advantage of the four-wave decomposition method is that the linear and the 3rd

order harmonics can be separated algebraically without the need for frequency filtering.
Filtering is only needed to separate the linear from the 5th order terms, which is trivial, since
these harmonics occupy distinctively different frequency bands. Moreover, the contribution
of the 5th order harmonics is orders of magnitudes smaller than that of the linear and the
3rd order harmonics. The 2nd order super-harmonics, aka 2nd sum, can be readily extracted,
while, for the 2nd order sub-harmonics, aka 2nd difference, trivial filtering from the 4th

order harmonics is required.

Linear: A f11 cos φ + A3 f31 cos φ + O(A5) =
1
4

(
S0 − SH

π/2 − Sπ + SH
3π/2

)
(4a)

2nd sum: A2 f22 cos 2φ + A4 f42 cos 2φ + O(A6) =
1
4
(S0 − Sπ/2 + Sπ − S3π/2) (4b)

3rd: A f33 cos 3φ + O(A5) =
1
4

(
S0 + SH

π/2 − Sπ − SH
3π/2

)
(4c)

2nd diff + 4th: A2 f20 + A4 f44 cos 4φ + O(A6) =
1
4
(S0 + Sπ/2 + Sπ + S3π/2) (4d)

where fij the coefficients in Fourier series, A the amplitude of the envelope and Snπ/2,
n = 0, 1, 2, 3 the timeseries of the surface elevation at the location of interest. The superscript
H refers to the imaginary part of the conjugate of the Hilbert transform of the corresponding
timeseries of the surface elevation.

It is noted that the relative importance of the term f31 is small compared to the term
f11, because, despite of having the same frequency dependence, its amplitude dependence
is at high order, and thus, it is considerably smaller than f11. Similar is the case for the
terms f42 and f22. In general, this holds for all the difference terms fij, i 6= j, instead of
the 2nd difference terms f20, which are important and they can be separated by frequency
filtering from the 4th order terms ( f44) [26]. Here, the cut-off frequency for the 2nd difference
harmonics is approximately taken at 2.5 fp.

A more accurate separation of harmonics can be achieved by the twelve-wave de-
composition of Hann et al. [30], who considered phase shifts of an increment of π/6.
This method practically eliminates the need for filtering for the separation of harmonics.
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As such, the 4th order harmonics are readily separated from the 2nd difference harmonics
and the 5th order harmonics are calculated separately. Nevertheless, for the wave group
examined by Hann et al. [30], the performance of the twelve-wave decomposition was sim-
ilar to the four-wave decomposition regarding the extracted surface elevation. Therefore,
the use of the twelve-wave decomposition is not deemed necessary, especially because
the simulation of eight extra groups at every iteration step of the focusing methodology
requires considerable additional computational resources.

2.3. Correction Methodology

The methodology for focusing wave groups used in the present study was proposed
by Stagonas et al. [12] and applied in a number of studies, such as in Vyzikas et al. [31]
(first time application in a numerical model), Vyzikas et al. [32] (comparison between
CFD and NLSWE), Buldakov et al. [33] (Lagrangian solver including sheared currents),
Buldakov et al. [34] (breaking waves), Vyzikas et al. [5] (evolution of harmonics) and
Stagonas et al. [19] (breaking waves in CFD). More recently, the methodology was com-
pared with other focusing methods, showing the best performance [35].

The methodology is an iterative correction process of the amplitudes and phases of the
wave components of the spectrum until they match the desired target values. The correc-
tions of the amplitudes and phases can be performed at different locations depending on
the scope of the study, allowing for examination of specific properties of the wave group,
e.g., dispersion [5]. The distinct characteristic of the methodology is that the corrections of
phases and amplitudes are performed only for the components of the extracted free-wave
spectrum. Therefore, high accuracy in extracting the linear harmonics is needed, which is
achieved by combining the focusing method with a four-wave decomposition technique,
elaborated in Section 2.2.

The steps for applying the focusing methodology are:

1. The target amplitude spectrum is defined and the desired locations for the amplitude
and phase corrections, namely AM and PF, respectively, are determined. Moreover,
the focal time is selected, usually as half of the repeat time of the periodic signal.

2. Wave groups of different phase shifts are generated at the wave paddle. For a four-
wave decomposition, four wave groups with phase shifts of 0, π/2, π and 3π/2
are used to generate CF, positive slope, TF and negative slope focused waves at
the PF location, respectively. For the first run, the linear dispersion relation can be
used to backwards propagate the signal from PF to the wavemaker, as a best guess.
An example is given in Figure 2, where the contraction of the wave group towards
focusing is also evident.

3. The linear harmonics are extracted using a suitable linear combination of the four wave
groups measured at PF, according to the four-wave decomposition (see Equation (4))
in the frequency domain after performing a Fast Fourier Transform (FFT) of the
measured signals.

4. The phases and amplitudes of the wave components of the linear harmonic are
corrected using Equations (5).

αi+1
in = αi

in × αtrg/αi
out and φi+1

in = φi
in − (φtrg − φi

out) (5)

where αin, αout, αtrg are the input, measured and target amplitudes of the components
of the linear spectrum respectively and φin, φout, φtrg are input, measured and target
phases of the components of the linear spectrum, respectively.

5. The corrected signal for the wavemaker can then be calculated: (a) the phases of wave
components of the corrected linear spectrum are found by propagating backwards
the signal from PF to the wavemaker using the linear dispersion relation, while (b)
the corrected amplitudes of the components are not altered according to linear theory,
being the same at AM and the wavemaker.
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6. The process is repeated iteratively from step 2 to 5 until the target values for α and φ
match the target values within the desired accuracy.

Figure 2. Timeseries of the normalized free surface elevation of four wave groups of different phases
at the wavemaker (a) and at the PF location (b) calculated by linear theory.

