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Abstract

AT2019wey (ATLAS19bcxp, SRGA J043520.9+552226, SRGE J043523.3+552234, ZTF19acwrvzk) is

a transient reported by the ATLAS optical survey in December 2019, but shot to fame upon detection,

three months later, by the Spektrum-Roentgen-Gamma (SRG) mission in its on-going sky survey.

Here we present our ultraviolet, optical, near-infrared and radio observations of this object. Our X-ray

observations are reported in a separate paper. We conclude that AT2019wey is a newly discovered

Galactic low-mass X-ray binary (LMXB) and a candidate black hole (BH) system. Remarkably, we

demonstrate that from ∼58950 MJD to ∼59100 MJD, despite the significant brightening in radio and

X-ray (more than a factor of 10), the optical luminosity of AT2019wey only increased by 1.3–1.4. We

interpret the bright UV/optical source in the dim low/hard state (∼58950 MJD) as thermal emission

from a truncated disk in a hot accretion flow, and the UV/optical emission in the hard-intermediate

state (∼59100 MJD) as reprocessing of X-ray flux in the outer accretion disk. We discuss the power of

combining current wide-field optical surveys and SRG in the discovery of the emerging population of

short-period BH LMXB systems with low accretion rates.

Keywords: X-rays: individual (AT2019wey) — accretion, accretion disks — stars: black holes

1. Introduction

Low-mass X-ray binaries (LMXBs) contain an ac-

creting neutron star (NS) or black hole (BH) in orbit

with a low mass (. 1.4M�) companion star. Most

of the known black hole LMXBs are discovered by X-

ray all-sky monitors (ASM) during their X-ray out-

bursts (also termed as the X-ray novae phenomena) in-

duced by instabilities in the accretion processes. The

most sensitive X-ray ASM to date, the Monitor of All-

yyao@astro.caltech.edu

sky X-ray Image (MAXI ; Matsuoka et al. 2009), has a

transient triggering threshold of 8 mCrab (1 mCrab =

2.4× 10−11 erg s−1 cm−2 over 2–10 keV) for 4 d (Negoro

et al. 2016). Due to the relatively shallow sensitivity of

ASMs, the sample of LMXBs is biased to nearby sources

with bright X-ray outbursts.

The first X-ray all sky survey was carried out in

1990/1991 by ROSAT (0.1–2.4 keV) (Truemper 1982;

Voges et al. 1999). It cataloged X-ray sources brighter

than ∼ 10µCrab, providing the deepest and cleanest X-

ray all-sky reference prior to 2020 (Boller et al. 2016).

Three decades after ROSAT , the dynamic X-ray sky is
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being surveyed by the eROSITA (0.2–10 keV; Merloni

et al. 2012; Predehl et al. 2020) and the Mikhail Pavlin-

sky ART-XC (4–30 keV; Pavlinsky et al. 2018) tele-

scopes on board the Spektrum-Roentgen-Gamma (SRG)

mission. This planned four-year survey with full-sky im-

ages every six months also makes it a powerful time

domain facility. The first eROSITA All-Sky Survey

(eRASS1; December 2019 – June 2020) was sensitive

to point sources down to ∼ 0.8µCrab (Predehl et al.

2020). Therefore, eRASS1 is more than 10 times more

sensitive than ROSAT .

During eRASS1, the discoveries of 15 X-ray tran-

sients were reported through the Astronomer’s Tele-

gram (ATel) by SRG , with observed X-ray fluxes

ranging from 6µCrab to 12.5 mCrab. Among them,

SRGA J043520.9+552226 (=SRGE J043523.3+552234)

was discovered on 18 Mar 2020 (Mereminskiy et al.

2020). Its position is coincident with that of AT2019wey

(ATLAS19bcxp), an optical transient reported to the

Transient Name Server (TNS) in Dec 2019 (Tonry et al.

2019) by the ATLAS team (Tonry et al. 2018). This

bright optical (17.5 mag) and X-ray (1 mCrab) source

was not present in previous sky surveys such as the Palo-

mar Observatory Sky Survey and the ROSAT sky sur-

vey. Motivated thus, we conducted an extensive follow-

up campaign, revealing that AT2019wey is a Galactic

LMXB with unique properties.

Yao et al. (in prep, hereafter Paper I) present a com-

prehensive X-ray report on AT2019wey from ∼ 1 year

prior to the optical discovery in Dec 2019 to 30 Sep

2020. AT2019wey appeared as a ∼ 1 mCrab source

in the low/hard-state (LHS) upon the optical discov-

ery in Dec 2019, underwent a major X-ray brightening

from ∼ 1 mCrab to ∼ 25 mCrab between June and Au-

gust 2020, transitioned into the hard-intermediate state

(HIMS) around ∼ 59082 MJD, and stayed in the HIMS

until the end of September 2020.

In this work, we present multi-wavelength observa-

tions of AT2019wey, from which we conclude that the

compact object is probably a black hole and the compan-

ion star must be of low mass (< 0.8M�). We therefore

call AT2019wey a candidate BH LMXB. Review arti-

cles of this class of objects and the classification of their

X-ray states can be found in literature (McClintock &

Remillard 2006; Remillard & McClintock 2006; Belloni

et al. 2011; Zhang 2013).

The paper is organized as follows. Section 2 outlines

the association between the optical and X-ray transients.

We present historical and new photometry in optical and

ultraviolet (UV) bands in Section 3. We describe opti-

cal and near-infrared (NIR) spectroscopy in Section 4.

Section 5 shows radio follow-up observations. Section 6

provides a panchromatic analysis, from which we infer

the origin of the optical/UV radiation. We discuss con-

straints on the companion mass and orbital period of

AT2019wey in Section 7. We conclude in Section 8. UT

time is used throughout the paper.

2. Association between the Optical and X-ray

Transients

The SRG detection of SRGE J043523.3+552234 pro-

vided a localization shown by the white plus sign in

Figure 1, where the circle marks eROSITA’s 68% er-

ror circle radius of ∼ 5′′ (Mereminskiy et al. 2020). The

optical transient ATLAS19bcxp (AT2019wey) was dis-

covered by the ATLAS (Tonry et al. 2018) optical survey

and reported to TNS on 7 Dec 2019 (Tonry et al. 2019),

and the optical source was also detected by the Zwicky

Transient Facility (ZTF; Bellm et al. 2019b; Graham

et al. 2019). The median of all ZTF detection positions

of AT2019wey is shown as the cross sign in Figure 1.

Table 1. Position of AT2019wey.

eROSITA coordinate
ra = 68.8472± 0.0024°
dec = 55.3760± 0.0014°

ZTF coordinate
ra = 68.846966± 0.000014°
dec = 55.376193± 0.000008°

Galactic coordinate l = 151.16113°, b = 5.29973°

In the Sloan Digital Sky Survey (SDSS, Alam

et al. 2015) database, the nearest point source

to SRGE J043523.3+552234 is to the northeast out-

side of the eROSITA error circle (Figure 1), and

we therefore exclude an association. The opti-

cal transient AT2019wey and the X-ray transient

SRGE J043523.3+552234 are just 0.8′′ off ech other, con-

firming the association suggested by Mereminskiy et al.

(2020). We give the J2000 position of AT2019wey in

Table 1.

3. Photometry

3.1. Historical Photometry

We conducted an archival search of optical photom-

etry at the position of AT2019wey. The source was

not detected by historical optical surveys, including the

Palomar Observatory Sky Survey I (POSS-I, Minkowski

& Abell 1963), the Second Palomar Observatory Sky

Survey (POSS-II, Reid et al. 1991), SDSS, and the

Panoramic Survey Telescope and Rapid Response Sys-

tem (Pan-STARRS, PS1) DR1 (Flewelling et al. 2016;

Waters et al. 2016), the intermediate Palomar Transient

Factory (iPTF; Rau et al. 2009; Law et al. 2009), and

the ZTF. We list 5-σ upper limits in Table 2.
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Figure 1. Localization of AT2019wey plotted on top of
a color image constructed with SDSS gri images using the
prescription in Lupton et al. (2004). The eROSITA position
is shown by the white plus (“+”) sign, and the ZTF position
is shown by the white cross sign (“×”). The white circle
indicates eROSITA’s 68% error circle radius of 5′′.

