
Draft version November 12, 2020
Typeset using LATEX twocolumn style in AASTeX63

CWITools: A Python3 Data Analysis Pipeline for the Cosmic Web Imager Instruments

Donal O’Sullivan1 and Yuguang Chen1

1California Institute of Technology

ABSTRACT

The Palomar Cosmic Web Imager (PCWI) and Keck Cosmic Web Imager (KCWI) are integral-field

spectrographs on the Hale 5m telescope at Palomar Observatory and the Keck-2 10m telescope at

W. M. Keck Observatory, respectively. In recent years, these instruments have been increasingly

used to conduct survey work; in particular focused on the circumgalactic and intergalactic media

at high redshift. Extracting faint signals from three-dimensional IFU data is a complex task which

can become prohibitively difficult for large samples without the proper tools. We present CWITools,

a package written in Python3 for the analysis of PCWI and KCWI data. CWITools is designed

to provide a pipeline between the output of the standard instrument data reduction pipelines and

scientific products such as surface brightness maps, spectra, velocity maps, as well as a wide array

of associated models and measurements. While the package is designed specifically for PCWI and

KCWI data, the package is open source and can be adapted to accommodate any three-dimensional

integral field spectroscopy data. Here, we describe this pipeline, the methodology behind individual

steps and provide example applications.

Keywords: Python3, Data Analysis, Cosmic Web Imager, PCWI, KCWI

1. INTRODUCTION

The Palomar and Keck Cosmic Web Imagers (here-

after KCWI and PCWI) are integral field unit (IFU)

spectrographs designed to study faint, extended emis-

sion (Matuszewski et al. 2010; Morrissey et al. 2018).

PCWI was installed on the Hale 5m telescope at Palo-

mar Observatory in 2009, while KCWI was installed on

the Keck-2 10m telescope in the W. M. Keck Obser-

vatory in 2017. In 2014, the Multi-unit Spectroscopic

Explorer (MUSE) (Caillier et al. 2014) was installed on

the 8m VLT at the European Southern Observatory.

This new set of instruments on 5-10m class telescopes

has enabled observers to directly detect signals on the

order of 10−18 erg/s/cm2/arcsec2 in less than an hour

of telescope time (Martin et al. 2014a,b). This in turn

has enabled surveys of unprecedented sizes mapping

the circumgalactic medium around high-redshift galax-

ies and quasars (Borisova et al. 2016; Arrigoni Battaia

et al. 2019; O’Sullivan et al. 2020; Cai et al. 2019). As

the observational field grows and sample sizes increase,

Corresponding author: Donal O’Sullivan

dosulliv@caltech.edu, donal.b.osullivan@gmail.com

data analysis becomes an increasingly prevalent issue.

Here we present CWITools, a data analysis Python3

toolkit tailored to handling the data produced by the

PCWI and KCWI data reduction pipelines (DRPs).

This toolkit can be seen and used as a pipeline itself,

taking input in the form of individual data cubes and

producing scientific products such as white-light im-

ages, pseudo-narrow-band images, spectra, and velocity
maps. CWITools was intially built out of necessity, as

a toolkit for work on the FLASHES Survey (O’Sullivan

et al. 2020); a survey of extended emission in z = 2− 3

QSO environments. Over the past two years, it has

been transformed into a publicly available, user-friendly

package with help menus, documentation and applica-

tion examples. This package is open source, and can

be adapted to work with any three-dimensional data.

However, in order to limit the scope for the purposes of

testing and robustness, we focus primarily on applica-

tions involving data from PCWI and KCWI.

We begin by providing an overview of the context and

architecture of CWITools, including a detailed descrip-

tion of the PCWI and KCWI pipelines’ output. We

then describe the methodology of each broad process-

ing step within CWITools; reduction, extraction, syn-

ar
X

iv
:2

01
1.

05
44

4v
1

 [
as

tr
o-

ph
.I

M
]

 1
0

N
ov

 2
02

0
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Caltech Authors - Main

https://core.ac.uk/display/370077693?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto: dosulliv@caltech.edu, donal.b.osullivan@gmail.com

2 O’Sullivan and Chen

thesis, modeling, and measurement. Finally, we provide

an example application of CWITools in detecting nebu-

lar emission around a source at high redshift. In general,

since full code-specific documentation and examples ex-

ist online for the package, we will limit the discussion

here to design, methodology, application examples, and

recommendations.

2. PACKAGE ARCHITECTURE

CWITools is intended to provide a bridge between

the output of the standard instrument data reduction

pipelines (DRPs) and scientific products. In particular,

PCWI and KCWI are both designed to image faint and

diffuse emission, which lends a particular scientific focus

to the package, though by no means an exclusive one.

While there is no ubiquitous procedure which applies

to all scientific projects, there are certain steps which

are more or less universal to the process of extracting

and measuring signals in IFU data: cropping, correcting

3D coordinate systems, masking or subtracting sources,

extracting spectra or velocity maps, etc. CWITools is

thus intended to provide observers with a flexible and

easy-to-use set of tools with which they can customize

a pipeline to suit their needs.

The standard DRPs have the goal of producing fully

calibrated, three-dimensional data cubes for each indi-

vidual exposure. Typically, observers reduce data on a

night-by-night basis. Others may organize their data

based on instrument configurations used or by target

observed during a given observing run. For the purpose

of scientific work, it makes the most sense to organize

any subsequent analysis by science target. As such, the

central element of any CWITools is a ‘.list’ file which

indicates simply: (i) where the input data for this target

can be found, (ii) a set of unique IDs for files associated

with this target, and (iii) where to save output and

intermediate products.

The end point of CWITools is whatever scientific mea-

surement is needed for the discussion and analysis part

of a project. Whatever the scientific case - the functional

architecture can be broken into the same main modular

components: reduction, extraction, synthesis, modeling,

and measurement. Reduction involves steps which are

in essence further corrections of the data, required to

compile the final observation (e.g. cropping, coadding).

Extraction refers to steps which are focused on isolat-

ing a specific element or signal within the data (e.g.

removing foreground or background). Synthesis is the

generation of first-level scientific products from the iso-

lated signal, such as surface brightness maps or velocity

maps. Modeling is the fitting and evaluation of models,

applied either to the generated scientific products or

directly to the isolated 3D signal. Finally, measurement

is the calculation of physical quantities from synthesized

products, 3D data, or models. The distinction between

synthesis and measurement in the context of this pack-

age is that the former produces 1D-3D data structures

(e.g. spectra or velocity maps) upon which further mea-

surements or analysis can be performed, while the latter

produces scalar results which represent end-points in the

data analysis process (e.g. luminosity). Although the

term ‘pipeline’ implies a waterfall-like process through

the above steps and the bulk of pipelines will go through

the above steps in some similar order, there is no strict

one-directional flow imposed by the design of the pack-

age. There is always a point beyond which automation

becomes more cumbersome than the alternative manual

work required and, in the context of this package, that

point is reached in determining the exact order of op-

erations. Steps often need to be skipped, re-arranged,

or repeated depending on the scientific objective and

there is no ‘one size fits all’ data analysis pipeline. As

such, while CWITools provides a number of template

pipelines as examples, they are intended as templates

to be modified and adapted to observers’ needs.

Figure 1 shows the internal modular structure of

CWITools, as well as the associated inputs and out-

puts of each stage. Each module corresponds to

a Python module within the main package (e.g.

cwitools.reduction), within which are functions as-

sociated with that stage. In addition to these modules,

which can be imported into Python environments and

used to construct a pipeline within any scripting en-

vironment, CWITools contains a library of command-

line scripts which serve as wrappers to these functions.

These scripts are designed as an interface for users who

are less familiar with Python scripting, and simply want

access to the tools. Upon installation, they are added

to the user’s environment as terminal commands (e.g.

‘cwi coadd’ becomes the direct command to coadd data

cubes), each of which has a help menu guiding the user

on its usage. Users who are not familiar with Python

can then construct their data analysis pipelines using

simple bash scripts containing a number of these com-

mands. Short examples of both a Python environment

pipeline and a bash script pipeline are included in the

Appendix, and a full set of examples are available within

the package data itself.

3. COSMIC WEB IMAGER DATA FORMAT

CWITools 3

Figure 1. The architecture of CWITools, showing the broad pipeline from standard DRP results to scientific results, as well as
the nature of the input and output of each module. Arrows represent different modules within the package and boxes represent
the different types of data. For example, at the top, the reduction module (green arrow) takes standard DRP data cubes as
input, and outputs corrected/coadded data cubes. On the right hand side are specific examples of the kinds of data products
at each stage.

The standard data reduction pipelines of PCWI and

KCWI produce three-dimensional data cubes containing

two spatial axes and one wavelength axis. In this sec-

tion, we briefly describe the different output file types

produced by the standard DRPs and the 3D coordinate

systems of those data structures, so as to lay a founda-

tion for the discussion of the methodology.