The distinguishing characteristic of the validation presented in the present study is
that the amplitude spectrum is corrected at a different location (AM) than the phases of the
wave components (PF). The AM location is selected to be close to the wave paddle, while
the PF point is located at a downstream location. Therefore, the correction methodology is
performed in two steps, independently for the phases and the linear amplitude spectrum.
The advantages of this approach are both practical and theoretical. By correcting the
spectrum not at the inlet, but downstream in the wave tank, the discrepancies induced
by the wave paddle are eliminated and the target spectrum is reproduced exactly in the
nonlinear domain or physical wave tank. Moreover, the wave group is dispersed and less
steep near the wavemaker, and thus closer to the linear solution, reducing the challenges
in the correction of the extracted linear spectrum. At the same time, this method also
enables the examination of the natural evolution of the amplitude spectrum from the AM
location, where the wave group is dispersed, until the PF, where the strongest wave-wave
interactions occur as the wave group takes its steepest form. Therefore, instead of forcing
the wave group to take the target spectral shape at the focal point, the wave group has the
target spectral shape close to the inlet and it is allowed to evolve freely from the AM to PF
location according to the “dispersive” properties of the NWTs, which in physical terms are
controlled by the third-order wave-wave interactions. It should be noted that although the
focusing methodology forces the solution for the phases of the linear harmonics at the PF,
it does not directly pre-determine the magnitude of the nonlinear harmonics, which affect
the shape and the height of the resulted focused wave group. These nonlinear harmonics,
together with the evolution of the underlying linear spectrum, depend on the capacities of
the NWTs in simulating nonlinear waves and do not constitute artefacts of the iterative
correction process of the focusing methodology.

3. The Numerical Models
3.1. RANS: OpenFOAM
3.1.1. Description of the Solver

OpenFOAM (Open source Field Operation and Manipulation) is an extensive software
package for solving continuous mechanics problems. It was initially developed in the late
1980s at Imperial College, London and it was later rewritten in C++, incorporating the
advantages of object oriented programming [36,37]. OpenFOAM releases are open-source
and freely available under GNU General Public Licence and, nowadays, it is widely used
for industrial and academic CFD applications [38]. The version used in the present study
is 2.1.x.

Regarding free surface fluid flows, OpenFOAM can solve the 3-Dimensional (3D) NSE
multiphase flows including turbulence, using the Finite Volume Method (FVM) discretiza-
tion with the Volume of Fluid Method (VoF) [39]. This allows for employing the model for
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nonlinear problems with highly distorted free surface, such as wave breaking and interac-
tion of waves and structures. The code has been applied for coastal and ocean engineering
problems after the development of appropriate boundary conditions for wave generation
and absorption, mainly through the libraries IHFOAM [40] and waves2Foam [41]. Here,
the former is used, thanks to its higher computational efficiency, as discussed in [5]. Both
these integrated libraries employ the “interFoam” solver for two-phase incompressible
NSE. In the present study, the Reynolds Averaged Navier-Stokes (RANS) approach is
employed as a common and relatively efficient way to solve the NSE [42]. The continuity
(Equation (6)) and momentum (Equation (7)) equations are solved simultaneously for the
two Newtonian and immiscible fluids (air and water).

∇U = 0, (6)

∂ρU
∂t

+∇ · (ρUU)−∇ · (µe f f∇U) = −∇p∗ − g · X∇ρ +∇U · ∇µe f f + στκc∇γi (7)

where U is the velocity vector, ρ is the density, p∗ the pseudo-dynamic pressure, X the
position vector, στ the surface tension coefficient (0.07 Kg/s2), κc the curvature of the
interface, γi the fluid phase fraction and µe f f the efficient dynamic viscosity. µe f f = µ + µt,
with µ being the molecular dynamic viscosity (10−3 m2/s and 1.48× 10−5 m2/s for water
and air, respectively) and µt is the turbulent viscosity given by the turbulence model [43].
Here, since no breaking waves are simulated, a quasi-laminar flow model is employed.

3.1.2. Design of the NWT

The NWT is designed as a two-dimensional (2D) numerical mirror of the physical
wave flume at UCL, seen in Figure 1, having a length of 20 m. The computational mesh has
a similar design to that presented in [5], consisting of three layers: a middle layer of square
cells (aspect ratio, AR = 1), which has the highest resolution and encapsulates the maximum
and minimum free surface extending ±0.2 m from the still water level (SWL); a top layer
0.2 m wide of maximum cell AR = 2 extending to the atmospheric boundary; a lower layer
0.8 m wide of maximum cell AR = 4 extending to the bottom of the NWT. The refinement
around the interface of the two fluids is performed with the utility “snappyHexMesh”
[44,45].

The computational domain is a closed one-cell thick rectangular consisting of six walls
with assigned appropriate boundary conditions for every variable as listed in Table 3,
and elaborated in [5]. “Empty” is used for transforming a 3D domain to a 2D one, here
used to reduce the computational effort. To further reduce the computational cost only a
short part of the timeseries is simulated, between times 40 s and 70 s, with the focusing
event being at 64 s.

Table 3. Boundary condition for the NWT in IHFOAM [45].

Boundary γi Pressure Velocity

Inlet IH_Waves_InletAlpha buoyantPressure IH_Waves_InletVelocity
Outlet zeroGradient buoyantPressure IH_3D_2DAbsorbtion_InletVelocity
Top inletOutlet totalPressure presureInletOutletVelocity
Bottom zeroGradient buoyantPressure fixedValue
Lateral walls empty empty empty

The time stepping is controlled by the Courant condition (Co) [46], which represents
the portion of the cell that the advective flow can cover in one time-step. An additional
time controller (alphaCo) for the interface of multiphase flows is also used to ensure
stability. OpenFOAM also includes various numerical schemes for the spatial and temporal
discretization of the partial differential equations, which were selected based on preliminary
investigations [31], aiming for maximum accuracy and optimal computational cost.
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3.1.3. Convergence Tests

On achieving grid-independent solution, focused waves were generated for combina-
tions of a R2.5-C0.1, R2.5-C0.2, R5.0-C0.2 and R10-C0.2, where R is the minimum cell size in
mm and C is the value of Co, which was selected to be the same as alphaCo. The results of
the convergence analysis for the measured surface elevation are shown in Figure 3 for the
steepest wave group at the PF location. It is noted that for each R-C combination, the wave
group was accurately focused using the focusing methodology in order to minimise the
additional influence of the occurring wave-wave interactions that affect the dispersion
of the wave group. Vyzikas et al. [5] presented a more in-depth analysis including the
individual harmonics, showing that coarser resolutions and higher Co result in significant
overestimations of the 3rd + higher order harmonics and deeper 2nd order wave troughs
when the focusing methodology is employed. Here, it is shown that the overall increase
of the crest amplitude for the coarser resolutions reaches 20%. Coarser resolutions than
the R10-C0.2 cause local distortions of the crest, which can be associated with premature
breaking. The total number of cells in the computational domain is 2.48 millions for the
high resolution NWT that was finally chosen (R2.5-C0.1), resulting to a computational time
of approximately 50 h on a 16-core Intel Xeon E5-2650 @ 2.6 GHz.