Table 2. Historical upper limits at the position of AT2019wey.

Survey Time Filter λeff (Å) Limit (mag)

POSS-I 1953-10-08 r 6500 Å 19.5

POSS-II 1990-10-26 r 6500 20.8

SDSS 2004-10-15 u 4720 24.6

SDSS 2004-10-15 g 6200 25.7

SDSS 2004-10-15 r 6190 24.8

SDSS 2004-10-15 i 7500 24.1

SDSS 2004-10-15 z 8960 23.5

PS1 2013-01-27 r 6800 23.3

iPTF 2014-01-24 R 6420 21.0

ZTF 2017-12–2019-11 g 4810 21.3

ZTF 2017-12–2019-11 r 6420 21.5

Note—Limit magnitude is given in the AB system.

3.2. New Optical Photometry

3.2.1. ZTF Photometry

ZTF conducts multiple time-domain surveys (Bellm

et al. 2019a) using the ZTF mosaic camera (Dekany

et al. 2020) on the the Palomar Oschin Schmidt 48-inch

(P48) telescope. Following Yao et al. (2019), we per-

formed forced point-spread-function (PSF) photometry

on ZTF difference images generated with the ZTF real-

time reduction and image subtraction pipeline (Masci

et al. 2019). Images obtained after December 2019 as

part of the ZTF public survey have not been released,

preventing us from applying our forced-PSF measure-

ments. We therefore use photometry reported in real-

time alert packets (Patterson et al. 2019) for ZTF ob-

servations obtained under the public survey (Table 3).

Figure 2 shows the ZTF light curve of AT2019wey, as

well as the ATLAS detection. The first ZTF forced pho-

tometry detection was on 2019 Dec 2 05:19:40.8 (JD =

2458819.722) for a g-band detection at 19.15±0.05 mag.

The last non-detection was on 2019 Nov 25 07:14:52.8

(JD = 2458812.802) for a r-band limit at 21.21 mag. It

is shown (see the inset of Figure 2) that the r-band light

curve rose from > 21.2 mag to 17.4 mag in ∼ 15 days.

After that, the light curve displays small amplitude

(. 0.3 mag) variability for more than 300 days. The lack

of photometry between ∼ 58580 MJD to ∼ 59030 MJD

is due to the source being in the day sky.

Table 3. ZTF P48 Photometry of A2019wey.

MJD m σm Filter Photometry

58819.2213 19.308 0.116 g alert

58819.2220 19.154 0.052 g forced

58819.2827 18.555 0.096 r alert

58819.2860 18.548 0.028 r forced

58820.2180 18.724 0.122 g forced

58827.2550 17.447 0.019 r forced

58827.2576 17.415 0.047 r alert

58827.2651 17.396 0.048 r alert

58828.2550 17.635 0.116 r forced

58828.4580 18.112 0.080 g forced

Note—m and σm are observed magnitude (without
extinction correction) in the AB system. The last
column indicates method of the magnitude measure-
ment (alert packets or forced photometry). Data up
to 1 Nov 2020 is included. (This table is available in
its entirety in machine-readable form.)

3.2.2. CHIMERA Photometry

On 23 July 2020 we obtained high speed photome-

try in the SDSS g- and i-band using the Caltech HIgh-

speed Multi-color camERA (CHIMERA; Harding et al.

2016) on the 200-inch Hale telescope of the Palomar ob-

servatory. We operated the detectors using the 1 MHz

conventional amplifier in frame transfer mode with a

frame exposure time of 1 s, and obtained 3300 frames

in each filter. We reduced the data with a custom in
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Figure 2. Optical light curve of AT2019wey. The inset shows the light curve zoomed around the first ZTF detection epoch.
Upper limits are shown as downward triangles. Epochs of SRG discovery and Swift observations are marked by the blue arrow
and magenta crosses, respectively. Along the upper axis, epochs of spectroscopy (Table 6) are marked with the letter S above
the axis. AT2019wey has been monitored by the Neutron Star Interior Composition Explorer (NICER; Gendreau et al. 2016)
starting from 04 Aug 2020.
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Figure 3. CHIMERA data of AT2019wey. The black lines
show light curves averaged to 1 min.

house pipeline1. AT2019wey was detected at a median

of 16.99 mag (rms = 0.07 mag) in i-band, and at a me-

1 https://github.com/mcoughlin/kp84

dian of 18.12 mag (rms = 0.08 mag) in g-band. The

g-band rms increased towards the end of the observa-

tion due to the onset of twilight. Figure 3 shows the

CHIMERA light curve.

3.3. UV Photometry

We obtained ultraviolet (UV) observations of

AT2019wey with the Ultra-Violet/Optical Telescope

(UVOT; Roming et al. 2005) onboard the Neil Gehrels

Swift Observatory (Gehrels et al. 2004). A summary

of Swift observations is given in Table 4. The UVOT

data was processed using heasoft version 6.27. For

the three epochs of observations obtained in Apr 2020,

AT2019wey was not detected above 3-σ in individual

exposures of the UV filters (including U , uvm2, uvw1,

and uvw2). Therefore, for each filter, we coadded the

three exposures using uvotsum and extracted the pho-

tometry with uvotsource using a 3′′ circular aperture.

Background counts were estimated in a 10′′ source-free

circular aperture. After that, the source was detected

with ∼ 7-σ in the V and B filters, ∼ 4-σ in the U and

uvw1 filters, and ∼ 2.5-σ in the uvm2 and uvw2 filters.

For UV data taken in Aug–Sep 2020, we did not coadd

and present > 3-σ detections in Table 5.

https://github.com/mcoughlin/kp84
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Table 4. Log of Swift Observations.

Observation Time Exp. UVOT filters

(UTC) (s)

2020-04-12T06:07:20 1523 —

2020-04-17T19:55:12 874 uvw2 uvm2 uvw1 U B V

2020-04-24T14:28:39 1026 uvw2 uvm2 uvw1 U B V

2020-04-28T13:56:23 1043 uvw2 uvm2 uvw1 U B V

2020-08-05T17:16:06 222 —

2020-08-09T13:17:40 846 uvm2

2020-08-12T13:10:03 1181 uvw2

2020-08-19T05:53:06 998 U

2020-08-26T05:17:00 1006 uvw1

2020-09-02T20:36:23 434 uvm2

2020-09-09T16:40:49 1023 uvw2

2020-09-16T16:01:34 858 U

2020-09-23T20:03:15 794 uvw1

Table 5. UV photometry for AT2019wey.

Date Instrument Filter m

2020-04 Coadd Swift/UVOT B 18.92± 0.16

2020-04 Coadd Swift/UVOT U 20.17± 0.24

2020-04 Coadd Swift/UVOT uvm2 22.63± 0.42

2020-04 Coadd Swift/UVOT uvw1 21.28± 0.27

2020-04 Coadd Swift/UVOT uvw2 22.99± 0.49

2020-04 Coadd Swift/UVOT V 17.95± 0.15

2020-08-09 Swift/UVOT uvm2 21.86± 0.31

2020-08-12 Swift/UVOT uvw2 21.50± 0.21

2020-08-19 Swift/UVOT U 19.32± 0.06

2020-08-26 Swift/UVOT uvw1 20.49± 0.13

2020-09-02 Swift/UVOT uvm2 > 21.62

2020-09-09 Swift/UVOT uvw2 21.68± 0.24

2020-09-16 Swift/UVOT U 19.26± 0.07

2020-09-23 Swift/UVOT uvw1 20.40± 0.13

2020-10-21 P60/SEDM U 19.11± 0.09

2020-10-25 P60/SEDM U 19.21± 0.31

Note—m and σm are observed magnitude (without ex-
tinction correction) in the AB system. The UV light
curve is presented in Figure 11.

In Oct 2020, we also obtained U -band photometry us-

ing the Spectral Energy Distribution Machine (SEDM,

Blagorodnova et al. 2018, Rigault et al. 2019) on the

robotic Palomar 60-inch telescope (P60, Cenko et al.