3.1. Standard DRP Output

The standard pipelines of both PCWI and KCWI

first apply the usual reduction steps - bias correction,

flat fielding, dark subtraction, etc. - to the raw 2D

detector images. Each 2D image contains 24 2D spectra

(one for each slice in the image slicer) arranged side by

side. Using a series of calibration images, the pipeline

reconstructs these 2D images into 3D data cubes with

two spatial axes and one wavelength axis. The first

3D data product is given extension “cube.fits,” with

each exposure producing a non-sky-subtracted object

frame (ocube), a sky-subtracted intensity frame (icube),

a frame of the sky data or sky model used (scube),

and an associated 3D variance estimate (vcube). As

the 3D data is refined through subsequent stages, the

filenames are updated to reflect the stages. For ex-

ample, after a slice-to-slice relative-response correction

(stage6 rr in the PCWI DRP), the letter ‘r’ is ap-

pended to each so that the files now have the exten-

sions ‘icuber.fits,’ ‘ocuber.fits,’ ‘scuber.fits,’ etc. After

flux calibration using a standard star, the appended

letter is changed (rather than added) to ‘s,’ so the file-

4 O’Sullivan and Chen

names are now ‘icubes.fits,’ ‘ocubes.fits,’ etc. A full

filename will include a unique identifier combined with

one of these extensions. For example, the fully reduced,

flux-calibrated cube for KCWI exposure number 116

might be ‘kb200115 00116 icubes.fits.’ This is of cen-

tral relevance here because a core operational mode of

CWITools involves providing as input a list of unique

IDs (e.g. ‘200115 00116’ for this exposure) and a ‘cube

type’ (e.g. icubes.fits) to work with. This allows users

a simple interface with a high level of flexibility. For

example, if an observer has three exposures for a cer-

tain target, they just need to store the three unique

IDs for those exposures in a CWITools ‘.list’ file, after

which they can run any operation on any data product

for that target by providing both the ID list and the

desired cube type (e.g. coadd the intensity cubes, then

coadd the sky cubes).

All flux-calibrated CWI data cubes are produced in

“FLAM” units - i.e. flux per unit wavelength: Fλ ≡
erg s−1 cm−2 Å−1. While PCWI outputs directly in

Fλ units, KCWI data cubes are produced in units of

“FLAM16,” Fλ,16 = 1016Fλ. Non-flux-calibrated data

cubes have units of ‘electrons’ - i.e. the number of photo-

electrons measured in each voxel.

3.2. Coordinate Systems and Headers

There are three coordinate systems which are of rele-

vance when analyzing CWI data (and IFU data in gen-

eral). The first is the world coordinate system (WCS)

- which refers to the real world measurements of wave-

length (λ), right-ascension (α), and declination (δ).

The second is the image coordinate system, referring to

the axes within the data cube. Let us denote these as

x, y, and z, where x and y are spatial axes and z is

the wavelength axis. It is important to note that the

world-coordinate axes α and δ only correspond directly

to x and y when (i) the position angle is a multiple

of 90◦ and (ii) the field of view is small. In general,

a one-to-one correspondence between image and WCS

axes should not be taken for granted; i.e. α → α(x, y)

and δ → δ(x, y).

FITS image formats contain “header” objects which

store meta-data about the image such as timestamps,

configuration details, and exposure times. The headers

also contain the necessary information to translate be-

tween the two above coordinate systems. Specifically,

they contain sets of keywords to define (i) the number

of axes and size of each axis, (ii) a reference point in

the image for a known world coordinate (e.g. the right-

ascension and declination at a given x, y), and (iii) the

change in world coordinates along each image axis (e.g.

the change in α along the x axis). Table 1 lists these

keywords and their meanings. The widely used package

Astropy provides a convenient way to handle coordi-

nate systems by creating WCS objects which store this

information and provide some useful functions such as

mapping (x, y, z) to (α, δ, λ) and vice versa (Astropy

Collaboration et al. 2018, 2013).

As a final note on coordinate systems, a common

source of confusion is the varying conventions when it

comes to ordering axes and defining origins. The FITS

headers for CWI data specify the axes such that the or-

der of the axes is (1, 2, 3) = (x, y, w). However, when

loading the data in a Python shell (e.g. with AstroPy

or NumPy), the data structure has the order of axes

reversed: (1, 2, 3) = (w, y, x). Furthermore, while the

values in FITS headers are 1-indexed (i.e. the index of

the first pixel is 1), data structures in Python are typi-

cally 0-indexed. This must be taken into account when

handling header keywords such as CRPIX1, or convert-

ing between coordinate systems.

4. MODULE: REDUCTION

The reduction module is focused on steps for further

refinement of the final observational data. This includes

any steps beyond the standard date reduction pipeline

which are required to create the final, fully calibrated,

combined data cube for a given target. In this section,

we will describe each of these steps in detail.

4.1. Cropping

The output data cubes from both the PCWI and

KCWI DRPs both require cropping along all three axes.

While a user can determine the crop parameters they

want to use, there are some defaults determined by the

nature of the final PCWI and KCWI data cubes. The

layout of the 2D spectra of the slices in detector space is

such that alternating slices are staggered in wavelength.

This means that the bandpass for each slice is slightly

different, and the wavelength range which is common to

all slices is slightly less than the instantaneous bandpass

of any one slice. Only data within this common over-

lap region can be reliably calibrated by the DRP. The

headers of KCWI and PCWI FITS files contain the key-

words ‘WAVGOOD0’ and ‘WAVGOOD1’ which indicate

this range. Therefore, as a default, CWITools will crop

the wavelength to this range.

Spatially, there are different reasons to crop PCWI

and KCWI data. For PCWI, the x-axis (FITS axis 1,

NumPy axis 2) of the data contains some buffer, go-

ing slightly beyond the edge of each slice. The exact

CWITools 5

Table 1. A summary of FITS Header keywords for world coordinate systems.

Keyword Description Example

NAXIS The number of axes 3

NAXISA The length of image/data axis A 127

CTYPEB The type of world coordinate axis B RA–TAN

CNAMEB The name of world coordinate axis B KCWI RA

CUNITB The units of world coordinate axis B deg

CRVALB The reference value for world coordinate axis B 255.25857

CRPIXB The reference pixel along image axis B 32

CDA B Change in world axis B per pixel of image axis A 8.09 × 10−5

margin can be determined by looking at a fully reduced

cube from a continuum flat image, but is usually ap-

proximately about 10 pixels on either side. There is

no padding or margin along the y-axis, which contains

only the 24 slices. For fully reduced KCWI data, there

is padding if stage 7 (differential atmospheric refraction

correction) has been applied, and the amount of padding

differs depending on the slicer setting, so there is no

hard-coded default for the spatial padding. Instead, the

‘auto-crop’ mode (i.e. the default used in absence of

user input) is to trim empty rows and columns. Users

should be aware that this may not be sufficient to avoid

edge artifacts which may be present in the data. The

cropping tool has a plot functionality which can be used

to view the crop settings overlaid on a profile of each

axis. This is a helpful tool in selecting the best settings.

As with all steps that modify existing cubes, the output

is saved by default with a modified file extension. In this

case, the “.fits” of the input is replaced with “.c.fits,” to

indicate that it has been cropped.

4.2. World Coordinate System Correction

As described earlier, the world coordinate system

(WCS) is the three-dimensional coordinate system of

right ascension (α), declination (δ), and wavelength (λ).

FITS headers for three-dimensional data contain re-

served key words which determine the translation from

image coordinates (x, y, z) to world coordinates (α,

δ, λ). To constrain the transformation, several pieces

of information are provided. The first is the position

of a specified world coordinate in image coordinates;

i.e. that the 3D position (α0, δ0, λ0) is coincident with

(x0, y0, z0). The values α0, δ0, and λ0 are stored in

‘CRVAL’ keywords, where the central value for each

specified world-coordinate axis is given. Since the order

of the world coordinate axes is usually right-ascension,

declination, and wavelength, this means the header con-

tains ‘CRVAL1=α0,’ ‘CRVAL2=δ0,’ and ‘CRVAL3=λ0.’

It is important to clarify that the numbering here is for

the values associated with the world-coordinate axes,

not with image axes. The coincident image coordi-

nate is stored in ‘CRPIX’ keywords: ‘CRPIX1=x0,’

‘CRPIX2=y0’ and ‘CRPIX3=z0’. Finally, the change in

each world coordinate axis along each image is provided

by the “CD Matrix,” which is a set of keywords of the

form ‘CDW I,’ which specifies the change in world-

coordinate axis W per pixel along image axis I. As an

example, ‘CD1 2’ encodes the change in right-ascension

per pixel along the y-axis. The units of these values

are given by keywords ‘CUNIT1,’ ‘CUNIT2,’ and ‘CU-

NIT3.’

Generally, the CD Matrix can be taken as accurate

for all PCWI and KCWI data cubes. The only rec-

tification that is usually required is an adjustment of

the central reference point. This is done separately for

the spatial and wavelength axes. In each case, there

are two basic approaches to choose from: measuring the

location of a feature with known world-coordinates or

cross-correlating the input data so that they are at least

aligned. The former provides a correction in absolute

terms, but requires a measurable source with known

coordinates, which is not always available. The lat-

ter provides a fall-back for these cases, such that the

input data can be ensured to have consistent world-

coordinate systems, but the absolute values may remain

inaccurate. Each of the four processes is described be-

low. Cubes with corrected coordinates systems are saved

by default with the added file extension “.wc.fits” (for

WCS-corrected).

4.2.1. Spatial Correction: Source Fitting

The preferred way to correct the spatial axes is to

measure the location of a known source within the im-

age. This is done by first creating a white-light image

from the input data (see Synthesis module in Section

6). The default operating assumption is that the ini-

tial WCS is approximately correct, and a 10′′× 10′′ box

6 O’Sullivan and Chen

Figure 2. Automatic cropping parameters obtained by CWITools. This view is presented to the user if automatic cropping is
requested. Each panel presents a summed one-dimensional profile for a different axis (x, y, z from top to bottom). Data within
the cropped range, delineated by vertical red lines, is highlighted in blue, while data outside the range is black. This is most
useful as a first step, from which the user can determine the best cropping parameters to suit their needs.

around the estimated location of the source is extracted.

