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Abstract

A central goal in neurobiology is to relate the expression of genes to the structural
and functional properties of neuronal types, collectively called their phenotypes.
Single-cell RNA sequencing can measure the expression of thousands of genes
in thousands of neurons. How to interpret the data in the context of neuronal
phenotypes? We propose a supervised learning approach that factorizes the gene
expression data into components corresponding to individual phenotypic charac-
teristics and their interactions. This new method, which we call factorized linear
discriminant analysis (FLDA), seeks a linear transformation of gene expressions
that varies highly with only one phenotypic factor and minimally with the others.
We further leverage our approach with a sparsity-based regularization algorithm,
which selects a few genes important to a specific phenotypic feature or feature com-
bination. We applied this approach to a single-cell RNA-Seq dataset of Drosophila
T4/T5 neurons, focusing on their dendritic and axonal phenotypes. The analysis
confirms results obtained by conventional methods but also points to new genes
related to the phenotypes and an intriguing hierarchy in the genetic organization of
these cells.

1 Introduction

The complexity of neural circuits is a result of many different types of neurons that specifically connect
to each other. Each neuronal type has its own phenotypic traits, which together determine the role
of the neuronal type in a neural circuit. Typical phenotypic descriptions of neurons include features
such as dendritic and axonal laminations, electrophysiological properties, and connectivity [1–3].
However, the genetic programs behind these phenotypic characteristics are still poorly understood.

Recent progress in characterizing neuronal cell types and investigating their gene expression, es-
pecially with advances in high-throughput single-cell RNA-Seq [2], provides an opportunity to
address this challenge. With massive data generated from single-cell RNA-Seq, we now face a
computational problem: how to factorize the high-dimensional data into gene expression modules
that are meaningful to neuronal phenotypes? Specifically, given phenotypic descriptions of neuronal
types, such as their dendritic stratification and axonal termination, can one project the original data
into a low-dimensional space corresponding to these phenotypic features and their interactions, and
further extract genes critical to each of these components?
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Figure 1: Illustration of our approach. (A,B) In the example, cell types are jointly represented by
two phenotypic features, indexed with labels i and j respectively. If only some combinations of
the two features are observed, one obtains a partial contingency table (B) instead of a complete one
(A). (C) We seek linear projections of the data that separate the cell types in a factorized manner
corresponding to the two features. Here u, v, and w are aligned with Feature 1, Feature 2, and the
interaction of both features, with the projected coordinates y, z, and s respectively.

Here we propose a new analysis method named factorized linear discriminant analysis (FLDA).
Inspired by multi-way analysis of variance (ANOVA) [4], this method factorizes data into components
corresponding to phenotypic features and their interactions, and seeks a linear transformation that
varies highly with one specific factor but not with the others. The linear nature of this approach makes
it easy to interpret, as the weight coefficients directly inform the relative importance of each gene
to each factor. We further introduce a sparse variant of the method, which constrains the number
of genes contributing to each linear projection. We illustrate this approach by applying FLDA to a
single-cell transcriptome dataset of T4/T5 neurons in Drosophila [5], focusing on two phenotypes:
dendritic location and axonal lamination.

2 Factorized linear discriminant analysis (FLDA)

Suppose that we are given gene expression data of single neurons which are typically very high-
dimensional. These cells are classified into cell types, as a result of clustering in the high-dimensional
space and annotations based on prior knowledge or verification outcome [6–10]. We know the
phenotypic traits of each neuronal type, therefore each type can also be jointed defined by the
phenotypic features. We want to find an interpretable low-dimensional embedding in which certain
dimensions represent factors of phenotypic features or their interactions. This requires that variation
along one of the axes in the embedding space causes the variation of only one factor. In reality, this is
hard to satisfy due to noise in the data, and we relax the constraint by letting data projected along
one axis vary largely with one factor while minimally with the others. In addition, we ask that cells
classified as the same type are still close to each other in the embedding space, while cells of different
types are far apart.

As a start, let us consider only two phenotypic features of neurons, dendritic stratification, and axonal
termination, both of which can be described with discrete categories, such as different regions or
layers in the brain [1, 5, 11, 12]. Suppose that each cell type can be jointly represented by its dendritic
location indexed as i and axonal lamination indexed as j, with the number of cells within each cell
type nij . This representation can be described using a contingency table (Figure 1A,B). Note here
that we allow the table to be partially filled.

Let xijk(k ∈ 1, 2, ...nij) represent the expression values of g genes in each cell (xijk ∈ Rg)). How
to find linear projections yijk = uTxijk and zijk = vTxijk that are aligned with features i and j
respectively (Figure 1C)? We first asked whether we could factorize, for example, yijk, with respect
to components depending on features i and j. Indeed, motivated by the linear factor models used in
multi-way ANOVA and the idea of partitioning variance, we constructed an objective function as the
following, and found u∗ that maximizes the objective (see detailed analysis in Appendix A):

u∗ = arg max
u∈Rg

uTNAu

uTMeu
(1)
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When we have a complete table, and there are a levels for the feature i and b levels for the feature j,
we have

NA = MA − λ1MB − λ2MAB (2)

where MA, MB , and MAB are the covariance matrices explained by the feature i, the feature j,
and the interaction of them. λ1 and λ2 are hyper-parameters controlling the relative weights of MB

and MAB with respect to MA. Me is the residual covariance matrix representing noise in gene
expressions. Formal definitions of these terms are the following:

MA =
1

a− 1

a∑
i=1

b∑
j=1

(mi. −m..)(mi. −m..)
T (3)

MB =
1

b− 1

a∑
i=1

b∑
j=1

(m.j −m..)(m.j −m..)
T (4)

MAB =
1

(a− 1)(b− 1)

a∑
i=1

b∑
j=1

(mij −mi. −m.j + m..)(mij −mi. −m.j + m..)
T (5)

Me =
1

N − ab

a∑
i=1

b∑
j=1

[
1

nij

nij∑
k=1

(xijk −mij)(xijk −mij)
T ] (6)

where

m.. =
1

ab

a∑
i=1

b∑
j=1

mij (7)

mi. =
1

b

b∑
j=1

mij (8)

m.j =
1

a

a∑
i=1

mij (9)

in which

mij =
1

nij

nij∑
k=1

xijk (10)

An analogous expression provides the linear projection v∗ for the feature j, and w∗ for the interaction
of both features i and j. Similar arguments can be applied to the scenario of a partial table to find u∗

or v∗ as the linear projection for the feature i or j (see Appendix B for mathematical details).

