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DETECTING HUMANS UNDER OCCLUSION USING VARIATIONAL MEAN FIELD
METHOD

Duc Thanh Nguyen, Philip Ogunbona, and Wanqing Li

Advanced Multimedia Research Lab, ICT Research Institute
School of Computer Science and Software Engineering

University of Wollongong, Australia

ABSTRACT

This paper proposes a human detection method using varia-
tional mean field approximation for occlusion reasoning. In
the method, parts of human objects are detected individu-
ally using template matching. Initial detection hypotheses
with spatial layout information are represented in a graphi-
cal model and refined through a Bayesian estimation. In this
paper, mean field method is employed for such an estimation.
The proposed method was evaluated on the popular CAVIAR-
INRIA dataset. Experimental results show that the proposed
algorithm is able to detect humans in severe occlusion within
reasonable processing time.

Index Terms— Human detection, occlusion reasoning,
mean field method

1. INTRODUCTION

Human detection from still images and videos is a crucial
step in human motion analysis that is currently receiving
much attention in computer vision area. The challenges of
this task arise from many factors, including, the complex-
ity of the background, the variation of human appearance,
postures-viewpoints, and occlusion. In recent years, many
human detection algorithms employing different feature de-
scriptors have been developed. For example, robust features
have been proposed to encode human appearance. In [1],
simple curves and segments called ’edgelets’ were employed
to describe the body parts of human object. A well-known
feature, namely, histogram of oriented gradients (HOG) was
introduced in [2]. Recently, local binary patterns (LBP) were
employed to describe the human body [3].

To overcome the variation of human postures and view-
points, template matching is often used. Edge templates are
employed to represent shapes of various postures and view-
points of the full human body [4, 5] or body parts [6, 7]. An-
other approach is the use of the implicit shape model (ISM)
[8] to represent the spatial constraint between the body parts.

One of the most difficult challenges in human detection is
occlusion. A number of methods addressing occlusion prob-
lem have been proposed in the literature. In general, these

methods start with detecting the body parts and then infer
the occlusion using some reasoning algorithms. For example,
Zhao et al. [9] formulated the inference process as an opti-
misation problem and Markov chain Monte Carlo (MCMC)
was applied to find the optimal solution. Similar to [9], the
problem was formulated as an optimization task in [1, 6, 10],
but a greedy-based strategy was used in the solution. In [11],
a logic based reasoning framework was proposed for the oc-
clusion inference. The framework used a number of logical
rules based on the response of each individual part detector
and the geometric constraints between detected parts.

In this paper, we address the problem of detecting humans
under occlusion by adopting a template matching-based ap-
proach to provide an initial set of human candidates. We then
refine this set by formulating the problem as a Bayesian esti-
mation solved using the variational mean field method. The
remainder of this paper is organised as follows. Section 2
briefly presents a template matching-based human detection
method. The occlusion problem is formulated and a solution
is proposed in section 3. Experimental results are shown in
section 4. Section 5 concludes the paper and provides some
remarks.

2. HUMAN DETECTION USING SHAPE MATCHING

A well-known advantage of template matching approach is
that templates can be used to describe humans in various pos-
tures and viewpoints. In addition, part-based detection is ap-
propriate for detecting humans under occlusion since not all
body parts are fully visible in this situation. In this paper hu-
man detection is performed using part-based template match-
ing. Fig. 1 shows the part-based template model [7] used in
the paper with 5, 8, 6, and 6 templates representing the top
part, bottom, left, and right parts respectively (readers are
referred to [7] for more details in creating the part template
model). As can be seen in Fig. 1, the number of templates
matched is 5 + 8 + 6 + 6 = 25 (templates) to cover up to
5 × 8 × 6 × 6 = 1440 postures. Compared with the full
body detection approach, this provides an advantage since the
matching is performed on a small set of templates to cover a

2011 18th IEEE International Conference on Image Processing

978-1-4577-1303-3/11/$26.00 ©2011 IEEE 2049



(a) Full body structure

(b) Part templates

Fig. 1. Part template model used in this paper [7].

variety of human postures.
Given a part template model as presented in Fig. 1, each

part i ∈ {top, bottom, left, right} can be represented by a
set of part templates Si. The detection algorithm is performed
by scanning an input image with a detection window W at
various scales and positions. A hypothesis about the presence
of human can be generated by verifying the matching score
C(W ) with a threshold θ as,

C(W ) =

∑
i vi[1−D(p∗i ,Wi)]∑

i vi
< θ (1)

where i ∈ {top, bottom, left, right}, vi ∈ {0, 1} indicating
the presence/absence of part i, and D(p∗i ,Wi) ∈ [0, 1] is the
spatial-orientation Chamfer distance [5] between the image
region Wi of the window W corresponding to part i and its
best matching template p∗i computed as,

p∗i = argmin
p∈Si

D(p,Wi) (2)

In (1), vi can be determined as,

vi =

{
1, if occ(i) < δ

0, otherwise

where occ(i) indicates the ratio of the area of part i occluded
by other detection hypotheses and δ represents the degree of
occlusion accepted by the method.