In the case that the initial WCS is extremely inaccurate,

an initial guess of the source location can be provided,

and the size of the box can be adjusted. Once the box

has been extracted, 1D profiles in x and y are formed by

summing along the image axes, and a 1D Moffat profile

is fit to the source to obtain the best-fit center. CR-

PIX1 and CRPIX2 are updated to the x and y centers,

respectively, and CRVAL1/CRVAL2 are updated to the

known RA/DEC of the source.

4.3. Wavelength Correction: Line Fitting

To correct the wavelength axis, a known sky-line can

be fit with a simple Gaussian model. The default way to

do this is with sky cubes (e.g. “scubes.fits”) and known

sky emission lines. CWITools package data includes a

full blue-optical sky spectrum for Keck, and a prelim-

CWITools 7

Figure 3. Automatic WCS correction using source fitting. As one option for spatial WCS correction, CWITools assumes that
the initial WCS is approximately correct, then identifies and fits the nearest source to that location. The above view is the view
presented to the user during this step if requested, so that the user can inspect the fit visually. The top left panel shows the
full field of view, with a white cross indicating the expected location of the primary source. The white box indicates the search
area, which can be adjusted by the user. The red cross indicates the fitted location of the source. The top right panel shows a
zoom in on the white box. The bottom two panels show the one-dimensional PSF of the source along each axis and a simple
1D Gaussian fit to the data.

8 O’Sullivan and Chen

Figure 4. Cropping and WCS correction applied to an individual cube. Left (a): a spatial 2D snapshot of the data cube prior
to cropping and WCS correction. The red circle has the correct coordinates for the source, SDSS0958+4703. Right (b): the
cropped and WCS-corrected cube, the red circle now aligns with the visible source.

inary set of known emission lines in both the Palomar

and Keck blue-optical sky spectra. For example, there

is a bright mercury line (thanks to light pollution) in

the Palomar night sky, Hg I λ4358.3. This line was

extremely useful in correcting the Palomar data for the

FLASHES Pilot Survey (O’Sullivan et al. 2020). A high-

SNR sky spectrum is compiled from the input sky cube

by summing over both spatial axes. As in the spatial

PSF fitting, the default assumption is that the initial

WCS is approximately correct. Therefore, a window of

∆λ ' 10 Å around the initial estimate of the sky-line is

extracted from the spectrum, and a 1D Gaussian model

is fitted to the data to obtain the true center. The dif-

ference between the initial WCS’ estimate of the line

position and the fitted position is calculated in units

of pixels, and the header keyword CRPIX3 is updated

accordingly so that the WCS is consistent with the mea-

sured position of the source.

4.3.1. Wavelength Correction: 1D Cross-Correlation

If no spatial source or sky line is available, cross-

correlation can be used to ensure that the input data

are all self-consistent and aligned, even if the absolute

world-coordinate solution is not exactly known. To do

this, as in the 2D cross-correlation above, one image

must be picked as the reference point. For each sky

cube, a 1D spectrum is then generated and each spec-

trum is cross-correlated with the reference spectrum. A

list of relative offsets, in units of pixels, is then calculated

between the spectra. The CRPIX3 header keywords in

all but the reference image are updated based on the

measured offsets so that they are consistent with the

WCS of the reference image. Any error in the reference

image’s WCS thus remains in the corrected WCS.

4.3.2. Custom WCS Correction Routines

Certain science cases, such as creating mosaics of very

faint emission, satisfy none of the above requirements

and require more advanced, home-made methods. As

such, CWITools separates the WCS measurement and

WCS correction steps. WCS measurement produces a

WCS correction file which contains a table of the de-

sired values for the CRVAL and CRPIX keywords for

each input cube. If using either of the in-built methods

(feature fitting or cross-correlation), this is automati-

cally generated by the WCS measurement function. If

using a more complex method, or in the case that some

manual adjustment is required, a user can generate this

table themselves by whatever method they desire. As

long as the format of the table (which is quite simple)

is correct, the table file can be fed as input into the ‘ap-

ply wcs()’ function. Because CWITools uses the WCS

to automatically coadd data, this step is crucial in de-

termining the quality of the final, coadded data.

4.4. Coadding

The single most ubiquitous and (relatively speaking)

computationally intensive task in PCWI and KCWI

data analysis is coadding data onto a common three-

dimensional grid, including variance propagation. There

is, of course, already a plethora of openly accessible and

efficient Python code which performs some subset of

this task, but there are several key issues which led us

to develop an entirely custom algorithm.

First, nearly all of the widely used packages imple-

menting coadding or drizzling algorithms (e.g. Avila

et al. (2015)) are written with two-dimensional imaging

data in mind. Second, knowledge of every computa-

tional step is needed in order to accurately propagate

variance through the coadd process. This is trivial if

the data only needs to be resampled and shifted lin-

early along its axes, but coadding images with arbitrary

rotations makes the resampling - and thus the mathe-

matics of error propagation - significantly more compli-

cated. As such, in order to have an algorithm which can

coadd arbitrary input in terms of position angle and

spatial sampling, we have developed a custom three-

CWITools 9

Figure 5. Spatial 2D slices of coadded frames using different drizzle factors. In panel (a) on the left, the coadd was performed
normally, with no drizzling (i.e. fdrz = 1.0), while in panel (b), a very low Drizzle factor of fdrz = 0.4 was used. Normally, one
would use a factor in the range fdrz ∼ 0.6 − 0.8, but we use a low factor here to make the visual difference clear. The image in
panel (b) is clearly sharper with higher frequency noise, while that in panel (a) looks smooth in comparison.

dimensional coadding algorithm, including a drizzling

factor. As a final note, CWITool’s coadding algorithm

makes use of existing 3D mask cubes produced by the

PCWI and KCWI pipelines - automatically loading and

using them if the user requests it. These cubes flag

noisy edge pixels, pixels affected by cosmic rays, and

other potentially corrupted pixels. These can then be

excluded from the coadd, improving the quality of the

final product.

The CWITools coadd process is split into two main

steps. First, the input cubes are aligned in wavelength.

At the moment, only input with a common sampling

rate in wavelength is accepted, since this is by far

the most common scenario, though a future update is

planned to allow multiple wavelength sampling rates in

the input. The minimum and maximum input wave-

lengths are determined (λmin and λmax), as well as the

input resolution, ∆λ. A new common wavelength grid

is generated spanning the range [λmin−∆λ, λmax+∆λ]

with the same resolution. Then, for each input cube,

the cube is padded with zeros along the z-axis until

it is the same length as the common wavelength axis,

and the offset (in Angstrom) between the first index

of the original input grid and the first index of the

new common grid is determined. Let δλi be this off-

set. The required shift in pixels is then δz = δλi/∆λ.

This is split into an integer shift, δzINT = int(δz),

and a sub-pixel shift, δzSUB = δz − δzINT . The in-

teger shift component requires no interpolation, and

thus no error propagation. The data and associated

variance are just rolled along the z-axis by δzINT . The

sub-pixel shift is then performed using linear interpola-

tion, implemented as a convolution with the 1D kernel

Kz = [δzSUB , 1 − δzSUB]. To propagate the error on

this step, the variance is convolved with K2
z . At the end

of this step, the cubes are all aligned in wavelength and

have the same z-axis length.

The second major step is the spaxel-by-spaxel projec-

tion of the input cubes’ footprints onto a common coadd

grid. The on-sky footprints of each input field of view

are calculated and the footprint required to encompass

all of the input data is derived. The minimum spatial

sampling of the input is taken as the uniform spatial

sampling of the desired output grid. This information

is then used to construct a new header and empty data

cube for the coadded data. The 2D (x,y) vertices of each

input pixel are mapped from input image coordinates to

on-sky coordinates using the input WCS (with Astropy’s

WCS class). The on-sky coordinates of these vertices

are then mapped to output image coordinates using the

newly constructed WCS. The footprint of the input pixel

on the output frame is then represented as a Polygon ob-

ject, using a Python package called Shapely. The coadd

frame pixels within this footprint are also represented as

Polygons, and the overlapping area between the input

pixel and each output pixel is calculated. This step is

10 O’Sullivan and Chen

computationally intensive, but provides a high level of

flexibility and robustness to the coadd method, as the

polygons are entirely flexible in shape and orientation.

In particular, this allows us to implement a ‘Drizzle’ fac-

tor, shrinking the size of the input pixels by a certain

amount (typically to 70 − 80% the original size) to in-

crease the spatial sampling of the coadd (Avila et al.

2015). Time is also not a major constraint for the typ-

ical use-case of CWITools coadding, as it only needs to

be performed a small number of times per target. That

said, the process still only takes about twenty seconds

to add 3-4 high-resolution KCWI cubes, including error

propagation and masking. The contributions from the

individual input cubes are weighted by exposure time,

E. Thus, if we let the index i iterate over the input

cubes, and the indices j, k iterate over the two spatial

axes, such that xij is the jth x-pixel of the ith cube, then

the final coadded flux is given below in Equation 1.

Fcoadd(x, y) =

∑
iEi
[∑

j

∑
k Fin(xij , yik)f(x, y, xij , yik)

]∑
iEi

(1)

Here, f(x, y, xij , yik) is the fraction of the footprint of

the input pixel (xij , yik) that falls on the output pixel

(x, y). Since the wavelength axes have been aligned, and

the process here is applied at all wavelength layers, the

third axis has simply been dropped from the notation.