Note that NA is symmetric and Me is positive definite. Therefore the optimization problem is a
generalized eigenvalue problem [13]. When Me is invertible, u∗ is the eigenvector associated with the
largest eigenvalue of M−1

e NA. In general, if we want to embed xijk into a d-dimensional subspace
aligned with the feature i (d < a), we can take the eigenvectors with the d largest eigenvalues
of M−1

e NA, which we call the top d factorized linear discriminant components (FLDs). Since
multi-way ANOVA can handle contingency tables with more than two dimensions, our analysis can
be easily generalized to more than two features.
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3 Sparsity-based regularization of FLDA

For this domain-specific application in neurobiology, there is particular interest in finding a small
group of genes that best determine one of the phenotypic features. This leads to finding axes that
have only a few non-zero components. To identify such a sparse solution, we solved the following
optimization problem:

u∗ = arg max
u∈Rg

uTNAu

uTMeu
subject to ||u||0 ≤ l (11)

from which the number of non-zero elements of u∗ is less or equal to l.

This is known as a sparse generalized eigenvalue problem, which has three unique challenges, as
listed in [14]: first, when the data are very high-dimensional, Me can be singular and non-invertible;
second, because of the normalization term uTMeu, many solutions for sparse eigenvalue problems
cannot be applied directly; finally, this problem involves maximizing a convex objective over a
nonconvex set, which is NP-hard.

To solve it, we used truncated Rayleigh flow (Rifle), a method specifically developed to solve sparse
generalized eigenvalue problems. The algorithm of Rifle is composed of two steps [14]: first, to
obtain an initial vector u0 that is close to u∗. We used the solution from the non-sparse FLDA as an
initial estimate of u0; second, iteratively, to perform a gradient ascent step on the objective function,
and then execute a truncation step that preserves the l entries of u with the largest values and sets the
remaining entries to 0. Pseudo-code for this algorithm is presented below:

procedure RIFLE(NA,Me,u0, l, η) . η is the step size
t = 1 . t indicates the iteration number
while not converge do . Converge when ut ' ut−1

ρt−1 ←
uT

t−1NAut−1

uT
t−1Meut−1

C ← I + ( η
ρt−1

)(NA − ρt−1Me)

ut ← Cut−1

||Cut−1||2
Truncate ut by keeping the top l entries of u with the largest values and setting the rest

entries to 0
ut ← ut

||ut||2
t← t+ 1

end while
return ut

end procedure

As proved in [14], if there is a unique sparse leading generalized eigenvector, Rifle will converge
linearly to it with the optimal statistical rate of convergence. The computational complexity of the
second step is O(lg + g) for each iteration, therefore Rifle scales linearly with g, the dimensionality
of the original data. Based on the theoretical proof, to guarantee convergence, the hyperparameter
η was selected to be sufficiently small such that ηλmax(Me) < 1, where λmax(Me) is the largest
eigenvalue of Me. In our case, the other hyperparameter l, indicating how many genes to be preserved,
was empirically selected based on the design of a follow-up experiment. As mentioned later in Results,
we chose l to be 20, a reasonable number of candidate genes to be tested in a biological study.

4 Related work

4.1 Linear dimensionality reduction

FLDA is a method for linear dimensionality reduction [15]. Formally, linear dimensionality reduction
is defined as the following: given n data points each of g dimensions, X = [x1,x2, ...,xn] ∈ Rg×n,
and a choice of reduced dimensionality r < g, optimize an objective function f(.) to produce a linear
projection P ∈ Rr×g , and Y = PX ∈ Rr×n is the low-dimensional transformed data.
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State-of-the-art methods for linear dimensionality reduction include principal component analysis
(PCA), factor analysis (FA), linear multidimensional scaling (MDS), linear discriminant analysis
(LDA), canonical correlations analysis (CCA), maximum autocorrelation factors (MAF), slow feature
analysis (SFA), sufficient dimensionality reduction (SDR), locality preserving projections (LPP),
and independent component analysis (ICA) [15]. Some of them are obviously unsuitable to the
problem we want to solve, for example, MAF and SFA are developed for data with temporal structures
[16, 17], and LPP focuses on the local structures of the data instead of their global organization
[18]. The remaining approaches can be roughly grouped for either unsupervised or supervised linear
dimensionality reduction, and we discuss them separately.

4.2 Unsupervised methods for linear dimensionality reduction

Unsupervised linear dimensionality reduction, including PCA [19], ICA [20], FA [21] and more,
project data into a low-dimensional space without using supervision labels. They are not suitable to
solve our problem, due to the specific characteristics of the gene expression data. The dimensionality
of gene expression data is usually very high, with tens of thousands of genes, and expressions of a fair
number of them can be very noisy. These noisy genes cause large variance among individual cells,
but in an unstructured way. Without supervision signals from the phenotypic features, unsupervised
methods tend to select these genes to construct the low-dimensional space, which offers neither the
desired alignment nor a good separation of cell type clusters. To illustrate this, we performed PCA
on the gene expression data and compared it with FLDA. Briefly, we solved the following objective
to find the linear projection:

u∗ = arg max
u∈Rg

uTXXTu

uTu
(12)

The outcome of this comparison is shown in Results.

