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Multiplayer online games (MOGs) have become increasingly popular because of the opportunity they provide for collaboration,
communication, and interaction. However, compared with ordinary human communication, MOG still has several limitations,
especially in communication using facial expressions. Although detailed facial animation has already been achieved in a number of
MOGs, players have to use text commands to control the expressions of avatars. In this paper, we propose an automatic expression
recognition system that can be integrated into an MOG to control the facial expressions of avatars. To meet the specific require-
ments of such a system, a number of algorithms are studied, improved, and extended. In particular, Viola and Jones face-detection
method is extended to detect small-scale key facial components; and fixed facial landmarks are used to reduce the computational
load with little performance degradation in the recognition accuracy.

Copyright © 2008 Ce Zhan et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Multiplayer online games (MOGs) have become popular
over the last few years.The collaboration, communication,
and interaction ability of MOGs enable players to cooper-
ate or compete with each other on a large scale.Thus, play-
ers could experience relationships as real as those in the real
world. The “real feeling” makes MOGs attractive to an in-
creasing number of players, despite significant amounts of
time and subscription fee required to play. Taking youths in
China, for example, according to “Pacific Epoch’s 2006 On-
line Game Report” [1], China had 30.4 million online gamers
by the end of 2006.

Despite the advances in interactive realism of MOGs,
when compared with real-world human communication, the
interfaces are still primitive. For example, in most of the ex-
isting MOGs, text-chat is used rather than real-time voice
chatting during a conversation, avatars have no activities
related to natural body gestures, facial expressions, and so
forth.

Among the problems mentioned above, this paper fo-
cuses on facial communication in particular. In everyday life,
the manifestation of facial expressions is a significant part

of our social communication. Our underlying emotions are
conveyed by different facial expressions. To feel immersed
and socially aware like in the real world, players must have
an efficient method of conveying and observing changes in
emotional states. Existing MOGs allow players to convey
their expressions mainly through text-based commands aug-
mented by facial and body expressions [2].

Although a number of existing MOGs have already
achieved detailed animation, text commands do not offer an
efficient way to control the avatar’s expressions easily and
naturally. They are simple and straightforward, but not easy-
to-use. First, players have to memorize all the commands.
Thus the more sophisticated the facial system is, the harder
it is to use. Second, humans convey emotions by expressions
in real time. Players cannot type text commands every few
seconds to update their current mood. Thirdly, facial com-
munication should happen naturally and effortlessly; typing
commands ruins the realism.

The goal of this paper is to automatically recognize the
player’s facial expressions, so that the recognition results can
be used to drive the “facial expression engine” of a multi-
player online game. While many facial recognition systems
have been reported, MOGs pose unique requirements on the
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system which have not been well addressed. In a summary, a
facial expression recognition system for MOGs should meet
the following requirements [2].

(i) The recognition has to be performed automatically
and in real time.

(ii) The system should consume minimum system re-
sources.

(iii) The system should be robust under different lighting
conditions and complex backgrounds.

(iv) The system should be user-independent (e.g., the sys-
tem should be able to handle users of different genders,
ages, and ethnicities).

(v) The input device should be easy to obtain and with-
out any constraints, so only single regular web camera
should be used.

(vi) The system should be insensitive to distance of user
to camera. (i.e., the system should be able to handle a
relatively wide range of face resolutions).

(vii) Players usually have to face the computer screen while
playing game. Thus, input of the system should be
user’s frontal faces with certain degree of tolerance to
head rotations.

(viii) Due to entertainment purpose of the system, the
recognition accuracy rate need not to be overly con-
servative.

In this paper, we propose a real-time automatic system
that meets the requirements. It recognizes players’ facial ex-
pressions, so that the recognition results can be used to con-
trol avatar’s expressions by driving the MOG’s “animation
engine” instead of text commands. Section 2 provides a brief
overview of existing technologies for facial expression recog-
nition. Section 3 describes the proposed system and exten-
sion and improvement of several algorithms for an efficient
implementation of the system. Section 4 presents the experi-
mental results and Section 5 concludes the paper.

2. OVERVIEW OF FACIAL EXPRESSION RECOGNITION

In computer vision, a facial expression is usually considered
as the deformations of facial components and their spatial re-
lations, or changes in the pigmentation of the face. An auto-
matic facial expression recognition system (AFERS) is a com-
puter system that attempts to classify these changes or de-
formations into abstract classes automatically. A large num-
ber of approaches have been proposed since mid 1970s in
the computer vision community. Early works have been sur-
veyed by Samal and Iyengar [3] in 1992.Fasel and Luttin [4]
and Pantic and Rothkrantz [5] published two comprehensive
survey papers which summarized the facial expression recog-
nition methods proposed before 1999. Recently, Tian et al.
[6] presented the recent advances (before the year 2004) in
facial expression recognition.