Essentially, C(W ) is the average of the partial matching
scores of parts appearing on the detection window W . Now,
in the first stage of detection, we do not know which parts
are occluded. Therefore, we assume that all parts are fully
observable. This can be done by setting the threshold θ to an
appropriate value so that true detections are not missed and
an initial set of human candidates may contain many false
alarms. However, this set is then refined using the occlusion
reasoning method presented in the next section.

Fig. 2. Left: initial detection hypotheses, Right: the graphical
model in which ellipses represent local groups.

3. OCCLUSION SOLVING USING MEAN FIELD

Given an input image I and an initial set of hypotheses about
the presence of humans, H = {h1, h2, ..., hN} with corre-
sponding image observation data O = {o1, o2, ..., oN} de-
tected by part-based template matching method presented in
section 2. Consider each hypothesis hi and its image ob-
servation oi as a hidden and observed node of a graph G.
hi, i ∈ {1, ..., N} are binary random variables which take val-
ues in {0, 1} to indicate false positive and true positive respec-
tively. If hi is occluded by hj , there is an edge from hj to hi.
We assume that if hi is occluded by hj then foot position of
hj must be higher than that of hi. This assumption is reason-
able for most surveillance systems where the images/videos
are captured by a camera looking down to the ground plane.
Fig. 2 shows an example of the graphical model G. As can
be seen, G can be considered as a Bayesian network in which
hi are state variables. The initial set of hypotheses H may
contain false alarms which have been generated without con-
sidering occlusion reasoning. Refining this set corresponds to
making inference on appropriate values of hypotheses hi in
estimating the marginal probability of the observed data:

logP (O) = log
∑
H

P (O|H)P (H) (3)

where P (H) is the prior and P (O|H) is the likelihood to ob-
tain the observed data O given hypotheses H .

Since each hi takes a binary value, a brute force estima-
tion of (3) would require O(2N ) operations. Therefore, in-
stead of directly estimating P (O) using (3), we approximate
it by finding a variational distribution Q which is also an ap-
proximate of the posterior P (H|O). As presented in [12],
this task can be transformed into an optimisation problem and
solved using variational mean field method. In particular, an
objective function is defined as,

J(Q) = logP (O)−KL(Q(H)||P (H|O)) (4)

where KL is the Kullback-Leibler divergence of two distri-
butions which is computed as,

KL(Q(H)||P (H|O)) =
∑
H

Q(H) log
Q(H)

P (H|O)
(5)
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Substituting (5) into (4), J(Q) can be rewritten as,

J(Q) = logP (O)−
∑
H

Q(H) log
Q(H)P (O)

P (H,O)

= −
∑
H

Q(H) log
Q(H)

P (H,O)

= −
∑
H

Q(H) logQ(H) +
∑
H

Q(H) logP (H,O)

= H(Q) + EQ{logP (H,O)} (6)

where H(Q) is the entropy of the variational distribution Q,
and EQ{·} represents the expectation with regard to Q.

Since the KL-divergence is nonnegative, maximising the
lower bound J(Q) with regard to Q will give us an approx-
imate J(Q∗) of logP (O) and Q∗ of the posterior P (H|O).
In addition, approximation of logP (O) relates to finding an
appropriate variational distribution Q(H). In this paper, the
simplest selection of variational distributions which assumes
that all hidden variables are independent of each other is
adopted. In particular, we assume,

Q(H) =

N∏
i=1

Qi(hi) (7)

Thus, the entropyH(Q) can be rewritten as,

H(Q) =

N∑
i=1

H(Qi) (8)

whereH(Qi) is the entropy of the variational component Qi.
Since Q(H) is fully factorised, J(Q) can be optimised

with regard to each individual component Qi at a time. Thus,
J(Q) can be estimated by updating the i-th component while
other components remain unchanged, i.e.,

J(Q) = const. +H(Qi) +
∑
hi

Qi(hi)EQ{logP (H,O)|hi}

(9)

where EQ{·|hi} is the conditional expectation with respect to
the variational distribution Q given hi.