4.3 Supervised methods for linear dimensionality reduction

Supervised linear dimensionality reduction, represented by LDA [22, 23] and CCA [24, 25], can
overcome the above issue. By including supervised signals of phenotypic features, we can devalue
genes whose expressions are non-informative about the phenotypes.

4.3.1 Linear discriminant analysis (LDA)

We name our method FLDA because its objective function has a similar format as that of LDA. LDA
also models the difference among data organized in pre-determined classes. Formally, LDA solves
the following optimization problem:

u∗ = arg max
u∈Rg

uTΣbu

uTΣeu
(13)

where Σb and Σe are estimates of the between-class and within-class covariance matrices respectively.

Different from FLDA, the representation of these classes is not explicitly formulated as a contingency
table composed of multiple features. The consequence is that, when applied to the example problem
in which neuronal types are organized into a two-dimensional contingency table with phenotypic
features i and j, in general, axes from LDA are not aligned with these two phenotypic features.

However, in the example above, we can perform two separate LDAs for the two features. This allows
the axes from each LDA to align with its specific feature. We call this approach “2LDAs". There are
two limitations of this approach: first, it discards information about the component depending on the
interaction of the two features which cannot be explained by a linear combination of them; second, it
explicitly maximizes the segregation of cells with different feature levels which sometimes is not
consistent with a good separation of cell type clusters. Detailed comparisons between LDA, “2LDAs”
and FLDA can be found in Results.
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Figure 2: Quantitative comparison between FLDA and other models. (A) Illustration of data synthesis.
See Appendix C for implementation details. Color bar indicates the expression values of the ten
generated genes. (B) Normalized overall SNR metric of each analysis. The SNR values are normalized
with respect to that of LDA. (C) Overall modularity score for each analysis. Error bars in (B,C)
denote standard errors each calculated from 10 repeated simulations.

4.3.2 Canonical correlation analysis (CCA)

CCA projects two datasets Xa ∈ Rg×n and Xb ∈ Rd×n to Ya ∈ Rr×n and Yb ∈ Rr×n, such that
the correlation between Ya and Yb is maximized. Formally, it tries to maximize this objective:

(u∗,v∗) = arg max
u∈Rg,v∈Rd

uT (XaX
T
a )−

1
2XaX

T
b (XbX

T
b )−

1
2v

(uTu)−
1
2 (vTv)−

1
2

(14)

To apply CCA to our problem, we need to set Xa to be the gene expression matrix, and Xb to
be the matrix of d phenotypic features (d = 2 for two features as illustrated later). In contrast
with FLDA, CCA finds a transformation of gene expressions aligned with a linear combination
of phenotypic features, instead of a factorization of gene expressions corresponding to individual
phenotypic features. This difference is quantified and shown in Results.

5 Experiments

5.1 Datasets

In order to quantitatively compare FLDA with other linear dimensionality reduction methods, such as
PCA, CCA, LDA, and the “2LDAs" approach, we created synthetic datasets. Four types of cells, each
containing 25 examples, were generated from a Cartesian product of two features i and j, organized
in a 2x2 complete contingency table. Expressions of 10 genes were generated for these cells, in which
the levels of Genes 1-8 were correlated with either the feature i, the feature j, or the interactions of
them, and the levels of the remaining 2 genes were purely driven by noise (Figure 2A). Details of
generating the data can be found in Appendix C.

To illustrate FLDA in analyzing single-cell RNA-Seq datasets for real problems of neurobiology,
and demonstrate the merit of our approach in selecting a few important genes for each phenotype,
we used a dataset of Drosophila T4/T5 neurons [5]. T4 and T5 neurons are very similar in terms of
general morphology and physiological properties, but they differ by the location of their dendrites in
the medulla and lobula, two distinct brain regions. T4 and T5 neurons each contain four subtypes,
with each pair of the four laminating their axons in a specific layer in the lobula plate (Figure 3A).
Therefore, we can use two phenotypic features to describe these neurons: the feature i indicates the
dendritic location at the medulla or lobula; the feature j describes the axonal lamination at one of the
four layers (a/b/c/d) (Figure 3B). In this experiment, we focused on the dataset containing expression
data of 17492 genes from 3833 cells collected at a defined time during brain development.

5.2 Data preprocessing

The T4/T5 neuron dataset was preprocessed as previously reported [8, 10, 26]. Briefly, transcript
counts within each column of the count matrix (genes×cells) were normalized to sum to the median
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Figure 3: FLDA on the dataset of T4/T5 neurons. (A) T4/T5 neuronal types and their dendritic and
axonal phenotypes. (B) T4/T5 neurons can be organized in a complete contingency table. Here
i indicates the dendritic location and j indicates the axonal termination. (C) SNR metric of each
discriminant axis. (D) Projection of the data into the three-dimensional space consisting of the
discriminant axis for the feature i (FLDi) and the first and second discriminant axes for the feature j
(FLDj1 and FLDj2 ). (E-G) Projection of the data into the two-dimensional space made of FLDi and
FLDj1 (E), FLDj1 and FLDj2 (F), or FLDj2 and FLDj3 (the third discriminant axis for the feature j)
(G). Different cell types are indicated by different colors as in (A) and (D).

number of transcripts per cell, resulting in the normalized counts Transcripts-per-median or TPMgc

for Gene g in Cell c. We used the log-transformed expression dataEgc = ln (TPMgc + 1) for further
analysis. We adopted a common approach in single-cell RNA-Seq studies that is based on fitting a
relationship between mean and coefficient of variation [27, 28] to select highly variable genes, and
performed FLDA on the expression data with only these genes. We preprocessed the data with PCA
and kept principal components (PCs) explaining ∼99% of the total variance before running FLDA
but not the sparse version of the algorithm. In the experiment below, we set the hyper-parameters λs
in Equation (2) to 1.