Figure 3. Convergence analysis for the NWT in OpenFOAM.

3.2. NLSWE: SWASH
3.2.1. Description of the Solver

SWASH (Simulating WAves till SHore) is a general-purpose numerical model for
rapidly changing flows at arbitrary water depth, which is based on the NLSWE with a non-
hydrostatic pressure assumption. SWASH is an open-source freely distributed model that
was developed in TU Delft by Zijlema et al. [17] following precious works [47–50]. The code
is written in FORTRAN and its structure resembles the well-established spectral model
SWAN. SWASH is considered an operational model for coastal engineering problems at
regional scale, but thanks to its flexibility, it can be applied to different space and time
scales ranging from field to laboratory studies. In the present work, version 3.14 was used,
which had already incorporated all the physics and numerical techniques of the most recent
versions, regarding the propagation of steep non-breaking waves over constant depth.

The governing equations of the depth-averaged non-hydrostatic free surface flow
described by the non-conservative form of the NLSWE are presented in Cartesian nota-
tion in Equations (8) and (9). These equations can be derived from the two-dimensional
form [17] after some substitutions by considering only the vertical plane (y = 0), zero
bottom friction (c f = 0) and no turbulent stresses (τij = 0), which are not relevant for the
present study. Bottom friction becomes important only for rough bathymetry and when
waves travel for long distances, which are not the case for focused waves over flat bottom.
Moreover, eddy viscosity is also considered negligible (vt = 0 and thus τij = 0), since no
breaking is encountered in the present tests and the waves do not propagate over strong
sheared currents [51].

∂ζ

∂t
+

∂hu
∂x

= 0 (8)
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∂u
∂t

+ u
∂u
∂x

+ g
∂ζ

∂x
+

1
2

∂qb
∂x

+
1
2

qb
h

∂(ζ − d)
∂x

= 0 (9)

where t is time, x and z located at the still water level (SWL) and the z−axis pointing
upwards, ζ(x, t) is the surface elevation measured from the SWL, d(x) is the local water
depth from the SWL, u(x, t) is the depth averaged flow velocity in x-direction, g is the
gravitational acceleration, q(x, z, t) is the non-hydrostatic pressure (normalised by the
density), which is calculated here from the non-hydrostatic pressure at the bottom qb.
h = ζ + d is the instantaneous water depth or total depth.

The numerical implementation of the NLSWE is performed on a staggered grid for
the calculation of the flow variables based on the FVM in a domain bounded by the sea bed
and the free surface. The computational efficiency of SWASH lies on the σ-transformed
vertical grid, which forms layers of varying thickness, and on the Keller-box method,
which allows for accurate calculation of the pressure at the free water surface even with
a small number of vertical layers. A semi-implicit time integration is used to solve the
incompressible NSE, averaged per layer, aiming for both numerical robustness as well as a
good balance between computational efficiency and accuracy [49]. Regarding overturning
waves, SWASH considers a single-value free surface and a bore analogy, resembling a
moving hydraulic jump with energy dissipation. However, this feature is not activated in
the present work, since no breaking waves are considered.

3.2.2. Design of the NWT

The NWT in SWASH is designed similarly to the NWT in OpenFOAM (see Section 3.1.2).
The main difference is that the computation domain is extended to 30 m in order to
accommodate a sponge layer of 10 m for the wave absorption at the outlet.

The wave generation in SWASH is performed with the “FOURIER” inlet boundary
condition, referring to a stationary boundary that calculates the surface elevation and
the velocity for every layer. For the simulation of irregular waves, a weakly reflective
boundary condition is also used at the inlet boundary to minimize any returning reflections
or potential local disturbances.

3.2.3. Convergence Tests

A convergence analysis for SWASH was performed by Vyzikas et al. [32] for a similar
problem of focusing wave groups of moderate steepness. In that study, a thorough analysis
of more than 40 combinations of the parameters including numerical schemes and reso-
lutions was tested aiming to balance accuracy and computational efficiency. The selected
computational grid consisted of 6 layers of variable thickness of 5%, 10%, 15%, 20%, 25%
and 25% of the water depth calculated from the free surface to the sea bed, with finer
layers towards the free water surface. The horizontal grid was uniform with a cell size of
40 mm. Regarding the numerical schemes employed, the Keller-box scheme was used for
the calculation of the vertical pressure gradient using an implicit Euler scheme. A second
order backward difference (BDF) numerical scheme was used for the discretization of
the momentum and transport equations, as well as the water depth in velocity points.
A semi-implicit Crank-Nicolson scheme was used for the time integration of the continu-
ity equation and the water level gradient, allowing the Courant number to take values
greater than 1 and the stability not to depend only on the long wave celerity, which would
slow down the computation. A high relative accuracy of the solvers (0.001) and a high
number of maximum iterations (1000) were chosen for achieving accurate results. The ILU
preconditioner was used for the calculation of the non-hydrostatic pressure. A uniform
distribution of the velocity was considered per layer.

Although the aforementioned set-up for the SWASH NWT has much higher resolu-
tion than those commonly used for engineering applications (1–2 layers), here a further
refinement is performed as a further convergence check to verify the accuracy of the NWT.
The number of layers is increased to 8 layers of relative thickness of 2%, 4%, 9%, 15%, 15%,
20%, 20%. Additionally, a hyperbolic distribution for the horizontal velocity per layer is
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considered, which should be more accurate for the high frequency wave components that
propagate in deeper water.

The convergence check for SWASH is presented in Figure 4. The difference of the
measured surface elevation at the crest is only 1 mm with the higher resolution giving a
higher crest elevation. On the other hand, the time history of the surface elevation shows
that the shape of the wave group is practically identical. For the validation of SWASH
presented in Section 4, the high resolution NWT is selected, inducing a moderate increase
of the computational cost of about 30%, requiring approximately 20 min on a single core of
2 GHz for 30 s of simulation.

