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Generalised diffusive delay logistic equations: Semi-analytical solutions

Abstract

This paper considers semi-analytical solutions for a class of generalised logis- tic partial dierential
equations with both point and distributed delays. Both one and two-dimensional geometries are
considered. The Galerkin method is used to approximate the governing equations by a system of ordinary
dierential delay equations. This method involves assuming a spatial structure for the solution and
averaging to obtain the ordinary dierential delay equation models. Semi-analytical results for the stability
of the system are derived with the critical parameter value, at which a Hopf bifurcation occurs, found. The
results show that diusion acts to stabilise the system, compared to equivalent non- diusive systems and
that large delays, which represent feedback from the distant past, act to destabilize the system.
Comparisons between semi-analytical and numerical solutions show excellent agreement for steady
state and transient solutions, and for the parameter values at which the Hopf bifurcations occur.
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Abstract. This paper considers semi-analytical solutions for a class of generalised logis-
tic partial differential equations with both point and distributed delays. Both one and
two-dimensional geometries are considered, The Galerkin method is used to approximate
the governing equations by a system of ordinary differential delay equations. This method
involves assuming a spatial structure for the solution and averaging to obtain the ordinary
differential delay equation models. Semi-analytical results for the stability of the system
are derived with the critical parameter value, at which a Hopf bifurcation occurs, found.
The results show that diffusion acts to stabilise the system, compared to equivalent non-
diffusive systems and that large delays, which represent feedback from the distant past, act
to destabilize the system. Comparisons between semi-analytical and numerical solutions
show excellent agreement for steady state and transient solutions, and for the parameter
values at which the Hopf bifurcations occur.

Keywords. semi-analytical solutions; reaction-diffusion-delay equations; logistic equa-
tion; Hopf bifurcations; distributed delay.

AMS (MOS) subject classification: 35,37,41.

1 Introduction

Differential delay equations have been studied extensively and arise in a va-
riety of biological, chemical and physical applications. The introduction of a
delay into the governing equation can introduce instability, via a Hopf bifur-
cation, with the subsequent development of limit cycles (periodic solutions).
[12] reviewed delay equations for a range of engineering applications, includ-
ing feedback systems involving sensors or actuators, neural networks in the
brain, high speed milling, laser dynamics, and traffic dynamics. Many popu-
lation, biological and chemical applications, modeled by delay equations, are
described in [4]. Applications described include Nicholson’s blowfly model,
autoimmune discases, genetic oscillations and thermochemical reactions.
The logistic equation describes a simple population growth model which,
due to limited resources or competition, reaches a stable steady-state popu-
lation. [10] introduced a delay into the competition term and obtained the
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delay logistic equation

P = Mu(t)(1 — u(e - 1), @
dt

which has a steady-state solution for 0 < A < Z and periodic solutions for A >
%, see [4]. Equation (1) has been considered by many authors,[1, 2, 3, 6, 19].

[6] found an asymptotic solution to the delay logistic equation, for the
case when the delay is large. He derived explicit expressions describing the
periodic solution, including the period and the maximum and minimum am-
plitudes. A good comparison was found between the analytical and numerical
solutions, for large A. [7] extended the asymptotic techniques to other delay
equations, including the delayed recruitment equation, a model of stem-cell
renewal and density wave oscillations in boilers.

[15] considered a generalised logistic equation with distributed delay. The
form of distributed delay considered allowed the generalised delay equation to
be written as a set of two coupled point delay equations. Explicit expressions
were obtained for the occurrence of Hopf bifurcations. [18] considered the
generalised logistic equation, with the delays weighted by an exponential
function. Again the equation was written as a set of coupled point delay
equations, for which the stability is determined using standard techniques.