5.3 Metrics

We included the following metrics to evaluate our method: A signal-to-noise ratio (SNR) measures
how well each discriminant axis separates cell types compared with noise estimated from the variance
within cell type clusters. The explained variance (EV) for each discriminant axis measures how much
variance of the feature i or j is explained among the total variance explained by that axis. The mutual
information (MI) between each discriminant axis and each feature quantifies how "informative" an
axis is to a specific feature. Built on the calculation of MI, we included the modularity score which
measures whether each discriminant axis depends on at most one feature [29]. The implementation
details of these metrics can be found in Appendix D.
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6 Results

To quantitatively compare the difference between FLDA and other alternative models including PCA,
CCA, LDA, and “2LDAs", we measured the proposed metrics from analyses of the synthesized
datasets (Figure 2A). Given that the synthesized data were organized in a 2x2 contingency table,
each LDA of the “2LDAs" approach could find only one dimension for the specific feature i or j.
Therefore, as a fair comparison, we only included the corresponding dimensions in FLDA (FLDi and
FLDj) and the top two components of PCA, CCA, and LDA. The overall SNR values normalized
by that of LDA and the overall modularity scores were plotted for data generated with different
noise levels (Figure 2B,C). The performance of PCA is the worst among all these models because
the unsupervised approach cannot prevent the noise from contaminating the signal. The supervised
approaches in general have good SNRs, but LDA and CCA suffer from low modularity scores. This
is expected because LDA maximizes the separation of cell type clusters but overlooks the alignment
of the axes to the feature i or j, and CCA maximizes the correlation to a linear combination of
phenotypic features instead of individual ones. By contrast, “2LDAs" achieves the highest modularity
scores but has the worst SNR among the supervised approaches, because it tries to maximize the
separation of cells with different feature levels, which is not necessarily consistent with maximizing
the segregation of cell types. Both the SNR value and the modularity score of FLDA are close to the
optimal, as it not only considers the alignment of axes to different features but also constrains the
variance within cell types. A representative plot of the EV and MI metrics of these models is shown
in Figure 5, reporting good alignment of axes to either the feature i or j in FLDA and ‘2LDAs", but
not in the others.

A question of significance in neurobiology is whether the diverse phenotypes of neuronal cell types
are generated by combinations of modular transcriptional programs, and if so, what is the gene
signature for each of the programs. To illustrate the ability of our approach in addressing this problem,
we applied FLDA to the dataset of Drosophila T4/T5 neurons. The T4/T5 neurons could be organized
in a 2x4 contingency table, therefore, FLDA was able to project the expression data into a subspace
of seven dimensions, with one FLD aligned with dendritic location i (FLDi), three FLDs aligned
with axonal termination j (FLDj1−3), and the remaining three representing the interaction of both
phenotypes (FLDij1−3

). We ranked these axes based on their SNR metrics and found that FLDj1 ,
FLDi, and FLDj2 have much higher SNRs than the rest (Figure 3C). Indeed, data representations
in the subspace consisting of these three dimensions show a clear separation of the eight neuronal
types (Figure 3D). As expected, FLDi teases apart T4 from T5 neurons, whose dendrites are located
at different brain regions (Figure 3E). Interestingly, FLDj1 separates T4/T5 neurons into two groups,
a/b vs c/d, corresponding to the upper or lower lobula place, and FLDj2 divides them into another
two, a/d vs b/c, indicating whether their axons laminate at the middle or lateral part of the lobula plate
(Figure 3E,F). Unexpectedly, among these three dimensions, FLDj1 has a much higher SNR than
FLDi and FLDj2 , whose SNR values are similar. This suggests a hierarchical structure in the genetic
organization of T4/T5 neurons: they are first separated into either a/b or c/d types, and subsequently
divided into each of the eight subtypes. In fact, this exactly matches the sequence of their cell fate
determination during development, as revealed in a previous genetic study [30]. Finally, the last
discriminant axis of the axonal feature FLDj3 separates the group a/c from b/d, suggesting its role in
fine-tuning the axonal depth within the upper or lower lobula plate (Figure 3G).

To seek gene signatures for the discriminant components in FLDA, we applied the sparsity-based
regularization to constrain the number of genes with non-zero weight coefficients. Here we set the
number to 20, a reasonable number of candidate genes that might be tested in a follow-up biological
study. We extracted a list of 20 genes each for the axis of FLDi or FLDj1 . The relative importance
of these genes to each axis is directly informed by their weight values (Figure 4A,C). Side-by-side,
we plotted expression profiles of these genes in the eight neuronal types (Figure 4B,D). For both
axes, the genes critical in separating cells with different feature levels are differentially expressed in
corresponding cell types. We compared our gene lists with those obtained using conventional methods
which were reported in [5]. Consistent with the report, we found indicator genes for dendritic location
such as TfAP -2 , dpr2, CG34155, and CG12065, and those for axonal lamination such as klg, bi,
pros. In addition, we found genes that were not reported in this previous study. For example, our
results suggest that the genes Thor and pHCl -1 are important to the dendritic phenotype, and Lac
and Mip are critical to the axonal phenotype. These are promising genetic targets to be tested in
biological experiments. Lastly, FLDA allowed us to examine the component that depends on the
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Figure 4: Critical genes extracted from the sparse algorithm. (A) Weight vector of the 20 genes
selected for the dendritic phenotype (FLDi). The weight value is indicated in the color bar with color
indicating direction (red: positive and green: negative) and saturation indicating magnitude. (B)
Expression patterns of the 20 genes from (A) in eight types of T4/T5 neurons. Dot size indicates the
percentage of cells in which the gene was expressed, and color represents average scaled expression.
(C) Weight vector of the 20 genes selected for the axonal phenotype (FLDj1 ). Legend as in (A). (D)
Expression patterns of the 20 genes from (C) in eight types of T4/T5 neurons. Legend as in (B).

interaction of both features and identify its gene signature, which provides clues to transcriptional
regulation of gene expressions in the T4/T5 neuronal types (Figures 6 and 7).