Figure 4. Convergence analysis for the NWT in SWASH.

3.3. PFT: HOS-NWT
3.3.1. Description of the Solver

The PFT model used in the present study is the open source HOS-NWT that was
developed at the LHEEA laboratory of Ecole Centrale de Nantes (ECN). There are two
version of HOS solvers, namely HOS-NWT [18] and HOS-ocean [52], which follow the
earlier developments of SWEET (spectral wave evolution in the ECN tank) [53], SWENSE
(Spectral Wave Explicit Navier-Stokes Equations) and HOST (High Order Spectral method
Tank) [54]. HOS-ocean and HOS-NWT models share the same equations and solving
techniques and essentially, they only differ at the treatment of the boundary conditions:
HOS-ocean has periodic boundaries representing an infinite circulating ocean, while HOS-
NWT has a bounded domain with wave generation and absorption boundary conditions
and reflective walls elsewhere. The fundamental assumption of the PFT is the consideration
of an irrotational, inviscid, incompressible fluid allowing for the continuity equation to
be expressed in the form of Laplace equation for the velocity potential φ, as seen in
Equation (10) [52]. This method is based on the early works of Dommermuth and Yue [55]
and West and Brueckner [56].

∇2φ +
∂2φ

∂z2 = 0 (10)

where ∇ is the horizontal gradient operator (∂x, ∂y) and z = 0 is located at the mean water
level (MWL).

Since non-breaking waves are considered, the free surface is a single-valued variable
at any location in the domain. Next, the kinematic and dynamic boundary conditions at
the free surface (Equations (11) and (12)) should be defined in order to close the system of
equations. For this, the surface quantities are used, i.e., the free surface elevation η and the
free surface velocity potential φ̃(x, t) = φ(x, z = η(x, t), t), according to the formulation
of [57].

∂η

∂t
=
(

1 + |∇η|2
)

W −∇φ̃ · ∇η (11)

∂φ̃

∂t
= −gη − 1

2
|∇φ̃|2 + 1

2

(
1 + |∇η|2

)
W2 (12)
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where W refers to the vertical velocity at the free surface W = ∂φ
∂z (x, z = η, t) as expressed

by [56].
The HOS-NWT is a very computationally efficient solver for waves, thanks to the fact

that it exploits the natural representation of the waves in a Fourier spectrum. The computa-
tional cost of HOS-NWT can be approximately 10–60 times lower compared to SWASH,
which is already orders of magnitude faster than OpenFOAM. On the other hand, the price
for this is the heavily parameterized wave breaking and the intrinsic limitations in simulat-
ing submerged (or surface piercing) structures. Regarding the simulation of extreme waves
in HOS, the method is ideal to study “naturally” emerging extreme waves in random sea
simulations thanks to its low computational cost [58]. In previous studies, HOS-NWT
was also used to compare experimental results for 3D focused wave group of low steep-
ness and a unidirectional group of moderate steepness [18]. However, to the best of the
authors’ knowledge, HOS-NWT has not been validated against experimental results for
steep focused wave groups and the propagation of individual harmonics prior to the
present study.

3.3.2. Design of the NWT

The NWT in HOS-NWT has a similar design to that of SWASH and OpenFOAM.
For wave generation, HOS-NWT offers the possibility to simulate different types of wave-
makers of linear or higher order motion. In the present study, a linear piston wavemaker
starting at the bottom of the flume was selected with a linear ramp up function of 5 s,
to allow for smooth starting of the simulation. The modelling of the wavemaker requires
special treatment in HOS method. For this, HOS-NWT follows the same principle as in
SWEET [53], with the wavemaker having continuous geometry and a no-flow condition.
Moreover, to accurately model the movement of the wavemaker without increasing the
energy and volume of fluid in the domain, the concept of the additional potential, coined
by Bonnefoy et al. [53] following previous works [59], is employed.

The length of the NWT is 50 m and the depth 1 m. An absorption zone (“numerical
beach”) is employed for the dissipation of the incident waves at the end of the NWT. It
starts at 40 m and occupies 20% of the numerical domain. Different lengths of the NWT
were initially tested [60], in order to examine any potential reflections at the PF location,
but the aforementioned set-up was deemed sufficient. The efficiency of the numerical
beach is also controlled via the weighting function of the relaxation. Here, the default
third order polynomial function is chosen [18] and a Runge-Kutta 4th order scheme for the
integration in time, with a tolerance at 10−4 is selected after tests. The input signal for the
simulation is given by an amplitude-frequency spectrum, using icase = 3 of HOS-NWT as
the initial point for the present set-up.

3.3.3. Convergence Tests

The main parameters in the HOS-NWT are the number of nodes/modes in x-direction
(N1), in y-direction (N2), at the wavemaker (N3), the dealiasing in x- and y-direction (p1
and p2 respectively) and the HOS nonlinearity order (mHOS). For a 2D simulation of
unidirectional wave groups, N2 = p2 = 1. As common practice suggests, full dealiasing is
used by defining p1 = mHOS.

The convergence of the HOS-NWT is performed by examining the three main parame-
ters of the model, i.e., N1, N3 and mHOS. The convergence analysis is planned according
to the following strategy: for a high order of HOS, i.e., mHOS = 8, and the same N3 = 33,
the value of N1 is examined. Then, for mHOS = 8 and the highest N1 (N1 = 1025),
the influence of N3 is examined. At the end, after selecting N1 and N2, the order of HOS is
examined. This analysis is summarized in Figure 5. It can be seen that small discrepan-
cies are observed for the lowest value of N1, but the agreement between N1 = 513 and
N1 = 1025 is excellent. Thus, a value of N1 close to 513 is selected. The increase of N3 does
not improve the results of the simulation and thus, any value of N3 higher than N3 = 33 is
sufficient. Finally, the order of HOS does not cause any noticeable improvement on the
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results. mHOS, however, is the parameter that increases the most the computational cost
and thus, the lowest possible value was considered, retaining a fully nonlinear simulation.
For the results presented hereafter, the selected values of the converged HOS-NWT are:
mHOS = 5, N1 = 500 and N3 = 40.

Figure 5. Convergence analysis for the HOS-NWT.

3.4. Summary of NWTs

The characteristics of the NWTs discussed in the previous sections are summarized
in Table 4. It is noted that the computational cost is estimated approximately, because the
simulations were performed at different platforms.