The propagated variance is then as shown in Equation 2.

Vcoadd(x, y) =

∑
iE

2
i

[∑
j

∑
k Vin(xij , yik)f2(x, y, xij , yik)

]
(
∑
iEi)

2

(2)

It should be noted that the interpolation involved in

the wavelength alignment and flux redistribution intro-

duces additional covariance in the coadded cube. While

CWITools does not currently have a built-in way to

calibrate covariance, a full section is dedicated to dis-

cussing this in O’Sullivan et al. (2020). Some pixels

at the edge of the coadded field of view may only be

partially covered by the input data after all of the input

cubes have been added. A threshold is (optionally) ap-

plied to reject any edge pixels with very low coverage,

and referred to in the code as ‘pxthresh’ - meaning pixel

coverage threshold. Setting this to a high value (i.e. 0.9)

will mean that only more-or-less fully covered pixels are

included.

As a final step, empty rows, columns, and wavelength

layers are trimmed from the coadded data. Here, a sec-

ond (optional) threshold is applied based on exposure

time. If the input data has any spatial dithering, some

spaxels will have longer total exposure times than oth-

ers. Spaxels with significantly lower exposure times will

appear noisier and may complicate analysis. The param-

eter ‘expthresh’ sets the minimum exposure time (as a

fraction of the maximum) for a spaxel to be included in

the data. This threshold is only applied as an exten-

sion of the trimming; that is, rows and columns on the

edge of the field of view with lower exposure times will

be trimmed from the data. It does not remove or mask

regions throughout the data arbitrarily. As an exam-

ple, if three equal-length exposures are taken with a 0,

−1′′, +1′′ dithering pattern along the x-axis, the edge

−1′′ regions along that axis in the coadd will have frac-

tional exposure times of 1/3. Setting expthresh to 0.5

would eliminate these regions and keep only the over-

lapping central part of the field of view. Coadded cubes

are saved by default using the same name as the “.list”

file, though the output filename can be specified during

usage.

4.5. Variance Estimation and Scaling

While KDRP and PDRP produce 3D variance esti-

mates for each exposure, there may occasionally be a

need to estimate the variance from the data itself. For

example, if some procedure is performed on the data for

which the error propagation is prohibitively complex or

if there is some problem with the data that affects the

pipeline estimate, it may be preferable to estimate the

variance empirically. In these cases, the basic approach,

which is broadly similar to that used in Borisova et al.

(2016), is to first estimate a 2D variance map by tak-

ing the variance along the z-axis and then scale that

2D variance map to match the noise properties of each

wavelength layer in the data. This is complicated by the

presence of real signal in the data so, as a first pass, let

us assume that the cube is dominated by noise and that

the number of voxels containing such signal is negligible.

The cube is first divided into bins of size ∆z pixels (i.e.

wavelength layers). For each bin, the variance is taken

along the z-axis to produce a local estimate of the (x,y)

variance. Then, for each layer, the distribution of SNR

values using this variance estimate is calculated. The

following step relies on an assumption that the noise is

Gaussian (or at least approximately Gaussian) in form

as it involves the assertion that the distribution of SNR

should follow a standard normal distribution (µ = 0,

σ = 1). This, in turn, relies on the assumption that

(i) the distribution is dominated by background pixels

and (ii) the noise within the background of the data is

Gaussian in nature. These are both reasonable assump-

tions for a long (i.e. sky-limited) exposure containing no

CWITools 11

Figure 6. Illustration of the exposure and pixel coverage thresholds in CWITools’ coadd function. Panel (a) shows an illustration
of two overlapping fields of view with equal exposure time. The numbers in each area represent the local stacked exposure time
relative to the maximum stacked exposure time. These are the values considered when applying the exposure threshold. Panel
(b) illustrates the pixel coverage threshold. The white grid represents the coadd pixel grid, while the red rectangle represents
the footprint of an input pixel.

bright sources and with only a small fraction of the vox-

els/spaxels occupied by real emission. This assumption

obviously breaks down under different circumstances,

which we will discuss shortly. If the measured distribu-

tion of SNR values in this layer has standard deviation

σi, then the variance rescaling factor is rvar = 1/σ2
i .

The assumption of a standard-normal distribution

only applies for background regions which are shot-

noise limited. In the case where the input data contains

large regions of bright emission, these regions must be

masked and excluded from the SNR distribution which

is used to calculate the scaling factor. Ultimately, there

must still be a reasonably large background region -

confidently free of real signal - to justify use of this

method. Otherwise, this method should not be used

to estimate the variance. If a mask is provided, two

restrictions apply. The first is that within every z-axis

bin, there must still be enough unmasked wavelength

layers to obtain the variance along the z-axis in every

spaxel. If some regions of the mask are very extended

in wavelength, the ∆z parameter should be increased

to ensure that enough unmasked layers remain in each

bin. This, of course, reduces the accuracy of the local

2D variance estimate, but is a necessary step. The

second restriction is that every wavelength layer must

still contain a sufficient number of unmasked spaxels to

obtain a reliable distribution of SNR values. If this is

not the case, again, this method should not be used. As

a last resort, if both of the above restrictions cannot be

met, a single scaling factor can be applied to the entire

variance cube by combining all background voxels into

a single distribution.

If a user already has a variance cube, but believes it

needs to be scaled (e.g. to account for covariance intro-

duced by coadding), then the initial variance cube can

be provided and only the rescaling part of the algorithm

will be applied. Estimated and scaled variance cubes

are saved by default with the extension “.var.fits.”

4.6. Slice-to-Slice Scattered Light Correction

In image-slicer integral field units, each slice of the

field of view is sent along a different optical path. Part of

the standard DRP’s job is thus to correct for the differ-

ing relative response (i.e. throughput) of different slices,

which can be caused by dust on the slices or pupil mir-

rors, or edge-of-field effects. One slice-to-slice correction

that falls beyond the scope of the standard KCWI and

PCWI DRPs involves scattered light. Slices containing

very bright sources can sometimes contain an additional,

12 O’Sullivan and Chen

Figure 7. Variance scaling by assertion of a standard normal distribution in ‘background’ regions. The grey shaded histogram
shows the distribution of SNR values based on the input data and variance. Note the logarithmic scale on the y-axis. The green
histogram shows the distribution of SNR values after large, contiguous 3D objects (either systematic residuals or real emission
regions) have been detected and masked. The dashed black line shows a standard normal distribution, and the solid black line
shows the best-fit Gaussian model used to calculate the re-scaling factor.

relatively flat scattered light component across the slice.

To remove this, CWITools runs through the 1D profile of

each slice at each wavelength layer, estimates the back-

ground level, and subtracts it. The estimate is made by

conservatively sigma-clipping the 1D profile to remove

bright sources and then taking the median of the re-

maining pixels. This method is suitable for relatively

clear fields with a single, very bright source. In fields

with multiple sources, it can be difficult to obtain a reli-

able background estimate and this method should only

be used with appropriate caution. Slice-corrected cubes

are by default saved with the extension ‘sc.’

4.7. Air-to-Vacuum and Heliocentric Corrections

Lastly, the reduction module contains two common

corrections for the wavelength axes of input data: con-

version from air wavelengths to vacuum wavelengths,

and a heliocentric velocity correction. For the former,

CWITools uses an implementation from the package

PyAstronomy to convert the wavelength axis. Because

the correction from air to vacuum wavelengths depends

on wavelength, the data must be interpolated onto the

new wavelength grid, using either linear or cubic inter-

polation. Error propagation is not yet available for this

function, so the variance should be rescaled or estimated

anew after the application of this change. For the he-

liocentric correction, CWITools uses Astropy’s SkyCo-

ordinate class, and offers a choice between updating the

header keywords to modify the wavelength axis, or to

keep the original wavelength axis and shift the data us-

ing interpolation.

CWITools 13

Figure 8. Calibration of covariance in a single KCWI data cube. The panel on the left shows the ratio between the observed
noise and the propagated noise assuming no covariance (σobs and σideal) - after the binning the data - as a function of bin size.
The red line shows the best-fit two-component model, with σobs/σideal = C(1 + α log(K)) for K ≤ Kthresh and σobs/σideal = β
for K > Kthresh. The right panel shows a histogram of the fractional residuals.

5. MODULE: EXTRACTION

The extraction module could just as well be called the

‘isolation’ module, as the ultimate goal is to isolate a

specific signal, be it a point source, extended source,

continuum emission, or line emission. While specifics

may vary, as always, there are a few more or less ubiqui-

tous steps in this process. First and foremost among

them is the removal of point sources by modeling of

the point-spread-function. Second is the removal of any

unwanted component of the emission which is slowly

varying both spatially and spectrally, referred to loosely

as ‘background subtraction.’ Masking, smoothing, and

segmenting the data (into contiguous regions above a

threshold) are also common steps towards isolating a

signal. In this section, we describe the CWITools imple-

mentation of each of these.

5.1. PSF Subtraction

PSF subtraction requires first modeling the PSF in 3D

and then subtracting the model. Analytical PSF models

such as Gaussian or Moffat profiles provide robustness of

shape, which helps when trying to avoid overfitting, and

are more well suited to fitting blended sources. How-

ever, the real instrument PSFs in PCWI and KCWI are

more complex than a simple Gaussian or Moffat. As

such, relying on these models for PSF subtraction leads

to significant, systematic residuals. Systematic errors

can be significantly worse than random error as they

run the risk of creating false negatives and false posi-

tives. As such, the CWITools PSF-subtraction follows

an empirical approach, some variant of which is widely

used in existing observational work (Arrigoni Battaia

et al. 2019; Cai et al. 2019; O’Sullivan et al. 2020).

