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Abstract 22 

Fowlpox virus is the type species of an extensive and poorly-defined group of viruses 23 

isolated from more than 200 species of birds, together comprising the avipoxvirus 24 

genus of the poxvirus family. Long known as a significant poultry pathogen, vaccines 25 

developed in the early and middle years of the 20th century led to its effective 26 

eradication as a problem to commercial production in temperate climes in developed 27 

western countries (such that vaccination there is now far less common). Transmitted 28 

mechanically by biting insects, it remains problematic, causing significant losses to all 29 

forms of production (from back-yard, through extensive to intensive commercial 30 

flocks), in tropical climes where control of biting insects is difficult. In these regions, 31 

vaccination (via intra-dermal or subcutaneous, and increasingly in ovo, routes) 32 

remains necessary. Although there is no evidence that more than a single serotype 33 

exists, there are poorly-described reports of outbreaks in vaccinated flocks. Whether 34 

this is due to inadequate vaccination or penetrance of novel variants remains unclear. 35 

Some such outbreaks have been associated with strains carrying endogenous, 36 

infectious proviral copies of the retrovirus, reticulo-endotheliosis virus (REV), which 37 

might represent a pathotypic (if not newly emerging) variant in the field. Until more is 38 

known about the phylogenetic structure of the avipoxvirus genus (by more 39 

widespread genome sequencing of isolates from different species of birds) it remains 40 

difficult to ascertain the risk of novel avipoxviruses emerging from wild birds (and/or 41 

by recombination/mutation) to infect farmed poultry. 42 
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Disease impact 47 

Fowlpox has long been recognised as a widespread, enzootic disease of domestic 48 

chickens (and other gallinaceous birds) by virtue of its distinctive dry, crusty, skin 49 

lesions, seen mainly on un-feathered areas of the comb and wattle, the face and the 50 

legs (Skinner & Laidlaw, 2009; Skinner et al., 2005). It appears to be spread by direct 51 

contact (including pecking and scratching), by inhalation or ingestion of dust or 52 

aerosols, or mechanically by biting insects. Problematic outbreaks of fowlpox are rare 53 

and limited in temperate climes (so vaccination is less common) but they are more 54 

prevalent in tropical and sub-tropical climes where control of biting insects becomes 55 

more problematic and where fowlpox remains a significant problem for small-scale 56 

and backyard flocks, as well as for intensive, commercial farming (so that vaccination 57 

becomes a pre-requisite). More extensive technical reports are available, from 58 

regulators (such as the OIE; Tripathy, 2016) and poultry producers (Anon.), 59 

describing details of diagnosis and control. 60 

 61 

Pathology 62 

The disease caused by fowlpox virus (the ICTV approved abbreviation is FWPV) is 63 

primarily found in cutaneous and diphtheritic forms (Tripathy & Reed, 2013).  The 64 

cutaneous form of the disease is mild, typically characterised by nodular cutaneous 65 

lesions on unfeathered areas of the skin and more atypically as feather folliculitis in 66 

the feathered skin (Nakamura et al., 2006). The characteristic cutaneous nodules are 67 

histologically typified by marked hyperplasia of the epidermis (acanthosis) caused by 68 

the swelling and the increased number of cells in the stratum spinosum (C. E. 69 

Woodruff, 1930). The distribution of dermal lesions is probably linked to the 70 

mechanical transmission of the viruses by biting insects. Such lesions are rarely fatal 71 



but can reduce performance in feeding (hunting/foraging) and predator evasion. They 72 

can become extremely extensive and persistent, which is relatively unusual for acute 73 

pox infections. Inhalation/ingestion of droplets/dust can lead to more severe infection 74 

of the oropharyngeal cavity, as so called “diphtheritic infections” (colloquially known 75 

as “wet pox”), characterised by fibronecrotic, proliferative lesions on the mucous 76 

membranes of the respiratory and digestive tracts. These lesions pose problems for 77 

diagnosis, resembling those of other respiratory infections (especially infectious 78 

laryngotracheitis) and cause up to 15% mortality in chicken flocks by occlusion of the 79 

larynx or secondary bacterial infections. Histologically, infected tissues exhibit 80 

varying degrees of ballooning of keratinocytes, with large, eosinophilic intra-81 

cytoplasmic inclusions (Bollinger bodies) containing small, “elementary (Borrel) 82 

bodies” (virus particles), as revealed by the Gimenez method (Tripathy & Hanson, 83 