Table 4. Summary of the characteristics of the NWTs.

NWT Parameters OpenFOAM SWASH HOS-NWT

Equations RANS NLSWE PFT
Mesh quasi 3D static 2D moving 1D spectral
Wave generation vel. distribution vel. distribution piston
Wavemaker motion stationary stationary moving
Wave absorption active passive passive
Length of NWT 20 m 30 m 50 m
No. cells/nodes 2.48 × 106 6 × 103 0.5 × 103

Comp. cost (core hours) 800 0.4 0.05

4. Results and Comparisons

In this section, the numerical models are validated against the experimental results
and compared all together by examining the evolution of the nearly breaking wave group
from the AM to the PF locations. First, the wave group dispersion is studied in the spectral
domain and later the evolution of the individual harmonics at consecutive locations is
examined in the time domain. In this way, conclusions can be drawn for both the numerical
dispersion of the models and the emerging nonlinear wave-wave interactions. At the end
of the section, a more detailed quantitative comparison is performed at the PF location for
the extracted harmonics up to 5th order.

4.1. Numerical Dispersion

The backbone of the present analysis is the methodology for focusing waves, which
effectively corrects the particularities of each flume and allows for obtaining the target
phases and amplitudes at the desired locations. Here, the amplitudes of the extracted
linear wave components are corrected close to the paddle at the AM location and they
are let to evolve freely downstream. Similarly, the phases of the extracted linear wave
components are only corrected at the PF location, being able to observe how they evolve
freely from upstream. Thus, for verifying the numerical dispersion of the NWTs, the phases
and amplitudes of the extracted linear wave components should be examined from AM
to PF and from PF to AM, respectively. This comparisons are performed in the present
section, including an intermediate location at 9.4 m (WG3) from the wavemaker.
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The evolution of the amplitude spectra of the extracted linear harmonics is presented
in Figure 6. It can be seen that at AM the spectra match the target amplitude spectrum,
with some minor discrepancies appearing only at the spectral peak, where OpenFOAM
and SWASH give a marginal overestimation, and at low frequencies, where OpenFOAM
induces marginal increase. As the wave group propagates, the extracted linear spectra
are downshifted and an energy increase at high frequencies is observed compared to the
original target spectrum. The best agreement among all the models and the experiment
is observed at WG3 (Figure 6b), possibly because the wave group is far from the inlet
boundary but still not at its steepest form. At PF, the agreement among the models is
very good, with OpenFOAM giving again a marginal increase near the spectral peak.
However, as seen in Figure 6c, the experimental results have local discrepancies, which can
be attributed to the beginning of breaking.

Figure 6. Amplitude dispersion from (a) AM, (b) WG3, (c) PF of the extracted linear harmonics.

The dispersion of the phases of the extracted linear wave components is presented in
Figure 7. To facilitate comparisons, instead of presenting the raw phases (φ) from the FFT of
the extracted linear harmonics, the sin(φ− κx) is plotted, where κ is the wavenumber and x
the distance from the PF. It can be seen that at PF (Figure 7c) the linear wave components are
in phase. Discrepancies are manifested only at low and high frequencies, where, however,
the energy content is very small, as seen from the spectra in Figure 6. When the wave group
is at its more dispersed stage (AM, Figure 7a), the best agreement is observed between
OpenFOAM and HOS-NWT, while SWASH has more similar results to the experiment.
The similarity of the phases between OpenFOAM and HOS-NWT may indicate good
potential for integration of the models.

The results in this section demonstrated that all the numerical models can capture
the changes dispersive properties of the extracted free waves of the group to a very good
extent, especially for the part of the spectrum with appreciable energy content (0.2–1.2 Hz).
In the next sections, the comparisons will be performed in the time domain in order to
identify the combined effects of the amplitudes and phases of the wave components.
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Figure 7. Phases dispersion from AM (a), WG3 (b), PF (c) of the extracted linear harmonics.

4.2. Evolution of the Linear Harmonics

The reproduction of the evolution of the linear harmonics is crucial for the accurate
overall evolution of the wave group, because on one hand, the linear harmonics contribute
the most to the measured surface elevation (up to 75% [5]), and on the other hand, they
correspond to the free-wave components of the wave group, and thus, they control the
evolution of the bound harmonics. Figure 8 demonstrates that the agreement of the ex-
tracted linear harmonics of all the models is almost excellent at all the WGs. The numerical
models are in almost absolute agreement among each other, showing both that the focusing
methodology is effective in every model, and that all the models are capable of dispersing
very steep waves groups. Minor discrepancies are only observed for the experimental
results, before and after the main wave group, possibly caused by the spurious effects of
the wave generation and imperfect wave absorption. These may also be connected to the
differences at the amplitude spectrum of the experimental linear harmonics in Figure 6c.

Figure 8. Comparison of the free surface elevation of the linear harmonics between the numerical
models and the experiment at different locations (a–f).
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4.3. Evolution of the 2nd Sum Harmonics

The nonlinear harmonics examined in the present and following sections emerge
naturally from the linear harmonics as bound waves due to the high steepness of the group,
and as spurious free waves caused by deficiencies of the wave generation. The comparison
between the numerical models and the experiment for the extracted 2nd order sum har-
monic is presented in Figure 9. It can be seen that the numerical models produce practically
identical results everywhere in the NWT. Discrepancies exist only near the wavemaker at
WG2 due to the spurious free waves created by the linear wave generation shown between
−3 s and 1 s. Although, all wavemakers operate linearly, their function is not identical,
especially when compared to the physical motion of the experimental wave paddle, which
introduces greater spurious waves. From WG3 and downstream the agreement between
the models and the experiment is almost excellent, since the spurious 2nd order free waves
have separated from the wave group.

Figure 9. Comparison of the free surface elevation of the 2nd order sum harmonics between the
numerical models and the experiment at different locations (a–f).

4.4. Evolution of the 2nd Difference Harmonics

The 2nd order difference harmonics refer to the long bound wave components that
appear in the form of a set-down of the MWL under unidirectional wave groups. However,
in directional seas, the long bound wave can take also the form of a set-up, for example
when two wave groups cross at a specific angle, as discussed for the Draupner wave [61].
The results in Figure 10 show that there can be non-negligible discrepancies among the
models and the experiments at the reproduction of the 2nd order difference harmonics.