There are many applications where the effects of diffusion are also impor-
tant and a reaction-diffusion-delay equation is the appropriate model. Some
applications from population ecology include [5, 8, 11, 17]. [20] considered a
coupled set of reaction-diffusion-delay equations which model cellular neural
networks. They proved results relating to existence and uniqueness of the
steady-state solution and the existence of periodic solutions. For reaction-
diffusion equations the standard techniques of combustion theory cannot be
applied. In [13] a semi-analytical method was used to examine the Gray
Scott cubic autocatalytic scheme in a reaction-diffusion cell. This involved
approximating the governing partial differential equations (pdes) by ordinary
differential equations (odes). The semi-analytical model was then analysed
by combining a local stability analysis and singularity theory to determine
the regions of parameter space in which the various bifurcation patterns and
Hopf bifurcations occurred. An excellent comparison was obtained between
the semi-analytical results and numerical solutions of the governing pdes.

In [14] semi-analytical solutions for one- and two-dimensional porous cat-
alytic pellets were developed. As the Arrhenius reaction term cannot be in-
tegrated explicitly, the semi-analytical model consisted of integro-differential
equations. Both the static and dynamic stability of the pellets were inves-
tigated and highly accurate solutions were obtained. The semi-analytical
model was then analysed using a stability analysis and singularity theory to
determine the regions in which Hopf bifurcations occurred. An excellent com-
parison was achieved between the numerical and semi-analytical solutions.

In this paper a generalised diffusive delay logistic equation, is considered.
The governing pde is approximated by an ode model, using the Galerkin
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technique considered by [13, 14]. This allows approximate bifurcation dia-
grams be found while a stability analysis of the delay ode model then allows
approximations, for the parameter range for which Hopf bifurcations occur,
to be obtained.

In Section 2 we formulate both point delay and distributed delay prob-
lems. For the distributed delay both uniformly weighted and exponentially
weighted delays are considered. In Section 3 the semi-analytical ode model is
derived and in Section 4 steady-state solutions are found. Section 5 presents
a stability analysis to determine the Hopf bifurcation points. In Section 6
comparisons are made between semi-analytical and numerical solutions, of
bifurcation diagrams and transient solutions.

2 Problem formulation

The diffusive delay logistic pde, for a two-dimensional geometry, is written
as

- %72 —_ 1_ ’ o
uy = Vu+ Au (1 7o) dp_/; f(p)u(t —p) dp), @)

u=0, at z==1, y==%1, u=u,;, ~7<t<0

We term the variable u as the population density even through (2) has appli-
cations besides population modeling and explicitly write the time dependence
of u only when a delay is present in that term. The boundary conditions in
(2) are fixed hence, it is an open system. The generalised delay term is dis-
tributed over a time interval of length 7 and weighted by f. A is the growth or
proliferation rate and the initial condition represents a constant population
u, for t € (—7,0). We let

1 ]’ % :
v=—me——r [ f(p)u(t-p)dp, v=1u, at t=0, 3)
f(] f(p) dp 0
We consider three examples in detail. A point delay system, a uniformly
weighted delay and an exponentially weighted delay. For the point delay
system we let the weighting function f(p) = §(p — 7), which implies v(t) =
u(t — 7), and the point delay pde

u, = Vu+ u(l —u(t — 7)), (4)

is obtained. We also consider an exponential weighting function, f(p) = e~ 7.
This gives
1

V= —=F

T [ we=n e an )
0

Using the linear chain trick (see [18]) on (5), the governing equations can be

written as a coupled pde-ode system involving only point delays,
u—u(t—7)e"7")

y(u—ult—r7) . (6)

1-e-)

Uy = Vzu +)\‘u(l - U)} v =
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We study two examples in detail, v+ = 0, which represents a uniformly
weighted delay, and a special case of exponentially weighted delay, v = 1.
Note, to obtain the ode for v in the v = 0 case, (6) must be expanded in a
Taylor series, for small . A Crank-Nicholson finite-difference scheme is used
to find the numerical solutions of the governing pdes, for the different delay
cases, while the ode is solved using a fourth-order Runge-Kutta method.

3 The Galerkin method

Equation (2) is solved using a Galerkin method, which assumes a spatial
structure for the population density profile [14]. The Galerkin method al-
lows the governing pdes to be approximated by odes. Besides the examples
considered in this paper we note that the Galekin method is suitable for gen-
eral weighing functions f, for which an explicit point delay form, such as (4)
and (6), is not available.