Generally, an AFERS consists of three processing stages:
face detection, facial feature extraction and representation,
and facial expression recognition. The face-detection stage
seeks to automatically locate the face region in an input im-
age or image sequences. As the first step of AFERS, its reliabil-
ity has a major influence on the performance and usability of

the entire system. The face detector could detect faces frame
by frame or just detect a face in the first frame and then track
it in the subsequent images in a sequence.

After the face has been detected, the next step is to ex-
tract and represent the information about the facial expres-
sion to be recognized. The extraction process forms a high-
level description of the expression as a function of the image
pixel data. This description commonly referred to as “fea-
ture vector” is used for subsequent expression classification.
Geometric features which present the shape and locations
of facial components and spectral-transform-based features
which are gained by applying image filters to face images
are often used to represent the information of facial expres-
sions. Irrespective of the kind of feature extraction approach
employed, the essential information about the displayed ex-
pressions should be preserved. The extracted features should
contain high discrimination power and high stability against
different expressions.

Facial expression classification is the last stage of AFERS
and it is decision procedure.The facial changes can be identi-
fied as facial action units (AUs) [7] or six prototypic emo-
tional expressions [8]. Introduced by Ekman and Friesen,
each of the six prototypic emotions possesses a distinctive
content and can be uniquely characterized by a facial ex-
pression. These prototypic emotions are also referred to “ba-
sic emotions”. They are claimed to be universal across hu-
man ethnicities and cultures and comprise happiness, sad-
ness, fear, disgust, surprise, and anger. An AU is one of the 44
atomic elements of visible facial movement or its associated
deformation. Ekman and Friesen first use AUs in their facial
action coding system (FACS) [9] with the goal of describing
all possible perceptible changes that may occur on the face. In
applications, a facial expression is represented using a com-
bination of AUs with respect to the locations and intensities
of corresponding facial actions.

To attain successful performance, almost all the existing
facial expression recognition approaches require some con-
trol over the imaging conditions, such as high-resolution
faces, good lighting, and uncluttered backgrounds. With
these constraints, the existing methods in the literature can-
not be directly applied in most real-world applications,
which always require operational flexibility. Although de-
ployment of the existing methods in fully unconstrained en-
vironments is still in the relatively distant future, integrating
and extending these algorithms to develop a facial expression
recognition system for a certain application context such as
MOG is achievable.

3. PROPOSED SYSTEM

Based on the specific requirements of MOGs, a facial expres-
sion recognition system is proposed in this section. The sys-
tem categorizes each frame of user’s facial video sequence
into one of the six prototypic emotional expressions.

We hypothesize that recognition of the six prototypic
emotional expressions would serve an MOG well in most
cases, since players may not have enough time to perceive
more subtle facial changes. Figure 1 shows the block dia-
gram of the system, which consists of four components: face
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Figure 1: The proposed system for MOGs.

detection, facial landmark localization, feature extraction,
and classification of the expressions.

3.1. Face detection

The face region is located in an input image by implement-
ing one of the boosting methods proposed by Viola and
Jones [10]. The method achieves real-time detection by using
very simple and easily computable Haar-like features; and the
good detection rate was obtained by the use of a fundamental
boosting algorithm, AdaBoost [11], which selects the most
representative features in a large set. As a machine-learning
method, most of the time and computational expenditure are
consumed during the offline training process. Thus, in the
detection process, minimal system resources are needed. The
trained face detector scans an image by a subwindow at dif-
ferent scales. Each subwindow is tested by a cascade classifier
made of several stage classifiers. If the subwindow is clearly
not a face, it will be rejected by one of the first stages in the
cascade while more specific classifier will classify it, if it is
more difficult to discriminate. For details on the Viola-Jones
face-detection method, readers are referred to [10].

3.2. Facial landmark localization

To extract the facial feature automatically, facial landmarks
need to be detected without manual efforts. Automatic facial
landmark localization is a complex process. To find accurate
position of landmarks, most of landmark detection meth-
ods involve multiple classification steps and a great number
of training samples are required [4, 5]. Although coarse-to-
fine localization is widely used to reduce the computational
load, the detection process is still too complex and time-
consuming for MOGs.

According to the results of the facial landmark location
tolerance test conducted in our previous work [2], the fa-
cial landmark positions are relatively fixed after the normal-
ization based on three key landmarks: mouth center and eye
centers. Thus, it is reasonable to use fixed landmarks on nor-
malized face images rather than performing traditional fa-
cial landmark detection; and in this way, only three key facial
components are needed to be detected.