2006). Data reduction was performed using the Frem-

ling Automatic Pipeline (Fremling et al. 2016). The

reduced photometry is also presented in Table 5.

4. Optical and NIR Spectroscopy

We obtained optical spectroscopic follow-up obser-

vations of AT2019wey using the Double Spectrograph

(DBSP; Oke & Gunn 1982) on the 200-inch Hale tele-

scope, the Low Resolution Imaging Spectrograph (LRIS;

Oke et al. 1995) on the Keck-I telescope, and the Echel-

lette Spectrograph and Imager (ESI) on the Keck-II tele-

scope. We obtained NIR spectroscopy using the Near

infrared emission spectroscopy (NIRES) on the Keck-II

telescope. Spectroscopic observations were coordinated

with the GROWTH Marshal (Kasliwal et al. 2019).

A log of our spectroscopic observations is given in

Table 6. The DBSP spectra were reduced using the

pyraf-dbsp pipeline (Bellm & Sesar 2016). The LRIS

spectrum was reduced and extracted using Lpipe (Per-

ley 2019). The flat-fielding, wavelength solution (using

sky lines) and extraction for the NIRES spectra were

carried out using the spextool code (Cushing et al.

2004). The extracted spectra were flux calibrated us-

ing the telluric A0V standard star HIP 16652 with the

xtellcor code(Vacca et al. 2003). The ESI spectrum

was reduced using the MAKEE2 pipeline following the

standard procedure. Flux calibration was not performed

on the ESI spectrum.

4.1. Optical Spectroscopy

4.1.1. Overview

The LRIS spectrum obtained on 2020-03-23 is shown

in the top panel of Figure 4. We identified prominent

H I Balmer absorption lines, Ca II H and K lines, Na I

D doublets, DIB λ5780, λ6283 absorption features, and

Balmer jump at redshift z = 0. These features are

present in all optical spectra (Figure 5). We tentatively

detected He II λ4686 emission in the spectra obtained

on July 31, Aug 14, and Sep 20. We therefore conclude

that AT2019wey is a transient of Galactic stellar origin.

This is not surprising given the low Galactic latitude of

this source (Table 1).

We note that during our observations, the blue end of

DBSP’s red side CCD had a malfunction, such that flux

in the ∼5650–5750 Å wavelength range was lost. This

problem also affects flux calibration of DBSP spectra

from ∼ 5750 Å to ∼ 6200 Å. From the bottom panel

of Figure 5, one can see that the DBSP spectra con-

tain non-astrophysical structures between ∼ 5700 Å to

2 http://www.astro.caltech.edu/∼tb/ipac staff/tab/makee/

http://www.astro.caltech.edu/~tb/ipac_staff/tab/makee/
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Table 6. Log of AT2019wey spectroscopy.

Start Time Instrument Exp. Airmass Resolution (FWHM)

(UTC) (s) (Å)

2020-03-23 07:44:47 Keck-I+LRIS 300 2.22 6

2020-07-31 10:52:40 P200+DBSP 600 1.38 5

2020-08-13 15:19:31 Keck-II+NIRES 360 1.38 6

2020-08-14 11:24:16 P200+DBSP 600 1.34 5

2020-08-29 09:59:22 P200+DBSP 600 1.42 5

2020-08-29 10:09:43 P200+DBSP 600 1.39 5

2020-09-12 13:41:51 Keck-II+ESI 1800 1.32 2

2020-09-20 13:07:31 Keck-I+LRIS 300 1.33 6

2020-09-20 14:40:27 Keck-I+LRIS 300 1.23 6
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Figure 4. LRIS spectrum of AT2019wey obtained on 23 Mar 2020. Upper : observed spectrum. Bottom: extinction-corrected
spectrum using E(B − V ) = 0.9 mag. We mark rest (air) wavelength of atomic transitions in vertical lines. Dashed salmon:
Balmer series. Solid cyan: Na I D doublet. Dotted blue: DIB absorptionos.

∼ 6200 Å in the continuum caused by the malfunction

mentioned above, preventing equivalent width (EW ) of

spectral lines from being accurately determined. Fur-

thermore, the quality of DBSP spectra is generally lower

than that from the Keck telescopes. Therefore, in the

analysis below, we only measure the EW from the LRIS

and ESI spectra.

4.1.2. Extinction Estimation

Jenniskens & Desert (1994) shows that the diffuse

interstellar band (DIB) λ5780 and λ6283 contain two

blended components, a deep narrow absorption core su-

perimposed on a shallow broad absorption feature. The

two components are not resolved in our spectra. As of

central wavelength of the DIB features, we adopt the val-

ues estimated by Hobbs et al. (2008): 5780.48 Å for the

narrow component of the DIB λ5780, and 6283.83 Å for
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Figure 5. Zoom in on the blue and red portion of the seven low-resolution optical spectra (Table 6).
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Table 7. Line Index Definition.

Name Index Bandpass Shoulder Bandpasses

(Å) (Å)

DIB λ5780 5774–5786 5755–5770, 5790–5805

Na I D 5879–5905 5856–5872, 5911–5925

Na I D1 5894.0–5897.5 5891.7–5893.9, 5897.6–5900.6

Na I D2 5887.9–5891.4 5884.7–5887.7, 5891.7–5893.9

DIB λ6283 6267–6295 6247–6263, 6299–6313

Note—Wavelength is given in air.

Table 8. Line Index Measurements.

Name Start Time EW E(B − V )

(UTC) (Å) (mag)

DIB λ6283

2020-03-23 07:44:47 1.41± 0.13 1.12± 0.10

2020-09-12 13:41:51 1.53± 0.06 1.21± 0.05

2020-09-20 13:07:31 1.60± 0.16 1.27± 0.12

2020-09-20 14:40:27 1.43± 0.05 1.14± 0.09

Na I D

2020-03-23 07:44:47 1.86± 0.11 2.12± 0.72

2020-09-12 13:41:51 1.84± 0.08 2.00± 0.55

2020-09-20 13:07:31 2.30± 0.16 6.96± 3.34

2020-09-20 14:40:27 1.50± 0.09 0.81± 0.25

Na I D1 2020-09-12 13:41:51 0.85± 0.03 2.17± 0.90

Na I D2 2020-09-12 13:41:51 1.07± 0.03 2.48± 0.92

DIB λ5780

2020-03-23 07:44:47 0.49± 0.10 0.80± 0.16

2020-09-12 13:41:51 0.76± 0.09 1.25± 0.15

2020-09-20 13:07:31 0.36± 0.18 0.60± 0.30

2020-09-20 14:40:27 0.42± 0.06 0.69± 0.10

the narrow component of the DIB λ6283 line. Relations

between EW of the DIB lines and magnitudes of line-of-

sight extinction are investigated by Yuan & Liu (2012):

EW (5780) = 0.61× E(B − V ) (1a)

EW (6283) = 1.26× E(B − V ) (1b)

The doublet absorption strength of Na I D λλ5890, 5896

is also generally expected to correlate with the amount

of dust along the line of sight. Poznanski et al. (2012)

show that:

log(E(B − V )) = 2.16× EW (D2)− 1.91± 0.15 (2a)

log(E(B − V )) = 2.47× EW (D1)− 1.76± 0.17 (2b)

log(E(B − V )) = 1.17× EW (D)− 1.85± 0.08 (2c)

where EW (D) = EW (D1) + EW (D2). We measure

the EW of DIB and Na I D lines in our LRIS and ESI

spectra. The definition of line indices is given in Ta-

ble 7. Table 8 presents the result. EW (DIB λ6283)

and EW (DIB λ5780) are consistent with being constant

across the four observing epochs. EW (Na I D) might

exhibit variable line strength.

Using Eq. (1) and Eq. (2), we convert the measure-

ments of EW into E(B−V ), which are shown in Table 8.