The one-dimensional models use the expansion

u(zx,t) = up(t) cos (%x) + u; (t) cos (%ﬁm) ; (7)

Equation (7) satisfies the boundary conditions described in (2), but not the
governing pdes. The coefficients in (7) are obtained by evaluating averaged
versions of governing equations, weighted by the basis functions cos ( %ﬂx)
and cos (%mr) . The ode system is

(_i_l._lﬂ—_ﬁu +A( —iuv-—i —_8_ L )
FTERL Up — g Uolo = T it — T U1tio — =—Uith),

duy  9n? 8 72 72 8

— = Aur — T 10V0 = e thi¥o = e UgYy + —;“lvl)a (8)

ui(t) = [ f(p)us(t — p)dp, i=0,1.

1
fo f(p) dp Jo

The series in (8) has been truncated after two terms. This is due to the
fact that the number of terms that are required to be included in the trun-
cated series represents a trade-off between the accuracy and complexity of
the semi-analytical solution. It will be seen later that a two-term method
gives enough accuracy without extreme expression swell. Furthermore the
one term solution can be calculated when u; = 0.

For the two-dimensional models, the expansion

u(z,y,t) = ug(t) cos (g-:r) cos (gy) + u;(t) cos (%z) cos (-gy)

3
+u;(t) cos (gﬂ?) cos (—;y) + u5(t) cos (%Ex) cos (%W-y) ;

(9)
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is used, which satisfies the boundary conditions in (2). The expansions in (9)
have four terms, but symmetry implies that two of the terms have the same
coefficient. The equation in (9) is weighted by the basis functions cos(37z)
cos (3my), cos (1mz) cos (3ny), cos (37z)cos (2ny) in turn, to obtain the
ode system,

dug 72 64 128 128

—(F = —-Eug - /\(‘UQ -_— E-—Q'U{)Ug — 4571_2“11-’0 - 457(2“0”‘)
“A(_§4_uv+__64_uv+._5ﬁ.uv 384uv)
25512 0 2 ' 25542 20T 10952 22 J7gg2 201
18176 384
~ M g7mpz vt + Trgzthva)s
29—1—-5—”2-11 + AMuy — 64uv-————lg2u - Up2)
a2 " 1= Joqz o0~ Tsp W2 T g5 g tiate
Y 192 : 124288 N 124288 . 9088 ur0)
17572 20 " 3307572 ' 27 33075m2 2 ' 1575x2 © ° 3
VAT B (10)
15752 O T Zros g tivh
dus o2 64 128 64
@ = g e T A2 - gprmete + g v — grguava)
+A(128uv—5184uv——il—8iuv—-384uv)
3572 12 1225m2 02 1225q2 ° 0 175m2 10
Y 384 & 248576uv)
17572 > 1 7 3307572 1 )

1 T -
vi(t) = m_/; f(p)ui(t — p)dp, i=0,1,2.

4 Steady-state solutions

In this section we consider the steady-state solutions of the delay differential
model for the one and two dimensional geometries. We let u;(t) = u;(t—7) =
v;(t) = u; and the ode model reduces to sets of transcendental equations. For
the one dimensional case the steady-state solution is given by

? 8 2 T2 , 16
fi= —-‘ﬁ-uo-f-ug—guo— ﬁ‘;ul o~ muoul =0, (1)
w2 8 2, 8 o

f2 = —ﬁ‘ul + uy — muo + 6;111 R ugu; = 0.
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while in the two dimensional case, we obtain

P _ o 64 ., 18176 , 5184 ,
I =7 53U T U= g2% " T575,2 %1 T 122572 2
2 12 8
= = Upuy — > UglUg — L Uiz = 0,
4572 22572 17572
p __snt B4, 432, 64,
2 = o 17 457270 479502 1 T 3542 2 (12)
18176 384 248576
T 15Tz 0¥ T Trgaz U2 T gagrea itz =0,
92 64 , 248576 , 64 ,
foo ==yt = gt~ pre st T gra
768 10368 956
T I75R2 Y0UL T Jogg gz otz + 3o gtz = 0.