Figure 2: The extended Haar-like feature set.

To take advantage of the computational efficiency of
Haar-like features and highly efficient cascade structure used
in Viola-Jones Adaboost face-detection method, “AdaBoost”
detection principle is still adopted to search the key facial
components (the mouth and eyes) within the detected face
area. However, low detection rate was observed when the
conventional Viola-Jones method was trained with the fa-
cial components and employed in the detection process. This
is probably due to the lack of structure information of the
facial components (compared to the entire face). Especially,
the structure of the facial components become less detectable
when the detected face is at low resolution. Another possible
cause of the low detection rate is the substantial variations of
the component shape, especially, mouth, among the different
expressions conveyed by the same or different people. This
is also true for high-resolution face images. To solve these
problems, we improved the “AdaBoost” detection method by
employing extended Haar-like features, modified the train-
ing criteria, regional scanning, and probabilistic selection of
candidate subwindow.

3.2.1. Extended Haar-like feature set

An extended feature set with 14 Haar-like features (Figure 2)
based on [12] is used in the facial component detection. Be-
sides the basic upright rectangle features employed in face
detection, 45◦ rotated rectangle features and center-surround
features are added into the feature pool. The additional fea-
tures are more representative for different shapes than the
original Haar-feature set, thus they would improve the de-
tection performance.
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3.2.2. High hit rate cascade training

In the conventional Viola-Jones method, the cascade classi-
fier is trained based on the desirable hit rate and false-positive
rate. Additional stage is added into the cascade classifier if
the false positive is higher. However, when the false-positive
rate decreases, the hit rate also decreases. In the case of facial
components detection, hit rate will dramatically fall for low-
resolution face images if the cascade classifier is trained for a
target low false-positive rate.

To ensure that low-resolution facial components could
be detected, a minimum overall hit rate is set before train-
ing. For each stage in the training, the training goal is set to
achieve a high hit rate and an acceptable false-positive rate.
The number of features used is then increased until the tar-
get hit rate and false-positive rate are met for the stage. If the
overall hit rate is still greater than the minimum value, an-
other stage is added to the cascade to reduce the overall false-
positive rate. In this way, the trained detectors will detect the
facial components at a guaranteed hit rate though some false
positives will occur, which can be reduced or removed by the
scanning scheme introduced below.

3.2.3. Regional scanning with a fixed classifier

Rather than rescaling the classifier as proposed by Viola and
Jones, to achieve multiscale searching, input face images are
resized to a range of predicted sizes and a fixed classifier is
used for facial component detection. Due to the structure of
face, we predict the face size according to the size of facial
component used for training. In this way, the computation of
the whole image pyramid is avoided. If the facial component
size is larger than the training size, fewer false positives would
be produced due to down sampling; when the component is
smaller than the training sample, the input image is scaled
up to match the training size.

In addition, prior knowledge of the face structure is used
to partition the region of scanning. The top region of the face
image is used for eye detection, and the mouth is searched in
the lower region of the face. The regional scanning not only
reduces the false positives, but also lowers the computation.

3.2.4. Candidate subwindow selection

To select the true subwindow which contains the facial com-
ponent, it is assumed that the central position of the facial
components among different persons follows a normal dis-
tribution. Thus, the probability that a candidate component
at k = [x y]T is the true position can be calculated as

P(k) = 1

(2π)|sΣ|1/2 exp
(
− 1

2
(k− sm)TsΣ−1(k− sm)

)
,

(1)

where the mean vector m and the covariance matrix Σ are
estimated from normalized face image dataset. The scale co-
efficient “s” can be computed as s = wd/wn; wd is the width
of detected face; and wn is the width of normalized training
faces. The candidate with maximum probability is selected as
the true component.

Figure 3: The landmark localization process: (from left to right)
detection of face and facial components, normalised face, and fixed
set of facial landmarks on the normalised face.

3.2.5. Specialized classifiers

Two cascade classifiers are trained for mouth. One is for de-
tecting closed mouths, and the other is for open mouths.
During scanning, if the closed mouth detector failed to find
a mouth, the open mouth detector is triggered. In addition,
the left and right eye classifiers are trained separately.

After the area of key facial components, mouth and eyes,
have been detected, face images are normalized based on the
centers of the components; and finally, mean coordinates of
facial landmarks obtained from the “location tolerance test”
are used as landmarks. Figure 3 shows the landmark localiza-
tion process.