The most common reason for performing PSF sub-

traction in CWI data is to disentangle point sources

and extended, nebular line emission. The key property

of nebular line emission that enables this particular

method is that it is spectrally confined to relatively

narrow portions of the overall bandwidth. The em-

pirical approach to building a 3D PSF model involves

constructing a 2D model of the PSF by summing over

wavelength layers which do not contain nebular emis-

sion (‘continuum wavelengths’), then scaling it to match

the PSF in each wavelength layer. The benefit of this

approach is that arbitrarily complex instrument PSFs

can be reliably subtracted, provided the shape does not

change strongly as a function of wavelength. The most

14 O’Sullivan and Chen

significant drawback of this approach is that it struggles

to handle blended PSFs of two or more sources, as ad-

jacent sources will be included in the empirical model.

It is also not well suited to separating a diffuse/resolved

continuum source from an unresolved continuum source.

The way to achieve these goals following an empirical

approach is to use an isolated source to obtain a PSF

model. While this may be added as an option in a

future update of CWITools, the current version focuses

on extended nebular emission.

In the current implementation of this method, the user

can specify a series of wavelength regions to exclude from

WL images. For each wavelength layer, a new WL image

is calculate by summing over a window of width δλWL

centered on the current layer. If the window is clipped

on either side by the limits of the z-axis or there are

masked layers within it, it is grown incrementally until

the ‘effective’ window size (i.e. the total useable band-

width) is equal to δλWL. This ensures that the number

of wavelength layers summed for each WL image is con-

sistent, ensuring that the SNR of the PSF model also

remains roughly consistent (it will of course vary any-

way depending on the spectrum of the continuum emis-

sion). Pixels within a radius of rmin (default value is

typically rmin = 1′′) from the center of the source are

used to calculate a scaling factor for the PSF at each

wavelength layer. The scaled model is then subtracted

from the layer out to a radius of rmax, which is typically

set to 2-3 times the seeing (i.e. rmax ∼ 5′′).

CWITools has two modes of PSF subtraction: 1D and

2D. In the 2D version, the above process takes place us-

ing full 2D white-light images and circular regions of

radius rmin and rmax. In the 1D method, the PSF

models are created, scaled, and subtracted on a slice-

by-slice basis. This is motivated by the fact that, for

bright sources, there can be a significant scattered light

component which is slice-dependent, and thus better

fit by a model for that slice alone. The same rmin and

rmax are used, only now in a 1D sense and for each slice.

In either method, variance data can be provided. If

it is, the variance on the PSF model is calculated and

error is propagated throughout the subtraction. Final

output is saved with the extension “.ps.fits” (for PSF-

Subtracted) and “.ps.var.fits” for the associated vari-

ance. Optionally, the PSF model can also be saved.

5.2. Background Subtraction

As mentioned briefly above, the goal of background

subtraction (BGSub) is to separate and remove any

slowly varying component, spatially or spectrally. Ex-

amples of such signals include residuals left over after an

imperfect sky subtraction or extended continuum emis-

sion from a (foreground) galaxy. As such, the term

‘background’ is used quite loosely. There are many ways

to approach removing background signals. CWITools

has three methods to choose from at the time of writ-

ing: (i) polynomial spectral fitting, (ii) median filtering,

and (iii) simple median subtraction.

5.2.1. BGSub Method 1: Polynomial Fitting

The ‘polyfit’ method fits a low-order polynomial (i.e.

polynomial degree kp ' 1 − 5) to the spectra in each

spaxel. This method is probably the best choice for ap-

plications involving narrow-line nebular emission within

data where the total bandwidth is large relative to the

width of the emission. In such a scenario, the emis-

sion line features will be too small to be over-fit by such

a slowly varying polynomial, and the fit will be domi-

nated by continuum wavelengths. However, if the total

bandwidth is similar to the width of the emission, even

low-order polynomials will be more susceptible to over-

fitting. In either case, wavelength regions known to con-

tain emission lines can be masked by the user, ensuring

that the polynomial is only fit to the background signal.

If the background polynomial model is:

p(k, λ) =

k∑
i=0

ciλ
i, (3)

then, assuming that the wavelength of each layer is a

well known quantity, and the only variance comes from

uncertainty in the coefficients, the variance on the back-

ground model can be written as:

V (k, λ) =

q=k∑
q=0

(δp(k, λ)

δcq
· δcq

)2

. (4)

The partial derivative expands to:

δp(k, λ)

δcq
=

i=k∑
i=0

(
λi
δci
δcq

+ ci
δλi

δcq

)
=

i=k∑
i=0

λi
δci
δcq

, (5)

where again, wavelength is assumed to be a well known

quantity. Plugging this in to the expression for the vari-

ance, we get:

V (k, λ) =

q=k∑
q=0

(
i=k∑
i=0

λi
δci
δcq
· δcq

)2

. (6)

The covariance matrix for the polynomial coefficients

is returned by the polynomial fitting routine used

(NumPy’s polyfit). The off-diagonal covariance terms

are typically very small compared to the diagonal terms.

CWITools 15

Figure 9. PSF-subtraction of a bright source to isolate extended emission. The top panel (a) shows a section of the 2D
spectrum of a slice containing the bright source. The bottom panel shows the same 2D spectrum, with the same color map,
after PSF subtraction. Bright, extended Lyα emission can be seen clearly after the subtraction. The small, bright spots to the
left (blue) side of the extended emission are systematic residuals caused by sharp Lyα forest absorption features, where the PSF
shape changes rapidly as a function of wavelength. The central pixels used to scale the PSF are masked, as these cannot be
used to measure signal.

Figure 10. Integrated spectrum of a region before (top) and after (bottom) PSF and polynomial background subtraction.
Black vertical bands indicate the locations of noisy residuals from extremely sharp absorption features or bright sky line, both of
which can be masked. Vertical red lines, from left to right, indicate the positions of emission lines: HI Lyα λ1216, NV λλ1239,
1243, SiIV λ1394, CIV λλ1548, 1551, HeII λ1640.

As such, the simplifying approximation can be made

that the variables are independent, such that δci/δcq =

δij , where δij is the Kronecker delta function. This re-

duces the above expression to

V (k, λ) =

q=k∑
q=0

λ2q(δcq)
2 =

q=k∑
q=0

λ2qVar(cq). (7)

The variance estimate can be re-scaled following Sec-

tion 4.5 if needed to account for added covariance in the

data.

5.2.2. BGSub Method 2: Median Filtering

Another common method to subtract background

signals is median filtering along the wavelength/z-axis.

The background is estimated by means of a median

filter with window size ∆z ≥ 5, in pixels, wherein the

value at each z-index is replaced with the local median.

As in the polyfit method, wavelength regions can be

masked to exclude them from contributing to the es-

timate of the local median. However, the window size

must be sufficiently large that at least five unmasked

16 O’Sullivan and Chen

pixels remain in the window, or a median is not well de-

fined. While median filtering can be useful in scenarios

where a polynomial fit performs poorly, median-filtered

models are less well behaved in the sense that they can

produce sharp, small-scale features and change discon-

tinuously from one index to the next. Especially in the

context of masking certain wavelengths, they should be

used with caution and the background model (which can

be saved as an option in CWITools) should be inspected.

The variance on the mean in a given window of size

Nz centered on index i, as a function of the existing

variance estimates, is:

V (Nz, i) =
1

N2
z

j=i+∆z/2∑
j=i−∆z/2

Vj (8)

where Vj is the input variance at index j. The ra-

tio of the variance on the mean to the variance on the

median is 4n/(π(2n + 1)) where N ≡ 2n + 1 is the to-

tal sample size. This can be rewritten in terms of N

as πN/(2(N − 1)). Thus, the variance on the median

background model is:

Vmed(Nz, i) =
π

2Nz(Nz − 1)

j=i+Nz/2∑
j=i−Nz/2

Vj . (9)

5.2.3. BSub Method 3: Median Subtraction

Where the median filtering method works along the z-

axis, the simpler ‘medsub’ method subtracts the spatial

median at each wavelength layer. This is most useful in

data that (i) is well flat-fielded and (ii) contains mostly

background spaxels at all wavelength layers. The latter

constraint can be relaxed if a mask is provided by the

user to exclude non-background regions, but the remain-
ing background region should still be sufficiently large at

all wavelength layers to obtain a reliable median. Since

the variance propagation on this is a simpler version of

that described in the median filtering method above, it

does not need to be described in detail again.

5.3. Masking

Masking can be necessary after the subtraction of

some point sources, where relatively small errors in the

shape of the PSF near the core can still lead to loud

residuals, or in order to mask the locations of fore-

ground sources to exclude them from subsequent anal-

ysis. CWITools’ extraction module contains a method

for creating 2D binary masks using DS9 region files (ex-

traction.get mask). The method takes in 2D image data

to obtain the dimensions for the output mask. A user

can also define a custom 1D (i.e. spectral), 2D (spatial),

or 3D mask, and use the CWITools masking method to

apply it to any compatible data. The mask and data

can both be 3D, both 2D, 3D data with a 2D mask (in

which case the mask is treated as a spatial mask and

applied at all wavelength layers), or 3D data with a 1D

mask (in which case the mask is treated as a spectral

mask). Masked data is saved by default with a “.M.fits”

file extension.