The steady-state solutions for the one and two-dimensional models are given
by the solution to the equations f; = 0. These are found numerically, using
a root-finding routine in the MAPLE package. Note that the steady-state
solutions of (2) are the same for all choices of delay weighting function, f.

] 1

0.8}

0.6}

0.4}

0.2}
0 510 15 20 25 30

A

Figure 1: The steady-state population density u, at £ = 0, for the one-
dimensional model. Shown is the one-term (solid line) and two-term (long
dashes) semi analytical solutions of (2) and numerical (small dashes) solutions
of (13).

Figure 1 shows the steady-state population density u at z = 0, for the one-
dimensional model. Shown are the one and two-term semi-analytical solu-
tions of (2) and numerical solutions of (13) at the centre of the domain,
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z = 0. The non-uniform steady-state solution bifurcates from the uniform
u = 0 solution at A = ";—2 and increases exponentially, as A increases, be-
fore approaching a maximum population density of u =~ 1. Note that the
presented numerical solutions are of the Fisher equation,

uy = Vu + Au(l — u), (13)

which has the same steady-state solutions as (2) but different stability prop-
erties. As no delay terms occur in (13) its steady-state solutions are stable for
all parameter values. Hence it is an appropriate model to generate steady-
state solutions of (2), for all values of A and all choices of f. There is an
excellent comparison between the two-term semi-analytical and numerical
solutions, with only a 2.7% error at A = 30.

1.2

0.8¢

3 0.6

0.4

0.2

10 20 30
A

Figure 2: The steady-state population density u, at z = y = 0, for the two-
dimensional model. Shown is the one-term (solid line) and two-term (long
dashes) semi-analytical solutions of (2) and numerical (small dashes) solution
of (13).

Figure 2 shows the steady-state population density u at the centre of the
domain, x = y = 0, for the two-dimensional model. As in one-dimensional
case, the one and two-term semi analytical solutions of (2) and numerical
solutions are shown. The curves are qualitatively similar to figure 1 but
the difference between the semi-analytical and numerical solutions is slightly
larger, for large A. The difference between the numerical and two-term semi-
analytical solutions is 15% at A = 30. Two-dimensional problems generally
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are a more severe test of the semi-analytical method, producing slightly larger
errors, see [14].

5 Stability analysis and Hopf bifurcations

In this section we consider the stability of the non-uniform steady-state solu-
tions and determine the Hopf bifurcation points. A Hopf bifurcation denotes
the appearance of periodic solutions in the neighborhood of a steady state
whose stability changes, due to the crossing of a conjugate pair of eigenval-
ues over the imaginary axis, see [16]. The theory of Hopf bifurcations for
delay systems is described in texts on bifurcation theory and dynamical sys-
tems, for further details see [4, 9]. The delay ode models are used to find
a semi-analytical approximation for the parameter region, in which periodic
solutions occur.

5.1 Hopf bifurcation for the delay ode models

Hopf bifurcation points are obtained, for the one and two-dimensional ge-
ometries, for the three different delay models. The one-dimensional geometry
models consists of two odes, for ug and wu;. These are expanded in a Taylor
series about the steady-state solution. We let

ug = Ugs + €fe P, vy = ugy + efe"PleHT
1] s f Os f 3 (14)

—ut —pt
Uy = Uy + €ge ﬂ: U] = Uy + €g€ ¢ eﬂT,

and substitute this into the odes of system (8), and linearize around the
steady state. The eigenvalues of the Jacobian matrix describes the growth
of a small perturbation in the system. For instance, the determinant of the
Jacobian matrix, in the point delay case, is ¢ = |F1G2 — F,G,| where,

72 8 8 8 8
Fy = e sl-‘-r___ g — — — BT -
1= A 7 3‘”4\&0 e 3Tr/\110 15”AU13 15#Au1,e + u
2 70 70 I 2
Gy = é - QL — —Aug el — —Auy, + —6-2-}\'110_, -+ -li-,\u()se”r + U,
T 4 4 T T 157 (15)
162 8 162
Fo = —t—s-,\ulse’” — — Augse”” — —8—).1:0, + — A\uyg,
T 157 157 T
8 72 72 8
Gi=—— HT — — BT — ——Auy — — Aug,.
1= T g Mos€"T — gem e — g duyy — 7o Ao,