As presented in [12], maximising J(Q) can be obtained
by computing Gibbs distributions of Qi(hi):

Qi(hi)←
1

Zi
eEQ{logP (H,O)|hi} (10)

where Zi is the normalisation factor computed as,

Zi =
∑
hi

eEQ{logP (H,O)|hi} (11)

Update equations (10) and (11) will be invoked iteratively
to increase the objective function J(Q). It can be seen that

Fig. 3. PR Curves of the proposed method and Lin’s method
[6] on the OneStopMoveEnter1cor sequence.

the update of EQ{·|hi} depends only on hi and hypotheses
occluded by hi. Thus, EQ{·|hi} can be factorised over local
groups C(hi) = {(hi, oi, hj , oj)} where hj is occluded by hi
(see Fig. 2 for an example of local groups). In particular, the
update can be performed as,

EQ{logP (H,O)|hi} ←
∑

c∈C(hi)

∑
hj∈{0,1}

Qj(hj) logψ(c)

(12)

where ψ(c) is the potential function of the local group c and
can be computed conventionally as in a Bayesian network:

ψ(c) ≡ P (hi, oi, hj , oj) = P (oi|hi)P (hj |hi)P (oj |hj)P (hi)
(13)

where we define P (oi|hi) = C(oi) (since hi is assumed to
represent a human) computed using (1). In addition, we set
P (hi) and P (hj |hi) to positive constants α and β respec-
tively. If hi does not occlude any other hypotheses, ψ(c)
will be simplified to P (oi|hi). Finally, if Qi(hi = 1) ≥
Qi(hi = 0), hi is set to 1, i.e. true detection, and P (oj |hi) is
re-evaluated using (1) accordingly with current setting of hi.
When the optimal Q∗ is found, the corresponding subset of
hypotheses hi = 1 will be determined. This subset provides
the final detection results.

4. EXPERIMENTAL RESULTS

There are a number of parameters used in this paper including
the rejection threshold θ in (1), occlusion degree δ, and two
constants α and β assigned to P (hi) and P (hj |hi). In our
implementation, without any knowledge about the occlusion
cases, we set δ to 0.65. We also assume that hi is distributed
uniformly, i.e. P (hi = 0) = P (hi = 1) = α = 0.5 and
P (hj |hi) = β = 0.5 for all hi, hj ∈ {0, 1}. In addition, θ is
varied to represent the trade-off between true detections and
false alarms.
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The proposed method was evaluated on the OneStop-
MoveEnter1cor sequence of the CAVIAR-INRIA dataset1.
This sequence consists of 1590 images of 384 × 288 pixels.
A subset of 200 images (800th-1000th frame) with 1614 an-
notated humans was created for testing the method. We used
the PR (Precision-Recall) measure to evaluate the detection
performance. Fig. 3 shows the PR curve of the proposed
method. Some detection results are shown in Fig. 4. As
can be seen from Fig. 4, occlusion reasoning could reduce
false alarms while retaining correct detections. However,
false detections are still present in the image. This is due to
the weakness of the template matching-based detector. Em-
ploying more sophisticated detectors, e.g. HOG detector [2],
might improve the detection performance. However, devel-
opment of robust human detectors is not the main focus of
this paper.

As presented in section 3, the occlusion inference is per-
formed iteratively to maximise the objective function J(Q)
defined in (4); at each iteration all hypotheses are verified and
corresponding update equations are invoked. Therefore, to
evaluate the efficiency of the proposed method, we count the
total number of iterations performed to maximise J(Q) as
well as the real processing time required per frame. Through
experiments, we have found that the average loop time on
over 200 images of the OneStopMoveEnter1cor sequence is
about 2.1 and each frame can be processed in 1.25 second.

In addition to evaluation, we compared our method with
other algorithms. In particular, the heuristic method proposed
by Lin et al. [6] was selected for this purpose. To obtain a
fair comparison, we used the same template matching-based
human detector with the same template model and then re-
implemented the heuristic-based occlusion reasoning in the
work of Lin et al. [6]. Experimental results have shown that
our method provides an improved performance. In particular,
the improvement can be seen clearly at high recalls≥ 0.5. For
example, at a recall of ≈ 0.57, compared with Lin’s method,
we could increase the precision by ≈ 20%. The PR curves of
both methods are presented in Fig. 3.

5. CONCLUSIONS

This paper proposes a human detection method under occlu-
sion using the variational mean field. The prosed method is
performed in a two-stage framework. Body parts are first de-
tected using template matching to form an initial set of human
candidates. This set is then refined using occlusion reasoning
formulated as a Bayesian estimation. In this paper, we pro-
pose the use of variational mean field method to approximate
such estimation. The proposed method was evaluated on the
CAVIAR-INRIA dataset. The results indicate the robustness
and efficiency of the proposed method in detecting humans
under occlusion.

1http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/

Fig. 4. Illustration of occlusion reasoning. Left: initial detec-
tion results. Right: final results obtained using reasoning.
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