As a supervised approach, FLDA depends on correct phenotype labels to extract meaningful informa-
tion. But if the phenotypes are annotated incorrectly, can we use FLDA to raise a flag? We propose a
perturbation analysis of FLDA to address this question built on the assumption that among possible
phenotype annotations, the projection of gene expression data based on correct labels leads to better
metric measurements than incorrect ones. As detailed in Appendix E, we generated three kinds
of incorrect labels for the dataset of T4/T5 neurons, corresponding to three common scenarios of
mislabeling: the phenotypes of a cell type were mislabeled with those of another type; a singular
phenotypic level was incorrectly split into two; two phenotypic levels are incorrectly merged into
one. FLDA was applied to gene expressions of T4/T5 neurons but with these perturbed annotations.
Proposed metrics such as the SNR value and modularity score were plotted in Figure 8. Indeed, the
projection of gene expressions with correct annotation leads to the best SNR value and modularity
score compared with incorrect annotations. This implies that this type of perturbation analysis is a
useful practice in general: it raises the confidence that the original annotation is correct if FLDA on
the perturbed annotations produces lower metric scores.

7 Discussion

We developed FLDA, a novel supervised linear dimensionality reduction method for understanding
the relationship between high-dimensional gene expression patterns and cellular phenotypes. We
illustrate the power of FLDA by analyzing a gene expression dataset from Drosophila T4/T5 neurons
that are labeled by two phenotypic features, each with multiple levels. The approach allowed us to
identify new genes for each of the phenotypic features that were not apparent under conventional
methods. Furthermore, we found a hierarchical relationship in the genetic organization of these cells.
These findings point the way for new biological experiments.

The approach is motivated by multi-way ANOVA, and thus it generalizes easily to more than two
features. Future applications in neurobiology include the analysis of phenotypic characteristics such
as electrophysiology and connectivity [2, 3, 31]. More generally FLDA can be applied to any labeled
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data set for which the labels form a Cartesian product of multiple features. For example, this would
include face images that can be jointly labeled by the age, gender, and other features of a person
[32, 33].

FLDA factorizes gene expression data into features and their interactions, and finds a linear projection
of the data that varies with only one factor but not the others. This provides a modular representation
aligned with the factors [34]. Ridgeway and Mozer (2018) argued that modularity together with
explicitness could define disentangled representations. Our approach is linear, which presents an
explicit mapping between gene expressions and phenotypic features, therefore our approach can
potentially serve as a supervised approach to disentanglement [35–37].

Compared with other non-linear embedding methods for cell types [38–40], the linear nature of
FLDA makes it extremely easy to interpret the low-dimensional representations, as the weight vector
directly informs the relative importance of each gene. To allow the selection of a small set of critical
genes, we leveraged our approach with sparse regularization. This makes FLDA especially useful to
experimentalists who can take the list of genes and test them in a subsequent round of experiments.

Finally, FLDA can be combined with other sequencing approaches to reveal insights into neuronal
types. In one approach, one can measure a neuron’s electrical properties and image its shape before
drawing out the cellular contents for sequencing [41]. In still other methods, the sequencing is done
in situ with the cell still in the tissue, allowing an assessment of its anatomy and other features [42].
FLDA applies to all these cases.
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9 Appendix

9.1 A. Objective functions

Here we derive the objective functions used in our analysis. Again if xijk(k ∈ 1, 2, ...nij) represents
the expression values of g genes in each cell (xijk ∈ Rg)), we seek to find a linear projection
yijk = uTxijk that is aligned with the feature i.

9.1.1 Inspiration from ANOVA

We asked what is the best way to factorize yijk. Inspired by multi-way ANOVA [4], we identified
three components: one depending on the feature i, another depending on the feature j, and the last
one depending on the interaction of both features. We therefore followed the procedures of ANOVA
to partition sums of squares and factorize yijk into these three components.

Let us first assume that all cell types defined by i and j contain the same number of cells. With cell
types represented by a complete contingency table (Figure 1A), yijk can be linearly factorized using
the model of two crossed factors. Formally, the linear factorization is the following:

yijk = µ+ αi + βj + (αβ)ij + εijk (15)

where yijk represents the coordinate of the kth cell in the category defined by i and j; µ is the average
level of y; αi is the component that depends on the feature i, and βj is the component that depends
on the feature j; (αβ)ij describes the component that depends on the interaction of both features i
and j; εijk ∼ N (0, σ2) is the residual of this factorization.
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Let us say that the features i and j fall into a and b discrete categories respectively. Then without loss
of generality, we can require:

a∑
i=1

αi = 0 (16)

b∑
j=1

βj = 0 (17)

a∑
i=1

(αβ)ij =

b∑
j=1

(αβ)ij = 0 (18)

Corresponding to these, there are three null hypotheses:

H01 : αi = 0 (19)

H02 : βj = 0 (20)

H03 : (αβ)ij = 0 (21)

Here we want to reject H01 while accepting H02 and H03 in order that yijk is aligned with the feature
i.

Next, we partition the total sum of squares. If the number of cells within each cell type category is n,
and the total number of cells is N , then we have

a∑
i=1

b∑
j=1

n∑
k=1

(yijk − ȳ...)2 = bn

a∑
i=1

(ȳi.. − ȳ...)2 + an

b∑
j=1

(ȳ.j. − ȳ...)2

+ n

a∑
i=1

b∑
j=1

(ȳij. − ȳi.. − ȳ.j. + ȳ...)
2 +

a∑
i=1

b∑
j=1

n∑
k=1

(yijk − ȳij.)2
(22)

where ȳ is the average of yijk over the indices indicated by the dots. Equation (22) can be written as

SST = SSA + SSB + SSAB + SSe (23)

with each term having degrees of freedomN−1, a−1, b−1, (a−1)(b−1), andN−ab respectively.
Here SSA, SSB , SSAB , and SSe are partitioned sum of squares for the factors αi, βj , (αβ)ij , and
the residual.