The inverse variance weighted average is E(B − V ) =

1.19 ± 0.04 mag using EW (DIB λ6283), E(B − V ) =

1.14 ± 0.22 mag using EW (Na I D), and E(B − V ) =

0.83 ± 0.07 mag using EW (DIB λ5780). These estima-

tions are close to each other, and are slightly greater

than the total Galactic extinction of E(B − V ) =

0.88 mag along the line-of-sight to AT2019wey estimated

from Schlafly & Finkbeiner (2011). However, we note

that at the measured EW , the number of stars in the

sample used to yield Eq. (1) and Eq. (2) is very small,

such that the calibration uncertainty is large. From the

top panels of Figure 4 in Yuan & Liu (2012), we infer

that E(B−V ) towards AT2019wey should be & 0.8 mag.

From the bottom panel of Figure 9 in Poznanski et al.

2012), we infer that E(B − V ) towards AT2019wey

should be & 0.7 mag.

We also attempt to infer the extinction by assum-

ing that the 6000–10000 Å LRIS spectrum is in the

Rayleigh-Jeans (RJ) tail of a blackbody spectrum (fλ ∝
λ−4 when hν � kT ), which yields E(B−V ) = 1.29 mag.

and a blackbody radius (Rbb) of

Rbb = (4.5× 1010 cm)

(
D

5 kpc

)(
Tbb

5.0× 104 K

)−1/2

(3)

Note that this is likely an overestimate of the true extinc-

tion (and a lower limit of the outer disk radius), since

the optical is only in the RJ limit when kT � 2 eV

(T � 2 × 104 K). For instance, for an extinction of

E(B − V ) ∼ 0.9 mag, we have

Rbb = (1.0× 1011 cm)

(
D

5 kpc

)(
Tbb

1.1× 104 K

)−1/2

(4)

In summary, the extinction is inferred to be 0.8 .
E(B − V ) . 1.2 mag. In the bottom panel of Fig-

ure 4, we dereddened the observed spectrum assuming

E(B − V ) = 0.9 mag, RV = 3.1, and adopting the red-

dening law from Cardelli et al. (1989). The dereddened

spectrum shows a blue continuum, with broad Balmer

absorptions being the most prominent spectral lines.

4.1.3. Hydrogen Lines

From 23 Mar 2020 to 29 Aug 2020, the hydrogen pro-

file clearly changes. As can be seen in the bottom panel

of Figure 5, there is very strong Hα absorption on 23
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March 2020. In comparison, in the two LRIS spectra

obtained on 20 Sep 2020, the absorption component is

much weaker.
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Figure 6. Velocity of the Balmer lines Hα, Hβ, and Hγ
(from top to bottom). The think black and thin red lines are
from the 2020-03-23 LRIS spectrum and the 2020-09-12 ESI
spectrum, respectively.

Figure 6 presents the velocity of lower series Balmer

lines in the 23 March 2020 low resolution LRIS and

the 12 Sep 2020 medium resolution ESI spectra. In

the LRIS spectrum, we observe two absorption com-

ponents around Hα. Such a profile may result from

a relatively narrower (FWHM ∼ 1200 km s−1) emission

component in the middle of a rotationally broadened

(FWHM ∼ 2700 km s−1) shallow absorption trough. At

the same epoch, we also observe broad Hβ and Hγ

lines with FWHM ∼ 2000–3000 km s−1. There is a

marginal detection of narrow emission cores redshifted

by ∼ 300–400 km s−1 from the line center of the ab-

sorption troughs. In the ESI spectrum, we observe flat-

topped Hα in emission (∼ 400 km s−1), while the Hβ

and Hγ profiles are similar to the Hα profile in the LRIS

spectrum.

The hydrogen lines in AT2019wey display both broad

absorption and emission components. This behavior

is reminiscent of some LMXBs and cataclysmic vari-

ables (CVs), where the hydrogen absorption and emis-

sion lines are thought to arise from different layers of

the viscous accretion disk (Horne & Marsh 1986; La

Dous 1989; Warner 1995). In a few BH LMXBs, double-

peaked Hα is observed, such as GRO J1655−40 (So-

ria et al. 2000), GRO J0422+32 (Callanan et al. 1995)

XTE J1118+480 (Dubus et al. 2001; Torres et al. 2002)

and Swift J1753.5−0127 (Rahoui et al. 2015). The

single-peaked hydrogen line profile of AT2019wey is sim-

ilar to that observed in MAXI J1836−194 (Russell et al.

2014), suggesting a binary system with relatively low in-

clination (i.e., close to face-on), which is in agreement

with modeling of the X-ray reflection spectrum (Paper

I). We further discuss reasons for the variable Balmer

lines in Section 6.3.4.

4.1.4. Distance Estimation
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Figure 7. Zoom in on the Na I D lines of the ESI spectrum.
Upper : Continuum normalized spectrum. Lower : Spectral
lines in velocity space fitted with a Gaussian (dash-dotted
lines).

In Section 4.1.2, we find that AT2019wey should

have an extinction of 0.8 . E(B − V ) . 1.2 mag. If

this is from diffuse interstellar absorption, the distance

of AT2019wey should be greater than 1 kpc using the

map of STructuring by Inversion the Local Interstel-
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lar Medium (Stilism3; Capitanio et al. 2017), or greater

than ∼ 3 kpc using the 3D Dust Mapping constructed by

Green et al. (2019)4. In addition, since AT2019wey is in

the Galactic Anticenter direction (Table 1), the distance

to AT2019wey is likely less than ∼10 kpc.

We are able to put a lower limit to the distance of

AT2019wey using the velocity of the Na I D doublets,

given that the lines arise from interstellar absorption

by a dust cloud along the line-of-sight to AT2019wey.

The velocities of D1 and D2 lines are measured to be

−11.75 ± 1.13 km s−1 and −9.83 ± 1.13 km s−1, respec-

tively (see Figure 7). Assuming that the velocity of the

dust cloud follows Galactic rotation, we have

Vobs,r = Adsin(2l) (5)

where A = 15.3 ± 0.4 km s−1 kpc−1 is the Oort A con-

stant (Bovy 2017), l = 151.16117◦ (Table 1) is the

Galactic longitude of AT2019wey, and d is distance to

the dust cloud. Therefore, Eq. (5) gives d = 0.83 kpc.

Taken together, we conclude that the distance of

AT2019wey is between ∼1 kpc to ∼10 kpc. We note that

if the object continues to remain sufficiently bright in the

optical for an extended period of time, the next data re-

lease of the Gaia mission may help further constrain the

distance.

4.2. NIR Spectroscopy

The NIR spectrum of AT2019wey is shown in Fig-

ure 8. Hydrogen emission lines of Paγ, Paβ, and Brγ are

clearly distinguished. We tentatively attribute the emis-

sion lines around 1083 nm to double-peaked He I. No

absorption lines or molecular bands from the secondary

star can be identified. With FWHM ≈ 200–300 km s−1,

the velocities of NIR emissions are much narrower than

the Hα emission, hinting at different formation locations

in the accretion disk.

5. Radio Observations

5.1. Archival Limits

AT2019wey was not detected in any archival radio

database. The NRAO VLA Sky Survey (NVSS, Con-

don et al. 1998) provides an upper limit of 2 mJy at

1.4 GHz in 1993–1996. The Karl G. Jansky Very Large

Array Sky Survey (VLASS, Lacy et al. 2020) provides a

3-σ upper limit of 0.40 mJy at 2–4 GHz in Mar 2019.

5.2. Radio Observations

3 https://stilism.obspm.fr/
4 http://argonaut.skymaps.info/

Table 9. Radio observations of AT2019wey.

Date ν0 (GHz) fν (µJy) α

2020-05-27

5.0 197± 20

0.51± 0.696.0 220± 22

7.0 234± 23

2020-08-02

2.5 218± 49

−0.82± 0.233.5 205± 16

10.0 82± 11

2020-08-14

1.5 1023± 75

0.23± 0.02

2.5 998± 59

3.5 1077± 18

8.5 1420± 12

9.5 1399± 11

10.5 1447± 13

11.5 1431± 13

2020-08-21

1.5 1676± 102

0.19± 0.01

2.5 1767± 51

3.5 1923± 18

8.5 2340± 18

9.5 2393± 18

10.5 2376± 18

11.5 2353± 19

2020-08-28

1.5 1846± 128

0.20± 0.01

2.5 1891± 34

3.5 2048± 15

8.5 2529± 11

9.5 2542± 16

10.5 2536± 18

11.5 2511± 20

2020-10-17 6.7 1350± 220 —

Note—ν0 is central frequency. α is the spectral index
defined as fν ∝ να. The uncertainties are calculated
using the 90% quantiles from the MCMC run.