1976). 84 

 85 

The virus  86 

Because the lesions were obvious and the agent could be easily propagated in 87 

embryonated eggs, then in suspensions of embryo-derived cells and finally in chick 88 

embryo fibroblast monolayer cultures (Goodpasture & Woodruff, 1930; A. M. 89 

Woodruff & Goodpasture, 1931; C. E. Woodruff & Goodpasture, 1929, 1930), 90 

fowlpox virus was one of the earliest viruses studied experimentally. As described 91 

above, its virions can just be seen by light microscopy and they form obvious 92 

inclusions upon staining. Electron microscopy reveals the characteristic bi-concave 93 

poxviral morphology of the virus particles (the Borrel bodies) and confirms their 94 

concentration in Bollinger bodies, which are poxviral A-type inclusion bodies (Eaves 95 

& Flewett, 1955; Purcell et al., 1972). 96 



 97 

Control by vaccination 98 

The ready identification of fowlpox, its recognition as a pox disease (like the 99 

infamous smallpox, for which a vaccine had existed since the time of Edward Jenner), 100 

and its easy propagation meant that vaccines against fowlpox were among the earliest 101 

poultry vaccines introduced (the first US licence was in 1918). Numerous more-or-102 

less attenuated, live vaccine strains were developed during the 1920s, some of which 103 

almost certainly formed the basis for the more than 70 modern commercial vaccines, 104 

the derivations of which are, therefore, not normally well-documented. They do 105 

however tend to fall into two types: those of chicken embryo origin (CEO) and those 106 

of tissue culture origin (TCO). In general, TCO are more attenuated than CEO, 107 

probably due to more extensive passage history in culture. Consequently, whereas 108 

TCO vaccines can be used in day-old chicks, the residual pathogenicity of CEO 109 

vaccines means that they cannot be used until the birds are several weeks of age. 110 

However, the more attenuated nature of TCO vaccines means that they do not provide 111 

long-lasting protection so that layers and breeders would need boosting with CEO 112 

vaccine at 6 weeks (or with the antigenically-related, cross-protective pigeonpox CEO 113 

vaccine at 4 weeks). Live, attenuated fowlpox vaccines need to be delivered 114 

percutaneously, there has been no success with drinking water or aerosol delivery, so 115 

application of TCO to day-old chicks is more practical, especially when semi-116 

automated injectors are used.  117 

 118 

With increasing interest in the use of recombinant fowlpox viruses as vectors to 119 

immunise against heterologous pathogens, in ovo delivery has been investigated 120 

(Sharma et al., 2002). Commercial recombinant fowlpox virus vectored vaccines are 121 



now available, for instance in the TrovacTM (Merial) and VectormuneTM (CEVA) 122 

ranges, against avian encephalomyelitis, avian influenza, infectious laryngotracheitis, 123 

Mycoplasma gallisepticum and Newcastle disease (TROVAC®: AIV H5, NDV; 124 

Vectormune®: FP MG, FP LT/AE, FP N). Many other recombinants are being or 125 

have been developed, e.g. the H5 and N1 recombinant developed by the Harbin 126 

Institute in China (Qiao et al., 2009), but it is important that appropriately attenuated 127 

vaccine vector backbones are used, especially for for in ovo vaccination, to avoid 128 

complications such as those reported by Willams (2010). 129 

 130 

REV, virulence and vaccine escape 131 

An intriguing aspect of fowlpox virology is that pathogenic, field strains of fowlpox 132 

virus frequently carry an integrated, active copy of the reticuloendotheliosis virus 133 