5.4. Smoothing

While there are many existing smoothing and filter-

ing methods available from libraries such as NumPy and

SciPy, three custom methods are included in CWITools

to allow for error propagation (by squaring the smooth-

ing kernel). The main smoothing method is a generic

one which applies smoothing along a requested subset

of axes for 1D, 2D, or 3D input data. For 2D or 3D

data, smoothing can be applied along any subset of the

axes, and is implemented as a series of convolutions with

1D smoothing kernels. This is permitted by the fact

that the two available kernels are Gaussian and Box ker-

nels, both of which are separable into 1D components.

Smoothing along the z-axis with a kernel of size Nz is

described mathematically as:

F ′(x, y, z) =

∑i=+Nz/2
i=−Nz/2

F (x, y, z + i)K1D(i)∑
iK1D(i)

. (10)

The naive error propagation (i.e. ignoring the effect

of covariance) follows:

V ′(x, y, z) =

∑i=+Nz/2
i=−Nz/2

V (x, y, z + i)K2
1D(i)

(
∑
iK1D(i))2

. (11)

As mentioned before, O’Sullivan et al. (2020) contains

a full discussion of bootstrapping variance estimates to

include covariance in PCWI data, following the lead of

earlier work by the Calar Alto Legacy Integral Field

Area survey (Husemann et al. 2013) and the SDSS-

IV MaNGA IFU Galaxy Survey (Law et al. 2016).

CWITools does not yet have a built-in implementation

of this method, but it is planned for a future release.

Two other methods are included as faster, stripped-

down alternatives for the most common smoothing ap-

plications: spatial smoothing and wavelength smooth-

ing. These make use of a faster convolution method

(’SciPy.ndimage.convolve’) and have simpler usage in

that they always take 3D data and do not require the

user to specify the axes.

CWITools 17

5.5. Segmentation

While there are any number of additional steps that

may be required depending on the application, a com-

mon final step in the extraction process is segmenta-

tion: dividing the cube into contiguous 3D regions above

a certain threshold. The CWITools implementation of

this is built using an existing segmentation routine from

the popular package ‘Scikit Image’ (specifically skim-

age.measure.label). The function allows the user to set

the segmentation threshold either in absolute physical

units or in terms of SNR. It also provides the ability to

limit the segmentation to specific wavelength ranges of

interest and set a lower bound on the number of voxels

required for a region to be included. Wavelength ranges

containing common nebular emission lines can be in-

cluded by providing the redshift of suspected emission

and a velocity window to explore around each line. Sim-

ilarly, known bright sky lines in the Palomar/Keck sky

spectra can be excluded automatically. Custom ranges

to include or exclude can also be provided by the user

(e.g. to rule out bad wavelength regions or extend the

velocity range of an extra broad line). The output of this

method - a cube containing labelled regions which I call

the ‘object’ cube as a shorthand - can be used in syn-

thesizing results and making measurements for specific

objects later on.

6. MODULE: SYNTHESIS

The synthesis module takes 3D data products as input

and returns vectors or arrays containing scientifically

relevant results such as radial profiles or velocity maps.

‘Object’ cubes produced by segmentation can be used

for many of these functions to generate such results from

specific regions only.

6.1. White-Light Images

Generation of white-light (WL) images is a straight

forward process: a 2D image is formed by summing

over a broad wavelength range. Two sets of wave-

length regions should generally be excluded in doing so:

bright sky lines and any nebular emission lines present

in the data. The user can specify wavelength regions

to mask, and also select an option to automatically

mask some known sky lines which are built into the

package (stored in the ‘data/sky/’ subdirectory in the

installation directory). The wavelength region used

should also be restricted to the ‘WAVGOOD’ region

indicated by the header information, but usually the

data will have been cropped to this range before gen-

erating WL images. The input is generally assumed to

be in the standard KCWI/PCWI units of ‘FLAM16’ -

meaning 1016 × erg s−1cm−2Å−1. If this is the input

unit (i.e. if the keyword ‘BUNIT’ is set to ‘FLAM16’),

the WL image is converted to surface-brightness units

(1016 × erg s−1cm−2arcsec−2) following

SB16(x, y) =
∆λ

(∆θ)2

∑
z

Fλ,16(x, y, z), (12)

where (δθ)2 is the size of the input spaxels in units

of square arcseconds, and ∆λ is the size of each wave-

length layer in units of Angstrom. Error is propagated

by summing the variance data over the same wavelength

layers and squaring the multiplicative term.

Var(SB16)(x, y) =

(
∆λ

(∆θ)2

)2∑
z

Vλ,16(x, y, z). (13)

6.2. Pseudo Narrowband Images

A pseudo-Narrowband (pNB) image is a Narrow-

band image formed by summing wavelength layers of a

datacube. The synthesis module has a method for gen-

erating pNB images with or without the subtraction of

a local white-light image. The user provides the central

wavelength and bandwidth of the desired pNB image,

and is returned the image, an estimate of variance on

the image, a local white-light image, and the variance

on the white-light image. The variance estimates are

derived from 3D variance cubes, if provided, or by tak-

ing the variance along the z-axis in the input data, if

not. Optionally, the user can request white-light sub-

traction, in which case the white-light image is scaled

and subtracted from the pNB image. The scaling factor

is calculated using a user-provided location, typically

the location of a bright, central continuum source to be

subtracted.

This tool is useful as an initial exploration of a data

cube. By generating a series of these images at differ-

ent wavelengths, one can form a channel map. Channel

maps are useful tools in exploring IFU data, especially

when the nature (i.e. center and width) of any emis-

sion is not already well known, and the signal may be

too faint to detect easily on a voxel-by-voxel basis (see

O’Sullivan et al. (2020)). In the case of non-detections,

this tool provides a useful way to obtain upper limits on

the surface brightness of suspected emission.

A commonly studied property of both galaxies and

extended emission is the circularly average radial sur-

face brightness profile, usually as a function of some

physical distance (i.e. comoving or proper kiloparsecs).

CWITools provides a convenient function for the calcu-

lation of a radial surface brightness profile, where the

18 O’Sullivan and Chen

radius can be returned in units of pixels, arcseconds,

comoving kiloparsecs, or proper kiloparsecs. The radial

bins are defined by four parameters: a minimum ra-

dius, a maximum radius, the number of (equally spaced)

bins, and a scale setting which determines whether to

make the bins of equal size in linear space or log space.

The user provides a surface brightness map and central

location as input. The surface brightness profile can

be easily obtained using either the synthesis.pseudo nb

method or synthesis.obj sb method (below) which mea-

sures the surface brightness of a defined 3D region.

6.3. Object Surface Brightness, Spectra and Moments

In many IFU studies, though especially those re-

garding extended nebular emission, 3D object masks

(generated by segmentation - see extraction.segment)

are a central feature. These masks contain integer-

labelled, contiguous 3D regions which we refer to here

as ‘objects.’ Once one has a 3D region delineating the

object of their study, it becomes trivial to generate

useful products. CWITools has a number of functions

which accept 3D object masks, along with specified

object IDs (i.e. the number of the region to study).

Specifically, the synthesis module contains a method for

generating: (i) a surface brightness map of an object

(synthesis.obj sb), (ii) an integrated 1D spectrum of an

object (synthesis.obj spec), and (iii) maps of the first

two z-moments (i.e. velocity and dispersion) for an ob-

ject (synthesis.obj moments).

Object surface brightness maps are obtained by set-

ting all non-object voxels to zero, summing the cube

along the z-axis, and applying a conversion from units

of Fλ (i.e. erg/s/cm2/Å) to units of surface brightness

(erg/s/cm2/arcsec2). One-dimensional spectra are sim-

ilarly obtained by setting all non-object voxels to zero

and summing along the two spatial axes. In this case, no

unit conversion is required. The user can decide whether

to apply the 3D mask in full or to sum the full spectra

of all spaxels within the object boundary. The latter

method can be useful for the purpose of presentation

in that it shows the background noise throughout the

rest of the spectrum, and in recovering the full shape

of emission lines, as the thresholding step used to ob-

tain 3D masks necessarily cuts out the faint wings of

a profile once they fall below the noise level. Finally,

2D maps of the first and second moments in wavelength

are obtained through a straight-forward moments cal-

culation (see measurement.first moment and measure-

ment.second moment for details and uncertainty propa-

gation). In the case where moments are being calculated

using a 3D mask, it is assumed that all object voxels con-

tain positive flux, so no further threshold is applied and

the ‘closing window’ method is not used.

7. MODULE: MODELING

The modeling module provides wrapper functions for

some common models, model fitting methods, model

comparison, and some other miscellaneous useful tools.

While there is a wealth of existing modeling function-

alities available from Astropy and other packages, the

CWITools modeling module contains wrappers for mod-

els commonly used in PCWI/KCWI data analysis with

a self-consistent syntax for use in model fitting and eval-

uation. At the moment, all of the models and modeling

functions are one dimensional, as the main applications

considered are the fitting of emission lines and surface

brightness profiles. Future updates, beyond the initial

release, may include additional models, such as 2D kine-

matic or surface brightness models.

7.1. Wrappers for Models and Fitting

Model fitting within CWITools is done by minimizing

a residual sum of squares (RSS) function using SciPy’s

implementation of differential evolution as the default

optimizer. Differential evolution is a stochastic method

of optimization, which is less susceptible to local min-

ima than standard gradient descent methods. This can

be of importance in fitting models in the presence of

significant noise, where the cost function is not smooth.