We monitored AT2019wey in radio-band using the

VLA (Perley et al. 2011). The observation was car-

ried out under Director’s Discretionary Time (Program

ID 20A-591, 20B-397; PI Y. Yao). AT2019wey was ob-

served in S- and X-band on 2020 Aug 2, and in L-, S-,

and X-band on Aug 14, Aug 21, and Aug 28. The data

were calibrated using the standard VLA Pipeline. We

present the flux density of our VLA detections in Ta-

ble 9. Cao et al. (2020a) reported VLA C-band obser-

vations obtained on 2020 May 27. We fit a power-law

function (fν ∝ να) to the VLA data at each epoch us-

ing the Markov chain Monte Carlo (MCMC) approach

with emcee (Foreman-Mackey et al. 2013). The fitting

https://stilism.obspm.fr/
http://argonaut.skymaps.info/
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Figure 9. Radio observations of AT2019wey. The solid
lines are model fits using estimated parameters. Ten ran-
dom draws from the MCMC posterior are shown with dashed
lines. Note that the random draws for the well constrained
models (Aug 14, Aug 21, Aug 28) are so well aligned that
they cannot be seen.

is shown in Figure 9, and the fitted spectral index α

is shown in Table 9. Additionally, Cao et al. (2020b)

reported 6.7 GHz observation taken with the European

VLBI Network (EVN) obtained on 2020 Oct 17.

On May 27, Aug 14, 21, and 28, a flat or slightly in-

verted (α ≈ 0–0.5) radio spectrum was observed, which

can be explained by partially self-absorbed synchrotron

emission from a conical, collimated jet (Blandford &

Königl 1979; Kaiser 2006), as commonly detected in

the LHS of X-ray binaries and quasar jet cores (Fender

2001). On Aug 2, however, a steep spectrum with

α ∼ −0.8 was observed, which might arise from the op-

tically thin synchrotron emission. The change of spec-

tral index may indicate the existence of a multi-zone jet.

Note that AT2019wey has transitioned to the HIMS on

Aug 28, indicating that there is no sign of jet suppres-

sion while the X-ray spectrum is softening.

6. Panchromatic Analysis

6.1. Radio–X-ray Correlation

To compare the radio and X-ray luminosities of

AT2019wey with other X-ray binaries, we place

AT2019wey on the Lradio versus LX diagram in Fig-

ure 10. We have simultaneous radio and X-ray ob-

servations on Aug 14 (NICER OBSID = 3201710110),

Aug 21 (OBSID = 3201710117), and Aug 28 (OBSID =

3201710124), shown in blue, black, and red, respectively.

The Aug 2 radio observation has no simultaneous X-

ray observation. Assuming that X-ray flux increased

from Apr to Aug 9 (as indicated by the MAXI obser-

vations in Figure 11), we use the Aug 9 NICER obser-

vation (OBSID = 3201710105) to place an upper limit

on its Aug 2 X-ray luminosity, and use the April Swift

and NuSTAR observations to place an lower limit on

its Aug 2 X-ray luminosity, as indicated by the dotted

black lines. The radio 5 GHz luminosity is scaled as-



12 Yao et al.

10
31

10
32

10
33

10
34

10
35

10
36

10
37

10
38

1--10 keV X-ray luminosity (erg s 1)

10
26

10
27

10
28

10
29

10
30

10
31

5 
G

H
z 

ra
di

o 
lu

m
in

os
ity

 (e
rg

 s
1 )

3kpc

10kpc

Quiescent/hard state BHs
Quiescent/hard state NSs
AMXPs
tMSPs (in accretion state)
CVs (at flare peak)
Aug 2
Aug 14
Aug 21
Aug 28

Figure 10. The radio versus X-ray correlation for the pop-
ulations of X-ray sources. The dashed grey line shows the
best-fit relation for BHs (Lradio ∝ L0.61

X , Gallo et al. 2006).
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suming a power-law spectrum (Figure 9 and Table 9).

The X-ray 1–10 keV luminosity is derived from spectral

fitting (see Paper I for details). Data from the literature

on other BHs, NSs, accreting millisecond X-ray pulsars

(AMXPs), transitional millisecond pulsars (tMSPs), and

CVs are also indicated (Bahramian et al. 2018)5.

As shown in Figure 10, the radio and X-ray luminosi-

ties of AT2019wey are much brighter than that of CVs

at flare peak. This indicates that AT2019wey is an X-

ray binary system with a BH or NS accretor, consistent

with its X-ray properties presented in Paper I.

6.2. Multi-wavelength Light Curve

6.2.1. Five Stages

The multi-wavelength light curve of AT2019wey is

shown in the upper panel of Figure 11, which can

be separated into five stages: (i) Before ∼58814 MJD,

the source was in quiescence, where the mass accre-

tion rate was extremely low; (ii) From ∼58814 MJD to

∼58880 MJD, the optical light curve exhibited a fast-rise

linear-decay outburst with peak flux of fν,r ∼ 410µJy,

after which it settled onto fν,r ∼ 315µJy. Around

the same time, the X-ray rose to ∼ 1 mCrab, and no

bright X-ray outburst righter than ∼ 5 mCrab was ob-

5 The data are downloaded from https://github.com/bersavosh/
XRB-LrLx pub

served by MAXI and Swift/BAT (Paper I); (iii) From

∼58880 MJD to ∼59005 MJD, the optical and X-ray

light curves stayed almost flat in the LHS; (iv) From

∼59005 MJD to ∼59080 MJD, AT2019wey exhibited a

multi-wavelength brightening, and the X-ray remained

in the LHS (Paper I); (v) From ∼59075 MJD to the end

of Oct 2020, optical stayed around fν,r ∼400µJy. Hard

X-ray stays around ∼ 25 mCrab, while soft X-ray went

into a few bumps (Paper I). X-ray spectral-timing prop-

erties suggest that the source entered into the HIMS

(Paper I).

6.2.2. UVOIR–X-ray Correlation

It is clearly manifested that during stage (iv), the X-

ray and radio fluxes have increased by a factor of & 10.

However, the optical r-band and g-band fluxes increased

only by factors of 1.3 and 1.4, respectively. Furthermore,

the U -band (λeff = 3475 Å), uvw1 (λeff = 2614 Å),

uvm2 (λeff = 2255 Å), and uvw2 (λeff = 2079 Å) flux

densities increased by factors of 2.2 ± 0.5, 2.2 ± 0.6,

2.0±1.0, and 3.7±1.7. Table 10 presents representative

values of X-ray and optical luminosities at stage (iii) and

stage (v). Following Russell et al. (2006), we approxi-

mate the optical luminosity by Lopt ≈ νfν . Parametriz-

ing

Lopt = ALβX, (6)

for AT2019wey, we find β ∼ 0.08 in r-band, β ∼ 0.12 in

g-band, and 0.25 . β . 0.51 in the UV band.

Global correlations between the optical and X-ray lu-

minosities were previously found for LMXBs in the hard-

state. Russell et al. (2006) derived A = 1013.1±0.6,

β = 0.61± 0.02 for a sample of 15 BH LMXBs, and

A = 1010.8±1.4, β = 0.63± 0.04 for a sample of 8 NS

LMXBs. At 1 . D . 10 kpc, the inferred luminosities

of AT2019wey put it close to the hard-state BH LMXBs

on the Lopt–LX diagram (Figure 12), while its optical

luminosity is far above that expected for NS LMXBs.

This suggests that the compact object in AT2019wey

is probably a BH. Non-detection of pulsations in our

extensive NICER monitoring (Paper I), as well as the

hard X-ray spectrum obtained with the Insight/HXMT

instrument (Tao et al. in prep) are in agreement with

this inference.