ANOVA rejects or accepts a null hypothesis by comparing its mean square (the partitioned sum of
squares normalized by the degree of freedom) to that of the residual. This is done by constructing
F-statistics for each factor as shown below:

FA =
MSA
MSe

=
SSA

a−1
SSe

N−ab
(24)

FB =
MSB
MSe

=
SSB

b−1
SSe

N−ab
(25)
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FAB =
MSAB
MSe

=

SSAB

(a−1)(b−1)
SSe

N−ab
(26)

Under the null hypotheses, the F-statistics follow the F-distribution. Therefore, a null hypothesis
is rejected when we observe the value of a F-statistic above a certain threshold calculated from the
F-distribution. Here we want FA to be large enough so that we can reject H01, but FB and FAB
to be small enough for us to accept H02 and H03. In other words, we want to maximize FA while
minimizing FB and FAB . Therefore, we propose maximizing an objective L:

L = FA − λ1FB − λ2FAB (27)

where λ1 and λ2 are hyper-parameters determining the relative weights of FB and FAB compared
with FA.

9.1.2 Objective functions under a complete contingency table

When the numbers of cells within categories defined by i and j (nij) are not all the same, the total
sum of squares cannot be partitioned as in Equation (22). However, if we only care about distinctions
between cell types instead of individual cells, we can use the mean value of each cell type cluster
(ȳij.) to estimate the overall average value (ỹ...), and the average value of each category i (ỹi..) or j
(ỹ.j.). Therefore, Equation (22) can be modified as the following:

a∑
i=1

b∑
j=1

[
1

nij

nij∑
k=1

(yijk − ỹ...)2] = b

a∑
i=1

(ỹi.. − ỹ...)2 + a

b∑
j=1

(ỹ.j. − ỹ...)2

+

a∑
i=1

b∑
j=1

(ȳij. − ỹi.. − ỹ.j. + ỹ...)
2 +

a∑
i=1

b∑
j=1

[
1

nij

nij∑
k=1

(yijk − ȳij.)2]

(28)

where

ȳij. =

∑nij

k=1 yijk
nij

(29)

ỹi.. =

∑b
j=1 ȳij.

b
(30)

ỹ.j. =

∑a
i=1 ȳij.
a

(31)

ỹ... =

∑a
i=1

∑b
j=1 ȳij.

ab
(32)

If we describe Equation (28) as:

S̃ST = S̃SA + S̃SB + S̃SAB + S̃Se (33)

then following the same arguments, we want to maximize an objective function in the following
format:

L =

S̃SA

a−1 − λ1
S̃SB

b−1 − λ2
˜SSAB

(a−1)(b−1)
S̃Se

N−ab

(34)
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9.1.3 Objective functions under a partial contingency table

When we have a representation of a partial table, we can no longer separate out the component that
depends on the interaction of both features. Therefore, we use another model, a linear model of two
nested factors, to factorize yijk, which has the following format:

yijk = µ+ αi + βj(i) + εijk (35)

Note that we now have βj(i) instead of βj + (αβ)ij . In this model, we identify a primary factor, for
instance, the feature denoted by i which falls into a categories, and the other (indexed by j) becomes
a secondary factor, the number of whose levels bi depends on the level of the primary factor. We
merge the component depending on the interaction of both features into that of the secondary factor
as βj(i).

Similarly, we have

a∑
i=1

bi∑
j=1

[
1

nij

nij∑
k=1

(yijk − ỹ...)2] =

a∑
i=1

[

bi∑
j=1

(ỹi.. − ỹ...)2]

+

a∑
i=1

bi∑
j=1

(ȳij. − ỹi..)2 +

a∑
i=1

bi∑
j=1

[
1

nij

nij∑
k=1

(yijk − ȳij.)2]

(36)

which can be written as

S̃ST = S̃SA + S̃SB + S̃Se (37)

with degrees of freedom N − 1, a− 1, M − a, and N −M for each of the terms, where M is:

M =

a∑
i=1

bi (38)

Therefore, we want to maximize the following objective:

L =
S̃SA

a−1 − λ
S̃SB

M−a
S̃Se

N−M

(39)

9.2 B. FLDA with a partial contingency table

Here we provide the mathematical details of FLDA under the representation of a partial table. When
we have a partial table, if the feature i is the primary feature with a levels, and the feature j is the
secondary feature with bi levels, then NA in Equation (1) is defined as follows:

NA = MA − λMB|A (40)

where

MA =
1

a− 1

a∑
i=1

bi∑
j=1

(mi. −m..)(mi. −m..)
T (41)

MB|A =
1

M − a

a∑
i=1

bi∑
j=1

(mij −mi.)(mij −mi.)
T (42)
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and M is defined as in Equation (38). Correspondingly, Me in Equation (1) is defined as:

Me =
1

N −M

a∑
i=1

b∑
j=1

[
1

nij

nij∑
k=1

(xijk −mij)(xijk −mij)
T ] (43)

and

m.. =
1

M

a∑
i=1

bi∑
j=1

mij (44)

mi. =
1

bi

bi∑
j=1

mij (45)

The remaining mathematical arguments are the same as those for the complete table. In this scenario,
because we don’t observe all possible combinations of features i and j, we cannot find the linear
projection for the interaction of both features.