In more detail, at the AM location (Figure 10a), it is seen that the 2nd order differ-
ence harmonics are practically zero for the experiment, SWASH and HOS-NWT, while
OpenFOAM gives a spurious set-up before the main set-down of the wave group, which,
precedes the main wave group [5]. Also, the experimental results show an artificial ele-
vation at WG2, which appears to be a spurious local effect. From WG3 and downstream,
the agreement between the models and the experiment improves considerably, especially
for reproducing the main trough. SWASH has the shallowest trough at almost all locations,
but at PF shows the best agreement with the experiment. At the last two WGs, the ex-
perimental results show a second trough at later times, which is the reflected long wave.
At the examined time window, reflections do not appear in the SWASH and HOS-NWT,
because the outlet boundary was placed further downstream and the reflected waves take
longer time to return. They neither appear in OpenFOAM, where the wave dissipation
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of IHFOAM follows the shallow water approximation, and it is thus more effective for
long waves than the beach of the physical experiment, which usually performs best for
short waves.

Figure 10. Comparison of the free surface elevation of the 2nd order difference harmonics between
the numerical models and the experiment at different locations (a–f).

It should be noted that the reproduction of long waves is challenging at physical and
numerical flumes, because they can be contaminated by spurious waves, which are caused
by even subtle movement of the wavemaker (free displacement waves) or by the linear
wave generation. Moreover, due to their large wavelength, their absorption is not trivial
and may cause sloshing effects in relatively short time in a bounded domain [62]. A 2nd

order wave generation can be effective in at least decreasing the spurious preceding crest
of the long bound waves [19]. To further examine the 2nd order harmonics, the present
results are compared with the analytical solution in the Appendix A.

4.5. Evolution of the 3rd Order Harmonics

The reproduction of these high frequency waves is challenging numerically and
experimentally due to dissipation effects. NWTs should be well converged in order
to propagate accurately short, low amplitude waves. Indeed, previous studies with
“skilled” NWTs [22,26] showed considerable discrepancies for the high order harmon-
ics, but Vyzikas et al. [5] demonstrated that a well-converged computational domain can
result in accurate propagation of up to 4th order harmonics. The 4th order harmonics have
similar behaviour to the 3rd order harmonics [5], and here, only the evolution of the latter
is presented.

The evolution of the extracted 3rd order harmonics is shown in Figure 11. It can be
seen that close to the wavemaker (Figure 11a,b), where the wave group is dispersed and not
very steep, the magnitude of the 3rd order harmonics is negligible. Moreover, close to the
boundary at AM, the agreement among the models and the experiment is not very good
due to the spurious high order free waves. However, at downstream locations and towards
the focusing of the wave group, the comparison among the models and the experiment
improves considerably, with only some minor discrepancies being noticeable at the central
crest and adjacent troughs.
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Figure 11. Comparison of the free surface elevation of the 3rd order harmonics between the numerical
models and the experiment at different locations (a–f).

The accurate reproduction of high order harmonics, apart from the underlying physics
of the propagation of a wave group, is also important from an engineering point of view,
because they can cause dynamic excitation of marine structures. This phenomenon is
referred to as “ringing” and it can cause fatigue and potential failures to offshore structures
[63].

4.6. Wave Group Evolution

Having presented the evolution of the extracted individual harmonics up to 3rd order,
here, the evolution of the wave group is examined from the AM to the PF location. This
refers to the free surface elevation as measured in the flumes without any processing and it
is presented in Figure 12. It can be seen that all the models are in good agreement with the
experiment at all locations. The worst agreement is observed at WG2 in Figure 12b, where
the spurious free waves have started separating from the main wave group. After the
separation of the spurious waves, the comparison between the models is immediately
improved. The best agreement among all the models seems to be at the middle of the tank,
namely at WG3 and WG4, where influence of the boundary fades (spurious waves) and
the steepness is not yet very high.

To conclude, the comparisons in this section demonstrate that, despite the considerably
different versions of the governing equations and numerical approaches in OpenFOAM,
SWASH and HOS-NWT, all models show exceptional performance for the propagation of
very steep focused wave groups.

4.7. Comparison at the Focal Point

The PF location is, in most of the cases, the location of interest, where the structure
is placed. For this reason, more detailed comparisons are presented here including the
extracted 4th and 5th order harmonics and quantitative comparison at wave crest.

The measured surface elevation is shown in Figure 13. It can be seen that the best
agreement with the experiment at the crest elevation is achieved by OpenFOAM, while
SWASH and HOS-NWT underestimate the maximum elevation. The experiment shows
an increased elevation after the main crest, probably due to the fact that the breaking
of the wave is close to starting. The NWTs either not include breaking (HOS-NWT and
SWASH) or they are not optimised for it (OpenFOAM). Despite the small differences at the
wave crest, the overall shape of the wave group is very well reproduced, with the adjacent
troughs and lateral crests being in excellent agreement. Noticeable differences are observed
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before and after the main group, from −2.5 s to −1.5 s and from +1.7 s to +2.5 s, where the
experimental surface elevation is lower than that of the numerical models.

Figure 12. Comparison of the measured surface elevation between the numerical models and the
experiment at different locations (a–f).

Figure 13. Comparison of the free surface elevation between the numerical models and the experi-
ment at the PF location.

Next, the analysis of the individual harmonics up to 5th order is examined in Figure 14
at the PF location. It is noted that the 4th and 5th order harmonics are not directly obtained
by the four-wave harmonic decomposition, but the former are included in 2nd difference
harmonics and the latter in linear and 3rd order harmonics, as shown in Equation (4).
The 4th order harmonics can be trivially separated with frequency filtering from the 2nd

difference harmonics, since they occupy non-overlapping frequency bands. The 5th order
harmonics are taken only from the linear harmonics using a similar frequency filtering at
approximately 4 fp. For simplicity, the 5th order harmonics within the 3rd order harmonics
are ignored, because the magnitude of the 5th order harmonics within the extracted linear
harmonic is much greater than that included in the 3rd harmonics.