6.2.3. Possible Mechanisms of the Optical Emission

The three dominating processes for the UV/optical

emission of BH LMXBs in the LHS are thought to be:

(1) Reprocessing of X-ray in the outer accretion disk; (2)

Optically thick jet spectrum extended from the centime-

ter wavelength; (3) Intrinsic thermal emission from the

viscously heated outer accretion disk. For X-ray repro-

cessing, the expected slope is β ∼ 0.5 in the V -band (van

https://github.com/bersavosh/XRB-LrLx_pub
https://github.com/bersavosh/XRB-LrLx_pub
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Figure 11. Upper : Observed multi-wavelength light curve of AT2019wey, including ZTF photometry and upper limits (Sec-
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Table 10. X-ray and optical luminosity of AT2019wey at different stages of the multi-wavelength evolution.

Stage Band Luminosity Comments

(iii) r & g 4.0× 1034 & 6.1× 1034 Averaged between ∼58880 MJD and ∼59005 MJD

(iii) X-ray 1.0× 1035 Averaged between ∼58951 MJD and ∼58967 MJD

(v) r & g 4.9× 1034 & 8.4× 1034 Averaged between ∼59080 MJD and ∼59153 MJD

(v) X-ray (1.3–1.7)×1036 Range of values from minimum (∼59082 MJD) to maximum (∼59112 MJD)

Note—Luminosity is given in units of (D/5 kpc)2 erg s−1. X-ray column density corrected luminosity is given in 2–10 keV,
assuming NH = 5× 1021 cm−2. Optical luminosity has been corrected for extinction, adopting E(B − V ) = 0.9 mag

Paradijs & McClintock 1994), and increases (decreases) at shorter (longer) wavelength. For the optically thick
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jet spectrum, β ∼ 0.7 is expected (Corbel et al. 2003;

Russell et al. 2006). For a viscously heated disk, the ex-

pected slope ranges from β = 0.13 (RJ tail) to β = 0.33

(between the RJ tail and the Wien cut-off) (Tetarenko

et al. 2020). The correlation of β ∼ 0.6 derived by Rus-

sell et al. (2006) suggest that irradiation and jet are

the two processes contributing most to the optical emis-

sion of a large number of BH LMXBs. However, the

observed β ∼ 0.1 for AT2019wey suggests that intrinsic

disk emission might play an important role here. We fur-

ther investigate possible origins of the bright UV/optical
emission in Section 6.3.

We note that small values of β have also been observed

in a few other BH LMXBs in the LHS. For example,

β ∼ 0.2 is reported by Armas Padilla et al. (2013) dur-

ing the outburst decay of Swift J1357.2−0933, a short-

period system (Porb = 2.8 h) with a ∼ 0.4M� com-

panion star (Corral-Santana et al. 2013; Mata Sánchez

et al. 2015); β ∼ 0.2 was observed the outburst decay

of Swift J1753.5−0127 (see Fig. 1 of Chiang et al. 2010),

another short-period system (Porb . 3.244 ± 0.001 h)

with a . 0.3M� companion star (Zurita et al. 2008;

Neustroev et al. 2014). Interestingly, the X-ray of both

systems are only observed in the LHS or HIMS, with-

out successful transitions to the high/soft state (HSS)

(Armas Padilla et al. 2013; Shaw et al. 2016). These

similarities might be understood as characteristics for a

sub-population of BH LMXBs (see Section 8).

6.3. Multi-wavelength SED

The spectral energy distribution (SED) of AT2019wey

is shown in Figure 13.

6.3.1. The X-ray and Radio Spectrum

We perform X-ray spectral fitting using xspec version

12.11.0 (Arnaud 1996). See Paper I for details of X-ray

observation and data reduction. Using the calibration of

NH = 5.55×1021×E(B−V ) (Predehl & Schmitt 1995),

the column density NH is fixed at 5 × 1021 cm−2. We

model the Swift/XRT data obtained in Apr 2020 with an

absorbed PL (tbabs*powerlaw, in xspec, Wilms et al.

2000) with photon index Γ ∼ 1.8. Paper I shows that

a soft thermal component is observed after the X-ray

brightening in stage (iv). Therefore, we fit the NICER

data obtained on Aug 14, Aug 21, Aug 28, and Sep 20

with tbabs*simpl*diskbb. The dates are chosen to re-

flect representative X-ray spectra in stages (iv) and (v).

Here diskbb is a multi-color accretion disk (Shakura

& Sunyaev 1973; Mitsuda et al. 1984) and simpl is a

Comptonization model that generates the PL compo-

nent via Compton upscattering of seed photons from the

accretion disk (Steiner et al. 2009). The column density

corrected models are shown in Figure 13.

From Aug 14 to Aug 28, the fitted models generally

exhibits PL photon index Γ ∼ 1.9 and inner disk tem-

perature Tdisk ∼ 0.21 keV ∼ 2.4× 106 K. The inner disk

radius can be obtained from the normalization term of

the diskbb component

Rin ∼ (360–470)

(
cosi

1

)−1/2 (
D

5 kpc

)
km. (7)

On Sep 20, the soft X-ray reaches a local maximum

in the HIMS, where the PL has softened to Γ = 2.3

and the inner disk temperature has increased to Tdisk ∼
0.29 keV ∼ 3.4 × 106 K, while the inner disk radius re-

mains at ∼ 400 km. The fitted Tdisk and Rin are typ-

ical for thermal emission of a truncated accretion disk

observed in the LHS and HIMS of BH LMXBs (Done

et al. 2007). Denoting the innermost stable circular or-

bit radius RISCO = 6GM/c2 and the Schwarzschild ra-

dius RS = 2GM/c2, Rin ∼ 15RS ∼ 5RISCO of a 10M�
non-spinning black hole.

The dash-dotted lines shown in Figure 13 are best-fits

of the radio data (Table 9) extending to 3× 1012 Hz. If

the spectrum remains optically thick all the way to the

optical and near-infrared (OIR) wavelength, it will over-

predict the observed OIR spectrum. Assuming a clas-

sical jet spectrum of a broken PL (Blandford & Königl
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Figure 13. Multi-wavelength SED of AT2019wey. In radio, we show the observed data and power-law fits (Table 9). In
UV/optical/NIR, we show the dereddened photometry and spectra assuming E(B − V ) = 0.9 mag. Note that the silver NIR
spectrum, the orange optical spectrum, and the green optical spectrum were obtained on Aug 13, March 20, and Sep 20,
respectively (Table 6). In X-ray, we show the best-fits to X-ray data corrected for a fixed column density of NH = 5×1021 cm−2

(see Section 6.3.1 for details). See definition of different stages in the lower panel of Figure 11. The dashed and dotted green
lines from optical to X-ray are illustrative models of irradiation and standard disk emission, respectively (see Section 6.3.3 for
details).

1979), the break frequency must be � 1014 Hz. The

optically thin jet spectrum may contribute a fraction of

NIR emission (grey data in Figure 13), but is unlikely to

dominate in optical. This agrees with the inference pre-

sented in Section 6.2.3, that the β ∼ 0.1 slope observed

in AT2019wey is too small to be explained by jet emis-

sion. Therefore, in Section 6.3.2 and 6.3.3, only intrinsic

emission of an accretion disk and X-ray reprocessing are

considered as possible origins of the UV/optical emis-

sion.

6.3.2. UV/Optical Emission in the Dim LHS

In Figure 14, we show the UV/optical data and the

best-fit X-ray model in the dim LHS (stage iii) in or-

ange. The SED apparently come from two disjoint com-

ponents. The X-ray is well-fitted by a PL with pho-

ton index Γ ∼ 1.8, while the optical/UV continuum re-

sembles the RJ tail of a blackbody. The detection of

Balmer jump and broad Balmer absorption lines (Sec-

tion 4.1) also implies that thermal emission contributed

substantially to the optical band. The low level of X-ray

flux (compared to that in the UV/optical) suggests that

there is not enough X-ray to illuminate the outer accre-

tion disk. As a result, the UV/optical probably comes

from the intrinsic thermal emission of an accretion disk.