9.3 C. Implementation details of data synthesis

To quantitatively compare FLDA with alternative approaches, we synthesized data of four cell types,
each of which contained 25 cells. The four cell types were generated from a Cartesian product of two
features i and j, where i ∈ {0, 1} and j ∈ {0, 1}. Expressions of 10 genes were generated for each
cell. The expression value of the hth gene in the kth cell of the cell type ij, ghijk was defined as the
following:

g1ijk = i+ εijk (46)

g2ijk = j + εijk (47)

g3ijk = i ∧ j + εijk (48)

g4ijk = i ∨ j + εijk (49)

g5ijk = 2i+ εijk (50)

g6ijk = 2j + εijk (51)

g7ijk = 2i ∧ j + εijk (52)

g8ijk = 2i ∨ j + εijk (53)

g9ijk = εijk (54)

g10ijk = 2 + εijk (55)

where

i ∧ j =

{
1, if i = 1, j = 1

0, otherwise
(56)
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and

i ∨ j =

{
0, if i = 0, j = 0

1, otherwise
(57)

were interactions of the two features. Here εijk was driven by Gaussian noise, namely,

εijk ∼ N (0, σ2) (58)

We synthesized datasets of 5 different σ values (σ ∈ {0.2, 0.4, 0.6, 0.8, 1.0}). This was repeated 10
times and metrics for each σ value were calculated as the average across the 10 repeats.

9.4 D. Implementation details of the metrics used in the study

We measured the following metrics in our experiments:

9.4.1 Signal-to-Noise Ratio (SNR)

Because we care about the separation of cell types, we define the SNR metric as the ratio of the
variance between cell types over the variance of the noise, which is estimated from within-cluster
variance. For the entire embedding space, given q cell types, if the coordinate of each cell is indicated
by c, then we define the overall SNR metric as the following:

SNRoverall =
tr(Σqp=1np(c̄p. − c̄..)(c̄p. − c̄..)

T ))

tr(Σqp=1Σ
np

k=1(cpk − c̄p.)(cpk − c̄p.)T )
(59)

where c̄p. is the center of each cell type cluster, and c̄.. is the center of all data points.

Let c denote the embedded coordinate along a specific dimension. The SNR metric for that axis is
therefore:

SNR =
Σqp=1np(c̄p. − c̄..)2

Σqp=1Σ
np

k=1(cpk − c̄p.)2
(60)

9.4.2 Explained Variance (EV)

We want to know whether the variation of a specific dimension is strongly explained by that of a
specific feature. Therefore, we measure, for each axis, how much of the total explained variance is
explained by the variance of the feature i or j. Formally, given the embedded coordinate yijk, we
calculate the EV as the following:

EVi =

∑a
i=1

∑b
j=1 nij(ȳi.. − ȳ...)2∑a

i=1

∑b
j=1

∑nij

k=1(yijk − ȳ...)2
(61)

EVj =

∑a
i=1

∑b
j=1 nij(ȳ.j. − ȳ...)2∑a

i=1

∑b
j=1

∑nij

k=1(yijk − ȳ...)2
(62)

where ȳ is the average of yijk over the indices indicated by the dots.

9.4.3 Mutual Information (MI)

The MI between a discriminant axis u and a feature quantifies how much information of the feature
is obtained by observing data projected along that axis. It is calculated as the MI between data
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representations along the axis y = uTX and feature labels of the data f , where X is the original
gene expression matrix:

I(y,f) = H(y) +H(f)−H(y,f)

= −
∑
y∈Y

p(y) log2 p(y)−
∑
f∈F

p(f) log2 p(f)−
∑
y∈Y

∑
f∈F

p(y, f) log2 p(y, f) (63)

Here H indicates entropy. To calculate H(y) and H(y,f), we discretize y into 10 bins.

9.4.4 Modularity

Ridgeway and Mozer (2018) argued that in a modular representation, each axis should depend on at
most a single feature. Following the arguments in their paper, the modularity score is computed as
follows: we first calculate the MI between each feature and each axis (mif denotes the MI between
one axis i and one feature f ). If an axis is perfectly modular, it will have high mutual information for
only one feature and zeros for the others, we therefore compute a template tif as the following:

tif =

{
θi, if f = arg maxgmig

0, otherwise
(64)

where θi = maxgmig . We then calculate the deviation from the template as:

δi =

∑
f (mif − tif )2

θ2i (N − 1)
(65)

where N is the number of features. The modularity score for the axis i is 1− δi. The mean of 1− δi
over i is defined as the overall modularity score.

9.5 E. Implementation details of annotation perturbation

To evaluate the effect of mislabeling phenotypic levels, we made use of the dataset of T4/T5 neurons,
and generated three kinds of perturbation to the original labels:

First, we switched the phenotype labels of T4a neurons with one of the seven other types (T4b, T4c,
T4d, T5a, T5b, T5c, T5d). In this scenario, phenotype labels of two cell types were incorrect, but the
number of cell type clusters was the same. We had two levels of the dendritic phenotypes (T4/T5),
and four levels of the axonal phenotypes (a/b/c/d). Therefore we kept one dimension for the dendritic
feature, and three dimensions for the axonal feature.

Second, we merged the axonal phenotypic level a with another level (b/c/d), as an incorrect new level
(a+b/a+c/a+d). In this scenario, we had three axonal phenotypes, therefore we kept two dimensions
for the axonal feature.

Third, we randomly split each of the four axonal lamination labels (a/b/c/d) into two levels. For
instance, among neurons with the original axonal level a, some of them were labeled with a level
a1, and the others were labeled with a level a2. In this scenario, we had eight axonal phenotypes
(a1/a2/b1/b2/c1/c2/d1/d2), and we kept seven dimensions for the axonal feature.