Figure 14 shows that all models are in very good agreement with the experiment
even for the highest order harmonics. The greatest discrepancies are observed for the 2nd

difference harmonics and the 5th order harmonics. Discrepancies are observed also at the
crest of the linear harmonics, with the experiment having the highest crest elevation. It
is very interesting to observe that OpenFOAM appears to overestimate all the nonlinear
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harmonics, but yet to give the best overall result (see Figure 13). At the same time, SWASH
and HOS-NWT seem to give a very good agreement with the experiment for all the
nonlinear harmonics.

Figure 14. Comparison of the free surface elevation of the harmonics between the numerical models
and the experiment at the PF location.

The quantitative comparison of the surface elevation at the highest crest and deep-
est trough (for the 2nd difference harmonics) is presented in Table 5. It can be seen that
OpenFOAM has practically an identical crest elevation to the experiment with a differ-
ence of only 0.1%, which is less that the accuracy of the experimental WGs (±1 mm).
The performance of SWASH and HOS-NWT is also impressive, since they achieve a small
error of approximately 5% at the crest of nearly breaking wave groups. However, Table 5
also demonstrates that the excellent agreement between OpenFOAM and the experiment
is a result of intercancellation of the overestimation of the nonlinear harmonics. In fact,
for almost all of the individual harmonics, with the exception of the 3rd order harmonics,
SWASH and HOS-NWT provide the best agreement with the experiment.

Table 5. Intercomparison of phase-resolving models at the PF location at the crest and through
(2nd diff). The experiment is used as the benchmark and the differences are expressed as absolute
(mm) and percentage (%).

Harmonics Experiment OpenFOAM SWASH HOS-NWT

Total (measured) 217.5 0.2 0.1% −10.5 −4.8% −12.5 −5.7%
Linear 158.5 −3.3 −2.1% −4.1 −2.6% −5.3 −3.3%
2nd sum 45.4 2.1 4.5% −1.6 −3.4% −0.7 −1.5%
2nd difference −25.9 −3.8 14.8% −0.5 1.8% −2.5 9.7%
3rd order 21.7 1.5 6.7% −1.6 −7.3% −1.8 −8.1%
4th order 8.8 1.8 20.2% 0.2 2.1% 0.1 1.6%
5th order 5.3 1.4 26.1% −0.2 −3.8% −0.3 −4.8%
Sum of harmonics 213.9 −0.4 0.2% −7.7 −3.6% −10.3 −4.8%

5. Conclusions

The present work examined the applicability and performance of three open-source
and widely used solvers (OpenFOAM, SWASH and HOS-NWT) for the propagation of
steep focused wave groups. The models lie on different formulations of the governing
equations of fluid motion and employ fundamentally different methods to resolve them.
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To the best of the authors’ knowledge, the models have not been compared in the past under
the exact same conditions, neither all of them have been validated against experiments for
steep focused waves and for the reproduction of high order harmonics.

The present findings demonstrate that all the models, after thorough convergence
of the NWTs and use of the focusing methodology, show very good performance in
simulating the propagation of the wave group. This shows that the nonlinear near-resonant
interactions and the bound wave interactions up to 5th order are captured accurately.
Especially impressive was the performance of the weakly nonlinear solvers, SWASH
and HOS-NWT, clearly demonstrating that they can simulate high order nonlinear wave-
wave interactions with accuracy. The best comparison with the experimental results was
observed for OpenFOAM, achieving practically absolute agreement with the experiment
at the crest elevation. However, it is interesting to observe that this excellent agreement
stems to an extent from intercancellation of the individual nonlinear harmonics that are
all overpredicted by OpenFOAM. In fact, it was shown that SWASH and HOS-NWT may
provide a more accurate simulation of the individual harmonics, which, for certain types
of studies, e.g., overtopping [64,65], may be important. Thus, the present results show
that, for wave propagation, CFD two-phase models is not necessarily the gold standard in
numerical modelling. This is a very important aspect to take into account when using CFD
models to validate other numerical models. A possible explanation for this observation
is that SWASH and HOS-NWT are numerical models specifically developed to simulate
waves, while OpenFOAM is a more general modelling CFD platform that was only adapted
to simulate waves using appropriate boundary conditions. Also, the complication of
solving for two-phase fluid flows in OpenFOAM may be a source of error that should not
be factored out. To confirm these findings and be able to identify credibly the sources of
the errors, other suitable solvers can be used that employ similar equations and modelling
approaches as these of the present work [66,67].

The next future step in order to establish a robust validation for studying extreme
waves numerically using the present methods is to compare the three models with results
for the kinematics under steep focused wave groups from analytical solutions [68] or
experiments [69,70]. This will set the basis for further studying the loading on structures
with a design wave that will be representative of a steep extreme wave event. Already
however, the present findings open the possibility for coupling of the models, for ex-
ample combination of PFT for the far field propagation and CFD near the examined
structure [16,71], or for using SWASH and HOS-NWT for preliminary investigations and a
computationally efficient correction of the phases and amplitudes of the wave group using
the focusing methodology.
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Abbreviations
The following abbreviations are used in this manuscript:

AM Amplitude matching location
CF Crest-focused wave group
CFD Computational Fluid Dynamics
FFT Fast Fourier Transform
FVM Finite Volume Method
HOS High Order Spectral method
MWL Mean water level
NSE Navier-Stokes Equations
NSWE Nonlinear Shallow Water Equations
NWT Numerical Wave Tank
PF Phase focal location
PFT Potential Flow Theory
PM Pierson-Moskowitz Spectrum
RANS Reynolds Averaged Navier-Stokes equations
SWL Still water level
TF Trough-focused wave group
VoF Volume of Fluid method
WG Wave gauges

Appendix A. Comparison with 2nd Order Theory

In this section, the 2nd order harmonics are further analysed and compared with the
analytical “exact” solution. In particular, based on the analysis in Section 4.4, the 2nd order
difference harmonics exhibited the greatest discrepancies between the numerical models
and the experiments, due to spurious effects from the wave generation. The comparison
with the analytical solution can indicate which wave generation method and model is more
accurate for the 2nd order harmonics.

The analytical expression for the 2nd order solution of an irregular wave signal was
given for two waves by Dalzell [72]. Here, the expressions presented refer to an arbitrary
number of linear wave components (N), propagating in a single direction on finite water
depth. Dalzell’s approach follows the same potential flow theory assumptions as [73], but it
is based on symbolic computations. Its application is straightforward and it was used for
the 2nd order wave generation boundary conditions in OpenFOAM [74].