To obtain a constraint of the outermost annulus of the

accretion disk, we compute a set of simple blackbody

models with Tbb fixed at 11000 K, 20000 K, and 25000 K

(upper panel of Figure 14). All models are normalized

to match the r-band photometry at 4.7× 1014 Hz. The

11000 K model matches long-wavelength (λ > 6000 Å)

data, but under-predict the near-UV (NUV) flux. The

higher temperature models account for the NUV data

well, but are generally below the observed SED at

λ > 6000 Å. Next, we adopt the 11000 K blackbody as

an approximation of the outer disk annulus, and com-

pute a set of diskbb models to obtain a lower limit

of the inner disk radius (and an upper limit of the in-

ner disk temperature). The dotted line in the lower

panel of Figure 14 suggests Tin < 4.8 × 105 K and

Rin > 3.3 × 103 km ∼ 38RISCO ∼ 114RS. We note
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Figure 14. X-ray–UV–optical SED of AT2019wey in the
dim LHS. The upper and lower bounds of the yellow region
are obtained by dereddening the observed data using E(B−
V ) = 1.2 mag and 0.7 mag, respectively. Single-temperature
blackbody models are shown in the upper panel, while disk-
blackbody models are shown in the lower panel. All models
are normalized to match the flux in r-band. D = 5 kpc and
cosi = 1 are assumed

that at E(B−V ) ∼ 0.9 mag, the transmission of the in-

terstellar medium is very low in the UV (< 1% in uvw2,

uvm2, and uvw1). Therefore, the extinction-corrected

flux is highly susceptible to the uncertainty in E(B−V )

and the extinction law adopted here (Section 4.1.2), as

demonstrated by the yellow region in Figure 14. There-

fore, we do not perform detailed model fits, but empha-

size that the UV/optical SED can be well explained by

intrinsic thermal emission from a multi-color disk, where

the inner disk radius is truncated far from the ISCO.

Similar SED shapes have been observed in the LHS

of a few BH LMXBs, including XTE J1118+480 (Rin =

300RS; Yuan et al. 2005) and Swift J1753.5−0127 (Rin >

100RS; Froning et al. 2014). The observed SED of

AT2019wey in the dim LHS fits into the picture of a

hot accretion flow around a BH, which is predicted at

low-accretion rate (see reviews by Done et al. 2007; Yuan

& Narayan 2014; Poutanen & Veledina 2014). The hot

accretion flow is widely referred to as the advection-

dominated accretion flow (ADAF; Narayan & Yi 1994,

1995). In such a scenario, the X-ray PL comes from

a high-temperature flow in the central regions close to

the BH, while the UV/optical thermal component comes

from a geometrically thin, optically thick truncated ac-

cretion disk (Yuan & Narayan 2014).

6.3.3. UV/Optical Emission in the HIMS

The dotted green line in Figure 13 shows an extrap-

olation of the diskbb fit on NICER data for Sep 20.

It clearly under-predicts the observed UV/optical spec-

trum, making X-ray reprocessing the most likely origin

of the UV/optical emission in the HIMS. We therefore

attempt to fit the green data by the irradiation model

diskir (Gierliński et al. 2008, 2009).

We set the inner disk temperature of the unillumi-

nated disk and the asymptotic power-law photon index

the same as the best-fit Sep 20 model obtained in Sec-

tion 6.3.1. The fraction of reprocessed luminosity in the

Compton tail (fin) is fixed at 0.1. The electron tem-

perature is fixed at 1000 keV as there is no sign of a

high-energy PL cutoff (see Paper I). The dashed green

line in Figure 13 is a schematic fit with the following

parameters: the ratio of luminosity in the Compton tail

to that of the unilluminated disk LC/Ld = 0.22, the

radius of the Compton illuminated disk Rirr = 1.2Rin,

the fraction of thermalized bolometric flux fout = 0.08,

Rout = 103.55Rin, and the normalization parameter of

the unilluminated disk (Eq. 7) ≈ 370 km. We conclude

that the UV/optical SED in the HIMS is consistent with

being produced from X-ray irradiation.

6.3.4. Evolution of Optical Hydrogen Lines

In Section 6.3.3 and 6.3.2 we have shown that in the

HIMS, the UV/optical emission comes from the repro-

cessing of inner disk and coronal emission. Irradiation

of the outer disk may form a thin temperature-inversion

layer on the disk surface (Tuchman et al. 1990). This

naturally explains the enhanced Balmer emission lines

observed during stage (iv) and stage (v) (Section 4.1.3).

7. Discussion

7.1. Constraint on Companion Stellar Mass

In Section 3.1, we present historical optical upper lim-

its at the position of AT2019wey. The deep histori-

cal limits can provide constraints on the mass of the

companion, assuming that the secondary is a hydrogen-

burning main-sequence star. To this end, we convert the

apparent limit magnitude in SDSS r′-band to absolute
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Figure 15. Upper limits of the companion mass assuming
different values of E(B − V ) and distance (D).

limit magnitude with the following formula

lim(Mr′) = lim(mr′)−Ar′ − 10− 5× log10(Dkpc) (8)

where lim(mr′) = 24.8 mag (Table 2), Dkpc is the dis-

tance to AT2019wey in units of kpc, and Ar′ = 2.72 ×
E(B−V ) is the extinction in r′-band. We then convert

lim(Mr′) to an upper limit of the stellar mass of main-

sequence dwarfs using the relation provided by Pecaut &

Mamajek (2013, Table 5)6. Figure 15 shows the upper

limits of the companion mass under ranges of possible

extinction and distance. We conclude that the com-

panion, should it be a main-sequence star, must be less

heavy than 0.8M�, and likely < 0.5M�. This firmly

verifies that AT2019wey is a LMXB.

7.2. Constraint on Orbital Period

Shahbaz & Kuulkers (1998) presented an empirical re-

lation between the optical outburst amplitude and Porb

for short-period LMXBs

∆V = 14.36− 7.63 log10Porb(h) (9)

Assuming that ∆V (λeff = 551 nm)≈ ∆r(λeff = 642 nm),

we have

∆V ≈ ∆r > (24.8− 17.4) = 7.4 mag (10)

where 24.8 is the r′-band upper limit in quiescence (Ta-

ble 2), and 17.4 mag is the r-band outburst magnitude

6 We downloaded an updated version of this table from
http://www.pas.rochester.edu/∼emamajek/EEM dwarf
UBVIJHK colors Teff.txt.

(Figure 2). Plugging Eq. (10) into Eq. (9) implies

Porb < 8.2 h, providing an upper limit on the Porb of

AT2019wey. Below we search for periodicity in the op-

tical data in Section 7.2.1, and discuss its validity and

implication in Section 7.2.2.

7.2.1. Period Search

The ZTF Galactic deep drilling survey covered the

field of AT2019wey on 2020-09-19 and 2020-09-23. On

Sep 19 and Sep 23, we have 131 and 133 continuous ex-

posures of over ∼ 1.5 h, respectively (Figure 16). We

search for periodicity on a frequency grid from 16 d−1

to 500 d−1 using the analysis of variance (AOV) method

(Schwarzenberg-Czerny 1998)7. The solid black lines in

Figure 17 show the periodograms for data taken on Sep

19, Sep 23, and both nights. To see how the observation

cadence affect the periodogram, we utilize the astropy

(Astropy Collaboration et al. 2013) implementation of

the Lomb-Scargle algorithm (see a recent review by Van-

derPlas 2018) to compute the window function. In each

panel of Figure 17, we show the window function with

a dotted grey line, and mark the best period (P = 1/ν)

where the periodogram has the maximum value.

Similar to Burdge et al. (2020), we define “signifi-

cance” as the maximum value in the periodogram di-

vided by the standard deviation of values across the full

periodogram. A period of P = 1.27 h at a significance of

9.1 was detected from the 2020-09-19 observation, while

a period of 0.71 h at a low significance of 5.2 was identi-

fied using the 2020-09-23 observation. Using data from

both nights, a period of 1.31 h can be detected with a

significance of 9.7. For the identification of short-period

binaries, Burdge et al. (2020) adopt significance > 8 as

the threshold for eye-inspection (see their Appendix B).

We therefore consider P = 1.3 h to be a good period

candidate.

We also searched for periodicity in the CHIMERA

data on a frequency grid from 1 d−1 to 100 d−1, while

no significant period can be identified. We note that

AT2019wey exhibit intra-night variability of ∼ 0.1 mag.