Differential Evolution (in scipy.optimize), like many

other available optimization methods, finds the mini-

mum of an objective function of the form f(p, [args]),

where p is the vector of free parameters to be opti-

mized and [args] is a sequence of any additional, fixed

parameters required for the function. Since CWITools

uses a least-squares approach, the objective function is

one which computes the residual sum-of-squares (RSS)

for any given model, set of model parameters, and in-

put data. This flexible RSS method (modeling.rss func)

has the form rss func(p, f, x, y), where p is the vector of

model parameters, f is the model function, and x and

y are the input data. The model function itself must be

of the form f(p, x). For convenience, CWITools has a

number of common functions written in this form, with

more to be added later. The current library of functions

includes a 1D Voigt, Gaussian, and Moffat profiles for

line-profile or PSF fitting. For the fitting of radial pro-

files, 1D Sersic, Exponential, and Power-law profiles are

included.

7.2. Model Comparison

Model comparison can be performed using one of two

information criteria: the Akaike Information Criterion

CWITools 19

(AIC) and the Bayesian Information Criterion (BIC).

Both the AIC and BIC indicate the relative likelihood

that a given model is the best representation of the ob-

served data out of all models considered, taking into

account the degrees of freedom of the models. The AIC

is calculated as

AIC = 2k + n ln(RSS), (14)

where k is the number of parameters, n is the number

of data points used in fitting, and RSS is the residual

sum of squares. A lower score is better for both the AIC

and BIC. The AIC also has a correction for small sample

sizes, denoted as AICc:

AICc = AIC +
2k2 + 2k

n− k − 1
. (15)

The correction term vanishes as n approaches infinity.

This term is always included in the CWITools imple-

mentation of the AIC. The BIC is calculated as:

BIC = k ln(n) + n ln
(RSS

n

)
. (16)

A set of AIC or BIC values can be converted into a set of

weights indicating the relative likelihood of each model.

Following Wagenmakers & Farrell (2004), these weights

can be calculated as:

wi =
exp (− 1

2∆i(BIC))

Σj exp (− 1
2∆j(BIC))

. (17)

It is important to note that these weights indicate rel-

ative likelihoods, with respect only to the other models

considered. The scientific significance of such relative

likelihoods therefore depends strongly on the total set

of models considered. As a random example, it would

be misleading to claim an absorption line is Gaussian

in shape if the only models considered were a Gaussian

model and a flat continuum model, but if other common

line shapes (e.g. Lorentzian, Voigt) were considered and

a Gaussian still had the lowest AIC/BIC, then it may

be a reasonable claim.

8. MODULE: MEASUREMENT

8.1. First and Second Moments

In context of IFU data analysis, moments are typi-

cally calculated along the z-axis to derive velocity and

dispersion. For that reason, we focus here on moments

calculated along the z axis in wavelength units. The

measurement module contains implementations of these

moments calculations that accept a 1D wavelength axis

and spectrum as input. The synthesis module contains

a method which builds on this to create two-dimensional

moment maps for 3D objects. The first moment of a 1D

spectrum with wavelength λ and flux F is calculated as

follows:

µ1 =

∑
i λkFk∑
k Fk

. (18)

As a short-hand, let us refer to the numerator here

as N1 and the denominator as D. The error on this

calculation can then be shown to be

σ(µ1) =

√∑
i

(λiD −N1)2

D4
Vi, (19)

where Vi = σ2(Fi) is the variance on the flux. The

second moment is calculated as follows:

µ2 =

√∑
i(λk − µ1)2Fk∑

k Fk
. (20)

Let us refer to the numerator this time as N2. The

denominator is the same as in Equation 8.1. The error

on this calculation can be shown to be:

σ(µ2) =
1

2µ2

√∑
i

((λi − µ1)2D −N2)2

D4
Vi. (21)

It should be noted that the numerators here will have

slightly higher variance due to the covariance between

adjacent pixels. This can be taken into account following

Section 4.5.

8.2. Integrated Luminosity

The integrated luminosity can be calculated for 1D,

2D, or 3D data and an optional object mask of the same

dimensions. If no object mask is provided, all of the in-

put data is summed. If the input is two-dimensional, the

input units are assumed to be those of surface brightness

and the total flux, Ftot is calculated following:

Ftot = (∆θ)2ΣxΣySB(x, y)M(x, y) (22)

where ∆θ is the angular area in units of arcsec2 and

M(x, y) is the 2D binary mask. If the input is 3D, the

input unit is assumed to be units of Fλ, and the lumi-

nosity is calculated as:

Ftot = (∆λ)
∑

x

∑
y

∑
z

Fλ(x, y, z)M(x, y, z), (23)

where ∆λ is the size of the wavelength layers, usually in

Angstrom. Finally, if the input is one dimensional, the

luminosity is calculated as:

Ftot = (∆λ)
∑

z

Fλ(z)M(z). (24)

20 O’Sullivan and Chen

Figure 11. z-Moment maps, shown in units of km −1, calculated using CWITools. From left to right: first moment, propagated
error on the first moment, second moment, and propagated error on the second moment.

The total flux is then converted to luminosity using the

luminosity distance, DL(z):

Ltot = 4πD2
L(z)Ftot (25)

The error on the luminosity is obtained by summing

the variance and squaring the multiplicative terms. The

usual caveat regarding covariance (Section 4.5) applies

here, and should be considered before using the esti-

mated error.

8.3. Characteristic Sizes

CWITools provides a number of ways to measure the

size of a 2D or 3D object. First and foremost among

them is area, either units of square pixels or square arc-

seconds. Several characteristic radii are also defined, as

in O’Sullivan et al. (2020); effective radius (Reff), maxi-

mum radius (Rmax), and RMS radius (Rrms), defined as

follows:

Reff =
√
A/π (26)

Rmax = max[|rij − rc| ×Mij] (27)

Rrms =

√∑
i

∑
j |rij − rc|2FijMij∑
i

∑
j FijMij

(28)

where the indices i and j iterate over the spatial axes,

rij is the 2D vector from the image origin to the point

(xi, yj), rc is the vector from the origin to the flux-

weighted centroid of the nebula, Fij is the total flux

or surface-brightness at position (xi, yj), and Mij is the

2D binary object mask, such that Mij = 1 for object

spaxels. If 3D data and object masks are provided, Fij
and Mij are formed by taking the sum and maximum

value along the z-axis, respectively. Each measurement,

taken alone, serves as a useful reference for a different as-

pect of the object size, but lacks any information about

shape. Reff serves as a convenient proxy for total mea-

sured size, Rmax describes the maximum extent of the

nebula in any direction from its flux-weighted centroid,

and Rrms provides a characteristic scale at which the

emission is concentrated.

8.4. Asymmetry and Eccentricity

Another commonly used measurement in describing

the morphology of an object is its asymmetry or eccen-

tricity. The asymmetry parameter, α reflects the minor

axis to major axis ratio of the emission. The calculation

of this parameter, used in O’Sullivan et al. (2020), is

taken from Arrigoni Battaia et al. (2016), who in turn

based it on work by Stoughton et al. (2002). It derives

the parameter α from second order spatial moments de-

fined as:

Mxx =
〈 (x− xc)2

r2

〉
f
, (29)

Myy =
〈 (y − yc)2

r2

〉
f
, (30)

and

Mxy =
〈 (y − yc)(x− xc)

r2

〉
f
, (31)

where (xc, yc) is the flux-weighted centroid of the emis-

sion. As an aside, CWITools’ measurement module con-

tains a wrapper to enable arbitrary moment calculations

of the form M(xx, yy, p, q, f) = 〈xxpyyq〉f , where xx

and yy are 2D mesh-grids of x-position and y-position,

and f is a 2D grid of flux-like weights. These second

order moments are used to define the terms

Q ≡Mxx −Myy (32)

U ≡ 2Mxy (33)

which are then used to derive the asymmetry

α = b/a =
1−

√
Q2 + U2

1 +
√
Q2 + U2

. (34)

CWITools 21

Figure 12. Left: an illustration of the three characteristic radii provided by the measurements module. From largest to
smallest, they are: (i) the maximum radius (Rmax - dotted circle), (ii) the effective radius (Reff - dashed circle), and (iii) the
flux-weighted RMS radius (Rrms - solid circle). Right: a radial profile generated by the synthesis module for the same nebula.
The same three radii are shown on this axis.

The ‘elliptical’ eccentricity, which is another representa-

tion of the same thing, is defined as

e ≡
√

1− α2. (35)

Both of the above functions accept 2D or 3D data as

input. If an object mask is not provided, all input data

is used in the above calculation. This is generally only

recommended if the input data already contains only the

isolated 2D or 3D signal (i.e. an object mask has been

applied by some means).

8.5. Specific Angular Momentum

One commonly studied phenomenon, in terms of kine-

matics, is the presence of structured kinematic shear.

Shear-like features can arise from a number of differ-

ent physical phenomena including inflows, outflows, and

galactic rotation. Specific angular momentum is typi-

cally defined as angular momentum per unit mass, and

has a dimensionality of square distance per unit time

(e.g. m2s−1). Here, we use the flux of an object as a

proxy for mass, and calculate the weighted average over

the entire object. We also bear in mind that, in IFU

data, we do not have full 3D vectors for the distance;

rather, we have only projected radius and line-of-sight

velocity. Thus to be more precise in our wording, the

measurement is of the flux-weighted average projected

specific angular momentum of an object. This is defined

as:

〈 ~j 〉f =

∑
x

∑
y F (x, y)~R⊥(x, y)× ~vz(x, y)∑

x

∑
y F (x, y)

(36)

where ~R⊥(x, y) is the projected radius, in pkpc, from

the flux-weighted centroid of the nebula to the point

(x, y), F (x, y) is the flux at that point, and ~vz(x, y) is

the line-of-sight velocity, in km s−1. The units of the

measurement are thus pkpckms−1. This measurement

provides a useful, quantitative insight into whether the

kinematics of an object appear to be dominated by a

structured velocity gradient (which aligns with the dis-

tribution of flux to produce a large value) or whether

the kinematics appear to be primarily noisy or chaotic.