Now g = 0 represents a characteristic equation for p, the growth rate. We let
# = 1w in this characteristic equation and separate the real and imaginary
parts, termed g; and g, respectively, of the characteristic equation ¢ = 0. A
Hopf bifurcation is born at points where p is purely imaginary. Hence, we
look for real solutions to the system of equations

n=q¢=fH=fr=0 (16)
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Figure 3: Critical values of A, at which Hopf bifurcations occur in the one-
dimensional geometry. Shown are the point delay (solid line), uniformly
weighted delay (long dashes) and exponentially weighted delay (small dashes)
cases.

The characteristic equations for the uniformly weighted and exponentially
weighted cases are not shown but are qualitatively similar to (15).

Figure 3 shows the Hopf bifurcation points, A; versus 7, for the one-
dimensional geometry, for the three delay models considered. Shown are the
point delay case and uniformly and exponential weighted delays. The time
interval over which feedback occurs is [t,¢ — 7], hence increasing the delay
parameter 7 increases the size of the feedback window and the contributions
from the more distant past. The figure shows that as the delay parameter
increases, that the critical value of A, at which Hopf bifurcations first occur,
decreases. This implies that increasing the feedback from the more distant
past destabilizes the system, hence reducing the parameter region in which
stable solutions occur. The figure also shows that, for fixed 7, the exponen-
tial weighted delay case has the largest region of stability, followed by the
uniformly weighted case, with the point delay case having the smallest region
of stability. The relative stabilities of the three delay examples considered
here can be understood by considering the relative contribution of the outer
edge of the feedback interval, at time ¢ — 7. In the point delay case all the
feedback is from this outer edge, at time £ — 7. In the uniformly distributed
delay case it plays a lesser role, while it plays almost no role in the exponeén-
tially distributed case. This again implies that increased feedback, from the
more distant past, destabilizes the system.

We now consider some comparisons for the special case when the delay
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parameter 7 = 1. The numerically obtained Hopf bifurcation points are
Ae = 4.04, 7.48 and 11.3 for the point delay, uniformly distributed delay and
exponentially distributed delay cases, respectively. The predictions of the
two-term semi-analytical theory are the same as the numerical predictions,
to three significant figures, hence the semi-analytical theory is an excellent
predictor of the occurrence of Hopf bifurcations.

The technique for finding Hopf bifurcation points in the two-dimensional
geometry is similar to the one-dimensional case. We solve the system of
equations

Q=@=H=f=f3=0 (17)

where q; and g5 are again the real part and imaginary parts of the appropriate
characteristic equation. The numerically obtained Hopf bifurcation points for
7 =1 are A\, = 6.50, 9.84 and 13.6 for the point delay, uniformly distributed
delay and exponentially distributed delay cases, respectively. The two-term
semi-analytical predictions, for the occurrence of Hopf bifurcation points, are
6.52, 9.97 and 13.8. Hence the semi-analytical predictions are excellent for
the two-dimensional geometry, with a maximum error of 1.5%.

For the simple one-term semi-analytical theory A. increases by 1} as
the dimension of the geometry is increased, from zero (the case of no dif-
fusion), to one and two-dimensions, in turn. The more accurate two-term
semi-analytical solutions, and the numerical solutions, presented here, also
obey this rule, in an approximate sense. The results presented here, show
that A; increases by approximately 1:- ~ 2.5, as the geometry (and the dif-
fusive effects) change from one to two-dimensions.

6 Bifurcation diagrams and transient
solutions

Bifurcation diagrams and transient solutions are now considered, for various
parameter choices, with comparisons made between semi-analytical and nu-
merical solutions. The fourth-order Runge Kutta method is used to find the
solutions of the semi-analytical ode models. All the examples in this section
use the parameters 7 = 1 and u, = 0.5. Note that the bifurcation diagrams
display long time solutions, of the steady-state amplitude and the maximum
and minimum amplitudes of the periodic oscillations, so are not functions
of the initial population u,. Also the bifurcation diagrams show the popu-
lations at the centre of the one and two-dimensional geometries; the same
bifurcation diagram (with an amplitude scaling) occurs at different locations
within the solution domain.
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Figure 4: Bifurcation diagram for the point delay case in the one-dimensional
geometry, with 7 = 1. The two-term semi-analytical solutions (solid line) and
numerical solution (dashed line) are shown. A supercritical Hopf bifurcation
appears at A. ~ 4.04. After the Hopf point, the maximum and minimum
amplitudes of the periodic solution are shown.