According to 2nd order theory, the surface elevation η is given from the first har-
monic and the matrix of the 2nd order interactions with each free wave with all the other
free waves, including the self-interaction, as shown in Equation (A1). The 2nd order har-
monics are calculated by Equations (A2) and (A3). The respective coefficients are given in
Equations (A4) and (A5) for any possible combination of any wave component i with a
component j. Since, a unidirectional wave propagation is assumed for the present case,
the angle between the components is zero and the cos(φi − φj) = 1.

η =
N

∑
i=1

αi cos ψi + 2nd sum + 2nd difference (A1)

where the phase function of a wave i, ψi = kix−ωit + εi, with εi the arbitrary phase of a
wave, αi is the wave amplitude of first order.

2nd sum =
N

∑
i,j=1

α2
i |ki|

4 tanh(|ki|h)

[
2 +

3
sinh2(|ki|h)

]
cos(2ψi)

+ αiαjBp(ki, k j) cos(ψi + ψj)

(A2)
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2nd difference = αiαjBm(ki, k j) cos(φi − ψj)−
n

∑
i,j=1

a2
i |ki|

2 sinh(2|ki|h)
(A3)

The solution above is given for non-zero MWL, which corresponds to the last term in
Equation (A3). In the present case, the deviation of the MWL from zero is negligible, since
the volume of water in the physical wave flume is constant and the numerical simulations,
especially the CFD two-phase simulation in OpenFOAM, do not have a long duration that
may result in higher volume of water.

Bp(ki, k j) =
ω2

i + ω2
j

2g
−

ωiωj

2g

[
1− 1

tanh(|ki|h) tanh(|k j|h)

]

×
[
(ωi + ωj)

2 + g|ki + k j| tanh(|ki + k j|h)
Dp(ki, k j)

]

+
ωi + ωj

2gDp(ki, k j)

[
ω3

i

sinh2(|ki|h)
+

ω3
j

sinh2(|k j|h)

] (A4)

Bm(ki, k j) =
ω2

i + ω2
j

2g
+

ωiωj

2g

[
1 +

1
tanh(|ki|h) tanh(|k j|h)

]

×
[
(ωi −ωj)

2 + g|ki − k j| tanh(|ki − k j|h)
Dm(ki, k j)

]

+
ωi −ωj

2gDm(ki, k j)

[
ω3

i

sinh2(|ki|h)
−

ω3
j

sinh2(|k j|h)

] (A5)

where the functions Dp(ki, k j) and Dm(ki, k j) are defined as:

Dp(ki, k j) = (ωi + ωj)
2 − g|ki + k j| tanh(|ki + k j|h) (A6)

Dm(ki, k j) = (ωi −ωj)
2 − g|ki − k j| tanh(|ki − k j|h) (A7)

To find the 2nd order harmonics analytically using the previous formulas, the linear
harmonics should be known. In the present study, this can be extracted accurately at any
location in the flume, thanks to the four-wave decomposition. As shown in [5,75], which fol-
lowed a similar principle to that of [7], for the better estimation of the 2nd order harmonics,
the evolved (locally broadened) linear harmonic should be considered. Using the harmonic
from the original spectrum (see Table 2) would result in considerably higher discrepancies
in the comparisons since the underlying spectra are different. Here, the comparisons will be
performed for the wave group at PF, where the nonlinear harmonics reach their maximum
energy content, and the spurious bound waves have separated from the main wave group,
as well as any reflections have not returned in the examined time window. For simplicity,
and since the extracted linear harmonics are almost identical among the numerical models
and the experiment, the extracted harmonic from HOS-NWT is used, which also had the
best agreement with the target spectrum at AM, as shown in Figure 6a.

The analytically calculated 2nd order harmonics are compared with the extracted
2nd order harmonics at PF from the nonlinear models and the experiment in Figure A1.
The quantitative comparison of the crests and adjacent troughs of the 2nd sum harmon-
ics, as well as the trough of the 2nd difference harmonics, is presented as (%) difference
between the corresponding values of the analytical solution and the extracted harmonics
( |measured - theory|

theory ) in Table A1. It is noted that the adjacent troughs of the 2nd sum harmonics
are not identical, and for the comparisons of Table A1, their mean value is considered.

For the 2nd sum harmonics, Figure A1a shows that the extracted harmonics of the
experiment and the models have a crest which is similar, but higher than that of the
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analytical 2nd order solution. Moreover, the extracted harmonics of the models and the
experiment produce deeper lateral troughs compared to analytical solution.

For the 2nd difference harmonics, Figure A1b the analytical solution predicts a shal-
lower trough than that of the extracted harmonics. The extracted harmonics that are the
closest to the theoretical results are reproduced by the experiment and SWASH. Open-
FOAM predicts the deepest trough, followed by HOS-NWT. It can be also observed that,
in contrast to the experimental and the numerical harmonics, the analytical solution of the
2nd order difference harmonics do not include the spurious preceding set-up, which can be
spotted between the times −2 s to −1 s in Figure A1b.

Figure A1. Comparison of the free surface elevation of the calculated and extracted 2nd order
harmonics at the PF location: (a) 2nd sum; (b) 2nd diff.

The quantitative comparison of Table A1 demonstrates that the crest of the 2nd order
sum harmonics and the trough of the 2nd order difference harmonics can be reasonably
predicted by 2nd order theory, when the evolved extracted linear amplitude spectrum is
used. It can be seen that OpenFOAM gives the greatest overprediction of the 2nd order
harmonics compared to the analytical solution, while SWASH is the model that gives the
best agreement with the analytical 2nd order solution. The better performance of SWASH
and HOS-NWT compared to OpenFOAM can be justified from the fact that the two former
models are specifically designed for the propagation of non-breaking waves, as those
examined in the present study, while the VoF can introduce complications and numerical
artefacts [62].

Table A1. Comparison between the extracted 2nd sum and diff harmonics with 2nd order theory
solution using the evolved extracted linear amplitude spectrum at PF.

Sum Crest Sum Trough Diff Trough

2nd order theory calculated (mm) +40.3 −24.2 −22.9

Experiment +12.7% −37.3% −13.2%
OpenFOAM +17.8% −41.5% −30.0%
SWASH +8.8% −33.7% −15.3%
HOS-NWT +11.0% −33.8% −24.3%
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