7.2.2. Discussion on the Periodicity

Ideally, for BH LMXBs, Porb should be measured

in quiescence when the secondary star dominates in

optical, showing ellipsoidal modulation and/or radial

velocity variation. Alternatively, for high-inclination

systems in the outburst state, Porb can also be con-

strained via spectroscopic analysis of the optical double-

peaked emission line profile (Corral-Santana et al. 2013;

7 We utilize the python script provided by https://users.camk.edu.
pl/alex/#software

http://www.pas.rochester.edu/~emamajek/EEM_dwarf_UBVIJHK_colors_Teff.txt
http://www.pas.rochester.edu/~emamajek/EEM_dwarf_UBVIJHK_colors_Teff.txt
https://users.camk.edu.pl/alex/#software
https://users.camk.edu.pl/alex/#software
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Figure 16. ZTF forced photometry light curve of AT2019wey on 2020-09-19 (left) and 2020-09-23 (right).
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19 (upper), Sep 23 (middle), and both nights (bottom). In
each panel, the best period is marked by the arrow.

Neustroev et al. 2014; Mata Sánchez et al. 2015) or or-

bital modulation in the optical/X-ray light curves (Ku-

ulkers et al. 2013; Corral-Santana et al. 2018). The

above methodology is hard to apply in AT2019wey due

to the faintness of the companion star and the low in-

clination of this system. However, we note that before

Porb = 5.091850 ± 0.000005 h was dynamically estab-

lished for the low-inclination BH LMXB GRO J0422+32

by Gelino & Harrison (2003), multiple studies reported

the transient 5.1 h modulation in optical photometry

(Chevalier & Ilovaisky 1992; Kato et al. 1993; Callanan

et al. 1995), which was suggested to be related to the or-

bital period. Therefore, the ∼1.3 h optical modulation

could also be related to Porb of AT2019wey, although

more observations are needed for a conclusive measure-

ment.

In the canonical theory of BH LMXB evolution, the bi-

nary system evolves to shorter period due to orbital an-

gular momentum loss (Li 2015). In the population syn-

thesis study for semidetached systems, Yungelson et al.

(2006) predicted that systems with short period (Porb ≤
2 h) and very low mass-ratio (q = Mstar/MBH < 0.02)

might form the majority of the BH LMXB population.

The authors suggest that these systems should be con-

centrated around a minimum Porb at ∼70–80 min. The

existence of this sub-population of sources is not ob-

served (Knevitt et al. 2014). A more reliable Porb mea-

surement for AT2019wey is needed to test the validity

of the transient periodicity observed here, and to test

formation theories of low-mass black hole binaries.

8. Conclusion

We have undertaken a detailed multi-wavelength

follow-up of the X-ray transient AT2019wey. The ob-

servables suggest that AT2019wey is a new LMXB and

a BH candidate, consistent with our analysis of the X-
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ray observations (Paper I). The properties of this system

are summarized below:

(a) The extinction towards AT2019wey is constrained

to be 0.8 . E(B−V ) . 1.2 mag, and the distance

is constrained to be 1 . D . 10 kpc.

(b) We observe Balmer emission cores (FWHM .
400 km s−1) on top of broad (FWHM ∼ 2000–

3000 km s−1) absorption troughs, as well as

Paschen and Brackett emission lines (FWHM ∼
250 km s−1).

(c) The historical SDSS upper limit of lim(r′) =

24.8 mag puts a constraint on the mass of the com-

panion star of Mstar . 0.8M�.

(d) The r-band amplitude between quiescence and

outburst is ∆r > 7.4 mag, providing an upper limit

on the orbital period Porb < 8.2 h. A transient

modulation at 1.3 h is observed, but awaits verifi-

cation.

(e) Multi-wavelength light curve of AT2019wey can be

separated into five distinct stages, as illustrated

in Figure 11. During stage (iv), the optical flux

only increased by 1.3–1.4 despite the significant

brightening in X-ray and radio by more than a

factor of 10.

(f) The SED evolution fits into the picture of a hot

accretion flow consisting of an inner ADAF and

a truncated disk, which is the widely-accepted

model for short-period BH LMXBs in the hard

state.

(g) In the dim LHS, the UV/optical emission comes

from intrinsic thermal emission of an accretion

disk with Rin > 100RS and Tin < 4.8 × 105 K.

In the HIMS, the truncation radius has moved in-

wards such that Rin ∼ 15RS and Tin ∼ 0.3 keV.

The dominate mechanism for the UV/optical

emission is probably reprocessing of X-rays.

In recent years, more BH LMXBs with very

short periods have been discovered. Among the

66 BH LMXBs presented in the updated Black-

CAT8 catalog (Corral-Santana et al. 2016), five

sources have carefully measured orbital periods less

than 5 hours (MAXI 1659−152, Swift J1357.2−0933,

Swift J1753.5−0127, XTE J1118+480, MAXI 1836−194).

Except for MAXI 1659−152, the remaining four sources

are all classified as “hard-only” outburst sources by

8 See http://www.astro.puc.cl/BlackCAT/index.php.

Tetarenko et al. (2016) — the X-ray light curve stays

in the LHS for the entire outburst, or occasionally tran-

sitions to the HIMS, but never goes into the HSS. The

“hard-only” outbursts are associated with lower mass

accretion rates and lower peak X-ray luminosities (Wu

et al. 2010; Tetarenko et al. 2016). These systems are

relatively hard to identify with ASMs due to their faint

X-ray flux. The SRG survey has the sensitivity to probe

this sub-population in X-ray, and eROSITA’s small as-

trometry uncertainty (∼ 5′′) makes it easy to search for

counterparts at longer wavelength.

The optical outburst of AT2019wey is not accompa-

nied by a bright X-ray nova outburst, which is a distinc-

tive feature of AT2019wey. During the dim LHS lasting

for ∼ 0.5 yr, neither X-ray reprocessing nor synchrotron

emission from jet outflow contributes significantly in op-

tical. Instead, intrinsic thermal emission from a trun-

cated accretion disk in the radiatively inefficient hot ac-

cretion flow makes the binary system appear as a bright

transient in UV/optical. The discovery of AT2019wey

showcase the possibility of hunting for similar systems

in wide-field optical surveys. Perhaps the easiest ap-

proach to identify similar LMXBs is to look at optical

light curves of SRG point sources in the Galactic plane.
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588, A103
Bovy, J. 2017, MNRAS, 468, L63
Burdge, K. B., Prince, T. A., Fuller, J., et al. 2020, arXiv

e-prints, arXiv:2009.02567
Callanan, P. J., Garcia, M. R., McClintock, J. E., et al.

1995, ApJ, 441, 786
Cao, H., Frey, S., Gabanyi, K., et al. 2020a, The

Astronomer’s Telegram, 13984, 1
Cao, H., Giroletti, M., Migliori, G., & Frey, S. 2020b, The

Astronomer’s Telegram, 14168, 1
Capitanio, L., Lallement, R., Vergely, J. L., Elyajouri, M.,

& Monreal-Ibero, A. 2017, A&A, 606, A65
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ,

345, 245
Cenko, S. B., Fox, D. B., Moon, D.-S., et al. 2006, PASP,

118, 1396
Chevalier, C., & Ilovaisky, S. A. 1992, IAUC, 5644, 2
Chiang, C. Y., Done, C., Still, M., & Godet, O. 2010,

MNRAS, 403, 1102
Condon, J. J., Cotton, W. D., Greisen, E. W., et al. 1998,

AJ, 115, 1693
Corbel, S., Nowak, M. A., Fender, R. P., Tzioumis, A. K.,

& Markoff, S. 2003, A&A, 400, 1007

Corral-Santana, J. M., Casares, J., Muñoz-Darias, T., et al.

2016, A&A, 587, A61
—. 2013, Science, 339, 1048
Corral-Santana, J. M., Torres, M. A. P., Shahbaz, T., et al.

2018, MNRAS, 475, 1036
Cushing, M. C., Vacca, W. D., & Rayner, J. T. 2004,

PASP, 116, 362
Dekany, R., Smith, R. M., Riddle, R., et al. 2020,

Publications of the Astronomical Society of the Pacific,

132, 038001
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