(REV) provirus. The initial observation related to a commercial CEO vaccine (FPV-134 

S) that proved to be contaminated with REV, was withdrawn and could not be plaque-135 

purified free of the contaminant. PCR analysis later showed that it carried an 136 

infectious proviral copy integrated in its genome (Hertig et al., 1997). We now know 137 

that REV is most closely related to mammalian retroviruses from monotremes; there 138 

has been speculation on its possible iatrogenic transfer to fowlpox virus during 139 

alleged inadvertent co-cultivation in New York in the 1940s (Niewiadomska & 140 

Gifford, 2013). However, REV-positive fowlpox carry the provirus at the same locus 141 

(passaged laboratory and commercial vaccine strains often appear to have lost most of 142 

the provirus, sometimes leaving just a single long terminal repeat sequences). This 143 

indicates a single, extremely rare, ancestral insertion event (Moore et al., 2000). That 144 

may be more consistent with a natural event over evolutionary time, pre-dating the 145 

artificial propagation of fowlpox virus, but this is unlikely to be ever established 146 



definitively. Nevertheless, there is anecdotal evidence that REV-containing field 147 

viruses are more problematic, whether through increased virulence, resistance to 148 

vaccine-induced immunity (which might equally be caused by emergence of 149 

unrecognised antigenic variants) or by generally increased virus fitness. 150 

 151 

Phylogeny and the risk of emerging virus outbreaks 152 

Fowlpox virus is the type species of the Avipoxvirus genus, members of which have 153 

been isolated from 280 species of birds (Bolte et al., 1999). We still know relatively 154 

little about their phylogenetics because of the size of their genomes (up to 300 kbp, 155 

with only a handful sequenced) and because of the sequence diversity within what is 156 

still classified as just a single genus. We also know little about their relationships with 157 

their varied hosts, but 3 deep clades are loosely associated with broad classes of birds: 158 

(A) “fowlpox-like viruses” being mainly isolated from galliforms, (B) “canarypox-159 

like viruses” from passerines and (C) psittacine viruses (Gyuranecz et al., 2013), with 160 

recent assignment of viruses from aquatic birds (Carulei et al., 2017). The depth of 161 

the clades is remarkable; the genetic distances between them are equivalent to those 162 

seen between different genera of mammalian poxviruses. It has proved difficult 163 

therefore to derive pan-avipoxvirus PCR probes to elucidate accurate details of 164 

host/virus relationships. Most of the clade A viruses appear fairly host-specific but the 165 

clade B viruses seem able to infect a wide range of species (though the picture is 166 

complicated because many infections are observed in zoos, aviaries and wildlife 167 

parks, veterinary clinics or quarantine facilities, where atypical species-species 168 

transmissions can more readily occur). Others probably represent prey-to-predator 169 

transmissions. As with many zoonotic infections, it is likely that avipoxviruses cause 170 

mild or inapparent infections in their native host but present as more severe in atypical 171 



hosts. It is almost certain that canarypox virus is relatively benign in its as-yet-172 

undefined natural host (possibly native songbirds of temperate climes), in contrast to 173 

the severe infection it causes in non-native canaries. For all these reasons, we are 174 

therefore always vulnerable to emergence of a novel avipoxvirus that might pose a 175 

threat to poultry, so need to be vigilant. For instance, a virus that emerged in Virginia 176 

in 2003 seemed to be able to infect an unusually broad range of species (Adams et al., 177 

2005). It is clear, therefore, that we need to know more about these enigmatic viruses. 178 

Perhaps long-read, next-generation sequencing technologies will offer opportunities 179 

to understand the extent of genome variation and possibly its relationship to host 180 

range. 181 
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