We performed FLDA on the dataset of T4/T5 neurons but with these perturbed annotations. Metrics
from each of the perturbed annotations were measured and compared with those from the original
annotation.
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Zoran Popović, Lydia Potekhina, Ramkumar Rajanbabu, Shea Ransford, David Reid, Christine
Rimorin, Miranda Robertson, Kara Ronellenfitch, Augustin Ruiz, David Sandman, Kimberly
Smith, Josef Sulc, Susan M. Sunkin, Aaron Szafer, Michael Tieu, Amy Torkelson, Jessica
Trinh, Herman Tung, Wayne Wakeman, Katelyn Ward, Grace Williams, Zhi Zhou, Jonathan T.
Ting, Anton Arkhipov, Uygar Sümbül, Ed S. Lein, Christof Koch, Zizhen Yao, Bosiljka Tasic,
Jim Berg, Gabe J. Murphy, and Hongkui Zeng. Integrated Morphoelectric and Transcriptomic
Classification of Cortical GABAergic Cells. Cell, 183(4):935–953.e19, November 2020.

[32] B. Moghaddam and Ming-Hsuan Yang. Learning gender with support faces. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 24(5):707–711, May 2002.

[33] Zhifei Zhang, Yang Song, and Hairong Qi. Age Progression/Regression by Conditional Adver-
sarial Autoencoder. arXiv:1702.08423 [cs], March 2017. Comment: Accepted by The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR 2017).

[34] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation Learning: A Review and
New Perspectives. arXiv:1206.5538 [cs], June 2012.

[35] Durk P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised
Learning with Deep Generative Models. In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems
27, pages 3581–3589. Curran Associates, Inc., 2014.

[36] Tejas D Kulkarni, William F. Whitney, Pushmeet Kohli, and Josh Tenenbaum. Deep Convolu-
tional Inverse Graphics Network. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Processing Systems 28, pages 2539–2547.
Curran Associates, Inc., 2015.

[37] Theofanis Karaletsos, Serge Belongie, and Gunnar Rätsch. Bayesian representation learning
with oracle constraints. arXiv:1506.05011 [cs, stat], March 2016. Comment: 16 pages,
publishes in ICLR 16.

[38] G. E. Hinton and R. R. Salakhutdinov. Reducing the Dimensionality of Data with Neural
Networks. Science, 313(5786):504–507, July 2006.

[39] Fangxiang Feng, Xiaojie Wang, and Ruifan Li. Cross-modal Retrieval with Correspondence
Autoencoder. In Proceedings of the 22nd ACM International Conference on Multimedia,
MM ’14, pages 7–16, Orlando, Florida, USA, November 2014. Association for Computing
Machinery.

19



[40] Rohan Gala, Nathan Gouwens, Zizhen Yao, Agata Budzillo, Osnat Penn, Bosiljka Tasic, Gabe
Murphy, Hongkui Zeng, and Uygar Sümbül. A coupled autoencoder approach for multi-modal
analysis of cell types. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d\textquotesingle
Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems
32, pages 9267–9276. Curran Associates, Inc., 2019.

[41] Cathryn R. Cadwell, Athanasia Palasantza, Xiaolong Jiang, Philipp Berens, Qiaolin Deng, Mar-
lene Yilmaz, Jacob Reimer, Shan Shen, Matthias Bethge, Kimberley F. Tolias, Rickard Sandberg,
and Andreas S. Tolias. Electrophysiological, transcriptomic and morphologic profiling of single
neurons using Patch-seq. Nature Biotechnology, 34(2):199–203, February 2016.

[42] Carina Strell, Markus M. Hilscher, Navya Laxman, Jessica Svedlund, Chenglin Wu, Chika
Yokota, and Mats Nilsson. Placing RNA in context and space – methods for spatially resolved
transcriptomics. The FEBS Journal, 286(8):1468–1481, 2019.

10 Additional Information
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Figure 5: Representative plots (at σ = 0.6) of EV and MI metrics for FLDA and other models. (A,B)
EV (A) and MI (B) metrics of FLDA. FLDi and FLDj indicate the factorized linear discriminants
for features i and j. (C,D) EV (C) and MI (D) metrics of 2LDAs. LDi and LDj indicate the linear
discriminant components for features i and j. (E,F) EV (E) and MI (F) metrics of LDA. LD1 and
LD2 indicate the first two linear discriminant components. (G,H) EV (G) and MI (H) metrics of CCA.
CCA1 and CCA2 indicate the first two canonical correlation axes. (I,J) EV (I) and MI (J) metrics
of PCA. PC1 and PC2 indicate the first two principal components. EVi and EVj are the explained
variance of features i and j along an axis, and MIi and MIj indicate the mutual inform between an
axis and features i and j respectively. Values of EV and MI metrics are also indicated by the color
bars on the right side.
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Figure 6: Additional plots for FLDA on the dataset of T4/T5 neurons. (A, B) Projection of the
original gene expression data into the two-dimensional space made of the first and second (FLDij1 and
FLDij2) (A) or the second and third (FLDij2 and FLDij3) (B) discriminant axes for the component
that depends on the combination of both features i and j. Different cell types are indicated in different
colors as in (B).

A B

Figure 7: Additional plots for critical genes extracted from the sparse algorithm. (A) Weight vector of
the 20 genes selected for the interaction of both dendritic and axonal features (FLDij1 ). The weight
value is indicated in the color bar with color indicating direction (red: positive and green: negative)
and saturation indicating magnitude. (B) Expression patterns of the 20 genes from (A) in eight types
of T4/T5 neurons. Dot size indicates the percentage of cells in which the gene was expressed, and
color represents average scaled expression.
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Figure 8: Evaluation of the effect of incorrect phenotype annotation on the dataset of T4/T5 neurons.
(A,B) Normalized overall SNR metric (A) and overall modularity score (B) of FLDA after switching
labels of T4a type with another neuronal type. (C,D) Normalized overall SNR metric (C) and overall
modularity score (D) of FLDA after merging the axonal phenotypic level a with another phenotypic
level (b/c/d). (E,F) Normalized overall SNR metric (E) and overall modularity score (F) of FLDA
after splitting each axonal phenotypic level into two. Metrics under the original annotation are colored
in green, and the values are indicated by the dashed lines. Here the SNR values are normalized with
respect to that of the original annotation.
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