6.1 One-dimensional geometry

Figures 4, 5 and 6 are the bifurcation diagrams for the one-dimensional ge-
ometry, with 7 = 1, for the point, uniformly distributed and exponentially
distributed delays, respectively. The two-term semi-analytical and numerical
solutions are shown. The solutions are stable for ’;—2 < A < A.. A supereriti-
cal Hopf bifurcation occurs at A, and periodic solutions occur for parameter
values larger than this. In the region where periodic solutions occur the
maximum and minimum amplitudes of the oscillations are shown. The su-
percritical Hopf bifurcation occurs at A, = 4.04, 7.47 and 11.4, for the point,
uniformly distributed and exponentially distributed delays, respectively. The
discussion for figure 3 explains the reasons why A, is smallest for the point
delay case and largest for the exponentially distributed delay case. It can be
seen that in all three cases that the two-term semi-analytical solutions are
extremely accurate in both the stable and oscillatory regimes of the bifurca-
tion diagram, with the curves nearly the same, to graphical accuracy. The
maximum difference between the solutions increases slowly as A increases,
but is no greater than 2%, for the parameter ranges shown in the figures.
A feature of the periodic solution for the delay logistic equation (1) is that
the minimum amplitude is doubly exponentially small, see [6]. The same
qualitative feature is evident here, for the minima of the oscillations.



590 H.Y. Alfifi, T.R. Marchant and M.I. Nelson

¢ 3 3 9 12

A
Figure 5: Bifurcation diagram for the uniformly distributed delay in the one-
dimensional geometry, with 7 = 1. The two-term (solid line), semi-analytical
solutions and numerical solution (dashed line) are shown. A supercritical
Hopf bifurcation appears at A, ~ 7.47.

0 5 10 15 20

A

Figure 6: Bifurcation diagram for the exponential distributed delay in the
one-dimensional geometry, with 7 = 1. The two-term (solid line), semi-
analytical solutions and numerical solution (dashed line) are shown. A su-
percritical Hopf bifurcation appears at A\, ~ 11.4.
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Figure 7: The population density u at £ = 0 versus ¢ for the exponen-
tial distributed delay in the one dimensional geometry. The one-term (solid
line), two-term (long dashes) semi-analytical solutions and numerical solu-
tion (small dashes) are shown. The parameters are A = 9, u, = 0.5 and
T=1

Figures 7 and 8 show the population density u at z = 0 versus ¢ for
the exponentially distributed delay, in the one-dimensional geometry. The
parameters are u, = 0.5 and 7 = 1, with A = 9 for figure 7 and A = 13
for figure 8. The one and two-term semi-analytical and numerical solutions
are shown. For figure 7 A = 9 < A, ~ 11.4 and the solution evolves to a
steady-state, with u(0,%) =~ 0.79 as the time becomes large, after some initial
relaxation oscillations. The comparison between the two-term semi analytical
and numerical solutions is excellent with only a 0.6% error at A = 30. The
difference between the numerical solution and the one-term semi-analytical
solution is slightly higher, being 4.33% at A = 30. For figure 8 A =13 > A,
and periodic solutions occur. The numerical period and amplitude of the
limit cycle are 1.51 and 2.42, respectively. These values are very close to the
two-term semi-analytical period and amplitude, 1.51 and 2.44, respectively.
The errors in the two-term semi-analytical values are less than 1%.