9. SUMMARY AND DISCUSSION

We have presented here a configurable pipeline for

the extraction, modeling and measurement of signals in

three-dimensional integral field spectroscopy data, and

shown its application on extracting extended Lyα emis-

sion from a high-redshift QSO. CWITools provides a

comprehensive and flexible suite of tools for correcting,

coadding, and analyzing KCWI and PCWI data cubes.

Here, we discuss briefly the extension of CWITools to

other instruments and general future work.

9.1. Extension to Other IFUs

CWITools, as discussed, is built specifically with the

Cosmic Web Imager instruments at Keck and Palomar

observatory in mind. That being said, there is much that

IFS data has in common, regardless of which instru-

ment produces it. Certain header keywords are FITS

standards, and others are not. Certain methods (e.g.

polynomial subtraction) may apply universally, while

others (e.g. analytical PSF modeling) may depend on

instrument specifics. It is thus worth a quick look at the

22 O’Sullivan and Chen

areas in which CWITools becomes instrument-specific,

and how it could be adapted to other instruments.

The majority of methods in CWITools can be applied

to any input containing the same data structure (a wave-

length axis and two spatial axes). However, there are a

few areas in which the specifics of the CWI format fea-

ture strongly. First and foremost among these is the

nature of the file-types saved by the standard DRP. In

KDRP and PDRP, for a single exposure, a separate data

cube is saved for intensity, background, variance, and

masks. As a counter example, the data cubes produced

by MUSE store the variance associated with an inten-

sity cube as a second HDU within the same file. This

represents the biggest challenge in using CWITools for

other instruments. However, in lieu of a package update

with flexible input in every method, it can be patched

by writing a tool to convert data from one instrument

to the format of another. For example, a MUSE data

cube could be loaded, written to separate intensity and

variance files, and then used as input to CWITools. As

such, this problem is easy to solve with a single function

that converts data formats. This method can also be ap-

plied to data structures and header keywords; a specific

function can be written to re-order axes and re-name

keywords. Once this function is written, it is trivial to

apply it to data and then continue using CWITools as

on CWI data.

The next category of incompatibilities arises from

package data that is specific to one instrument. For

example, CWITools stores a list of known bright sky-

lines at Palomar and Keck observatories. If certain tools

were to be applied to MUSE data, a list of bright sky

lines at European Southern Observatory would need to

be added. CWITools also contains information about

the different gratings and slicers available to PCWI and

KCWI. These are used to estimate the spatial and spec-

tral resolution. Again, this information would need to

be added to make the same function available to another

instrument. However, this amounts to simple data entry

and is not a major obstacle.

On the surface, it seems almost trivial to address these

concerns and adapt CWITools to other instruments and

it may indeed be so. However, there is always the risk of

so-called ‘unknown unknowns.’ Are there assumptions

being made that may not apply to all instruments? For

example, what if the spaxels in a certain IFS are not spa-

tially adjacent and have gaps between them (say, due to

a sparse lenslet array)? The assumption that spaxels are

always spatially adjacent is present in the current imple-

mentations of PSF modeling and measuring the radial

extent of objects. To adjust for this, all such methods

would need to be updated to work in world coordinates

rather than image coordinates, spatially. The possibility

for such unanticipated, fundamental inconsistencies is a

major reason for the focused development of CWITools.

Extension to other instruments would likely have to be

rolled out one at a time, with some period of testing and

development required. Having said that, CWITools has

intentionally been built in a modular way to allow for

this possibility.

9.2. Future Development

The development of this toolkit was motivated in large

part by survey work. As discussed briefly in the intro-

duction, the latest generation of IFS instruments on 5-

10m class telescopes has enabled surveys of ‘relatively

large’ samples of tens of targets. IFS data analysis can

be extremely complex and time consuming. If such sur-

veys are to grow in size and remain scientifically pro-

ductive, data analysis pipelines will be needed. Much

of CWITools was developed from scratch because there

were no easily available tools to perform the desired

tasks. However, it has been developed as an open source

package and we extend an open invitation to contribu-
tors so that this particular wheel does not need to be

reinvented. As such, we encourage anyone in the com-

munity who would like to see certain features to contact

the authors and get involved.

REFERENCES

Arrigoni Battaia, F., et al. 2016, ApJ, 829, 3,

doi: 10.3847/0004-637X/829/1/3

—. 2019, MNRAS, 482, 3162, doi: 10.1093/mnras/sty2827

Astropy Collaboration, Robitaille, T., Tollerud, E. J., et al.

2013, A&A, 558, A33, doi: 10.1051/0004-6361/201322068

Astropy Collaboration, Price-Whelan, A. M., Sipőcz, B. M.,

et al. 2018, AJ, 156, 123, doi: 10.3847/1538-3881/aabc4f

Avila, R. J., Hack, W., Cara, M., et al. 2015, in

Astronomical Society of the Pacific Conference Series,

Vol. 495, Astronomical Data Analysis Software an

Systems XXIV (ADASS XXIV), ed. A. R. Taylor &

E. Rosolowsky, 281. https://arxiv.org/abs/1411.5605

Borisova, E., et al. 2016, ApJ, 831, 39,

doi: 10.3847/0004-637X/831/1/39

Cai, Z., et al. 2019, arXiv e-prints, arXiv:1909.11098.

https://arxiv.org/abs/1909.11098

http://doi.org/10.3847/0004-637X/829/1/3
http://doi.org/10.1093/mnras/sty2827
http://doi.org/10.1051/0004-6361/201322068
http://doi.org/10.3847/1538-3881/aabc4f
https://arxiv.org/abs/1411.5605
http://doi.org/10.3847/0004-637X/831/1/39
https://arxiv.org/abs/1909.11098

CWITools 23

Caillier, P., et al. 2014, in Proc. SPIE, Vol. 9147,

Ground-based and Airborne Instrumentation for

Astronomy V, 91475K, doi: 10.1117/12.2057056

Husemann, B., et al. 2013, A&A, 549, A87,

doi: 10.1051/0004-6361/201220582

Law, D., et al. 2016, AJ, 152, 83,

doi: 10.3847/0004-6256/152/4/83

Martin, D. C., et al. 2014a, ApJ, 786, 106,

doi: 10.1088/0004-637X/786/2/106

—. 2014b, ApJ, 786, 107,

doi: 10.1088/0004-637X/786/2/107

Matuszewski, M., et al. 2010, in Proc. SPIE, Vol. 7735,

Ground-based and Airborne Instrumentation for

Astronomy III, 77350P, doi: 10.1117/12.856644

Morrissey, P., et al. 2018, ApJ, 864, 93,

doi: 10.3847/1538-4357/aad597

O’Sullivan, D., Martin, D. C., Matuszewski, M., et al. 2020,

ApJ, 894, 3, doi: 10.3847/1538-4357/ab838c

Stoughton, C., Lupton, R. H., Bernardi, M., et al. 2002,

AJ, 123, 485, doi: 10.1086/324741

Wagenmakers, E., & Farrell, S. 2004, Psychon. Bull. Rev.,

11, 192

http://doi.org/10.1117/12.2057056
http://doi.org/10.1051/0004-6361/201220582
http://doi.org/10.3847/0004-6256/152/4/83
http://doi.org/10.1088/0004-637X/786/2/106
http://doi.org/10.1088/0004-637X/786/2/107
http://doi.org/10.1117/12.856644
http://doi.org/10.3847/1538-4357/aad597
http://doi.org/10.3847/1538-4357/ab838c
http://doi.org/10.1086/324741

	1 Introduction
	2 Package Architecture
	3 Cosmic Web Imager Data Format
	3.1 Standard DRP Output
	3.2 Coordinate Systems and Headers

	4 Module: Reduction
	4.1 Cropping
	4.2 World Coordinate System Correction
	4.2.1 Spatial Correction: Source Fitting

	4.3 Wavelength Correction: Line Fitting
	4.3.1 Wavelength Correction: 1D Cross-Correlation
	4.3.2 Custom WCS Correction Routines

	4.4 Coadding
	4.5 Variance Estimation and Scaling
	4.6 Slice-to-Slice Scattered Light Correction
	4.7 Air-to-Vacuum and Heliocentric Corrections

	5 Module: Extraction
	5.1 PSF Subtraction
	5.2 Background Subtraction
	5.2.1 BGSub Method 1: Polynomial Fitting
	5.2.2 BGSub Method 2: Median Filtering
	5.2.3 BSub Method 3: Median Subtraction

	5.3 Masking
	5.4 Smoothing
	5.5 Segmentation

	6 Module: Synthesis
	6.1 White-Light Images
	6.2 Pseudo Narrowband Images
	6.3 Object Surface Brightness, Spectra and Moments

	7 Module: Modeling
	7.1 Wrappers for Models and Fitting
	7.2 Model Comparison

	8 Module: Measurement
	8.1 First and Second Moments
	8.2 Integrated Luminosity
	8.3 Characteristic Sizes
	8.4 Asymmetry and Eccentricity
	8.5 Specific Angular Momentum

	9 Summary and Discussion
	9.1 Extension to Other IFUs
	9.2 Future Development