6.2 Two-dimensional geometry

Figures 9, 10 and 11 are the bifurcation diagrams for the two-dimensional
geometry, with 7 = 1 for the point, uniformly distributed and exponentially
distributed delays, respectively. The two-term semi-analytical and numer-

ical solutions are shown. The solutions are stable for 3’,; <A< A A
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Figure 8: The population density u at £ = 0 versus { for the exponen-
tial distributed delay in the one-dimensional geometry. The one-term (solid
line), two-term (long dashes) semi-analytical solutions and numerical solu-
tion{small dashes) are shown. The parameters are A = 13, u, = 0.5 and
7=1

supercritical Hopf bifurcation occurs at A. and periodic solutions occur for
parameter values larger than this. The supercritical Hopf bifurcation occurs
at A; = 6.52, 9.97 and 13.8, for the point, uniformly distributed and expo-
nentially distributed delays, respectively. The bifurcation diagrams for the
two-dimensional geometry are qualitatively similar to their one-dimensional
counterparts. The comparison between the two-term semi-analytical and nu-
merical solutions is very good, but some differences occur for large A. This
reflects the fact, mentioned earlier, that two-dimensional geometries are a
more significant test of the semi-analytical method, than one-dimensional
geometries. The difference between the maximum amplitude of the peri-
odic solution, as predicted by the two-term semi analytical and numerical
solutions, is up to 15%, for the range of X shown in the figures.

Figures 12 and 13 show the population density u at £ = y = 0 versus ¢ for
the point delay case, in the two-dimensional geometry. The parameters are
g = 0.5 and 7 = 1 with A = 6 for figure 12 and A = 7 for figure 13. The one-
term, two-term semi-analytical solutions and numerical solutions are shown.
For figure 12 A = 6 < A, =~ 6.52 and the solution evolves to a steady-state,
with u(0,0,t) =~ 0.25 as the time becomes large. The comparison between
the numerical and the two-term semi-analytical solutions is very good with
a 12% difference at the steady-state. For figure 13 A = 7 > ). so periodic
solutions occur. The numerically obtained period and amplitude are 4.53
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0

Figure 9: Bifurcation diagram for the point delay case in the two-dimensional
geometry, with 7 = 1. The two-term semi-analytical solutions (solid line) and
numerical solution (dashed line) are shown. A supercritical Hopf bifurcation
appears at A ~ 6.52.
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Figure 10: Bifurcation diagram for the uniformly weighted delay in the two-
dimensional geometry, with 7 = 1. The two-term semi-analytical solutions
(solid line) and numerical solution (dashed line) are shown. A supercritical
Hopf bifurcation appears at A, 2~ 9.97.
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Figure 11: Bifurcation diagram for the exponential distributed delay in the
two-dimensional geometry, with 7 = 1. The two-term semi-analytical solu-
tions (solid line) and numerical solution (dashed line) are shown. A super-
critical Hopf bifurcation appears at A, ~ 13.8.

and 1.25, respectively, while the two-term semi-analytical estimates are 4.46
and 1.13. The two-term semi-analytical method is again extremely accurate
with errors of less than 10%.

7 Conclusions

This paper has presented semi-analytical solutions for a class of generalised
diffusive logistic delay equations, with both distributed and point delays.
The semi-analytical model allowed the governing pdes to be approximated
by an ode model, allowing a stability analysis to be performed. Bifurcation
diagrams, transient solutions and Hopf bifurcation points were found, for
both one and two -dimensional geometries. A good comparison between
semi-analytical and numerical solutions was found. It can be concluded that
the semi-analytical method is an useful and accurate analytical technique, for
pde systems with delay. Future work will apply the semi-analytical method
developed here to other reaction-diffusion-delay systems, such as Nicholson's
blowfly equations model.
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Figure 12: The population density u at z = y = 0 versus ¢ for the point delay
case in the two-dimensional geometry. The one-term (solid line), two-term
(long dashes) semi-analytical solutions and numerical solution (small dashes)

are shown. The parameters are A\ =6, u, =05 and 7 =1
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Figure 13: The population density u at £ = y = 0 versus ¢ for the point delay
case in the two-dimensional geometry. The one-term (solid line), two-term
(long dashes) semi-analytical solutions and numerical solution (small dashes)

are shown. The parameters are A=7,u, =05and 7= 1.
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