3.3. Feature extraction

As stated previously, the extracted features should possess
high discriminative power and high stability against differ-
ent expressions. Among a number of feature extraction algo-
rithms proposed in the literature, research has demonstrated
that Gabor filters are more discriminative for facial expres-
sions and robust against various types of noise than other
methods [4]. However, applying Gabor filters to the whole
face area is too costly for MOGs. In the proposed system,
Gabor filters with different frequencies and orientations are
applied only to a set of facial landmark positions. Thus, not
only the real-time requirement can be met due to the reduced
amount of data to be processed, but also the limited localiza-
tion in space and frequency yields a certain amount of ro-
bustness against translation, distortion, rotation, and scaling
of the images. At the same time, face cropping or alignment is
not necessary in the whole recognition process since feature
extraction is conducted at specific locations.

A 2D Gabor function is a plane wave with wave vector
k, restricted by a Gaussian envelope function with relative
width σ :

Ψ(k, x) = k2

σ2
exp

(
− k2x2

2σ2

)[
exp(ik · x)− exp

(
− σ2

2

)]
.

(2)

In our implementation, we set σ = π [13]. A set of Ga-
bor kernels, which comprises 3 spatial frequencies (k = π/4,
π/8, π/16) and 6 different orientations (π/6, 2π/6, 3π/6,
4π/6, 5π/6, π) [14], is employed. The parameters of Gabor
kernels are chosen based on a large number of experiments,
so that the extracted feature vectors only contain the most
important components with high discriminative power. Each
image is convolved with both even and odd Gabor kernels
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Figure 4: Mouth detection result. Both detectors are trained using same dataset.

at facial landmarks (as shown in Figure 3). Thus, 18 com-
plex Gabor wavelet coefficients are obtained at each land-
mark. Since only magnitudes of these coefficients are used,
each face image is represented by a vector of 360 (3× 6× 20)
when 20 landmarks are used.

3.4. Classification

A wide range of classifiers in pattern recognition literature
have been applied to expression classification. We evaluated
a number of classification methods in [2]. In this paper, sup-
port vector machines (SVMs) [15] are employed.

SVMs belong to the class of kernel-based supervised
learning machines and have been successfully employed in
general-purpose pattern-recognition tasks. Based on statisti-
cal learning theory, SVMs find the biggest margin to separate
different classes. The kernel functions employed in SVMs are
used to efficiently map input data which may not be linearly
separable to a high-dimensional feature space where linear
methods can then be applied. Since there are often only sub-
tle differences between different expressions posed by differ-
ent people, for example,“anger” and “disgust” are very sim-
ilar. The high discrimination ability of SVMs plays a major
role in designing classifiers that can distinguish such expres-
sions. SVMs also demonstrate relatively good performance
when only a modest amount of training data is available, and
this also makes SVMs suitable for the system under consid-
eration. Furthermore, only inner products are involved in
SVMs computation; the learning and prediction processes
are much faster than some traditional classifiers such as a
multilayer neural network.

In the implementation, classifiers are trained to identify
Gabor coefficient vectors obtained from feature extraction
process into one of the six basic emotional expressions or
a neutral expression. Since SVMs are binary classifiers and
there are 7 categories to distinguish, 21 SVMs are trained to

discriminate all pairs of expressions. A multiclass classifier is
obtained by combining the SVM outputs through a voting
principle. For example, if one SVM makes the decision that
the input is “Happiness” and not “Sadness,” then happiness
gets +1 and sadness gets −1. After all SVMs have made their
decisions, votes for each category are summed together, and
the expression with the highest score is considered to be the
final decision.

4. EXPERIMENTAL RESULTS

4.1. Facial component detection

As introduced in Section 3.2, 4 cascade classifiers were
trained to detect the key facial components, one for left eyes,
one for right eyes, and two for mouths. Positive training
samples of eyes and mouths and negative samples (nonfa-
cial components) were cropped from AR database [16] and
AT&T database [17]. To accommodate low-resolution fa-
cial components, the training samples were rescaled to small
sizes: 10×6 for eyes and 16×8 for mouth. For each detector,
about 1200 positive samples and 5000 negative samples were
used for training.

The trained detectors were tested on BioID database [18].
To evaluate the performance on low-resolution input, the
test images were down sampled to different resolutions to
simulate low-resolution faces which are not included in the
database. To show the improvement compared with the orig-
inal detection method proposed by Viola and Jones, mouth
detection results at different face resolutions are presented in
Figure 4. The average left eye, right eye, and mouth detec-
tion rate for different face resolutions is 95.7%, 97.2%, and
95.6%, respectively. A few detection examples are shown in
Figure 5.
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(a) 200× 200 (b) 100× 100 (c) 50× 50

Figure 5: Facial component detection results for different resolu-
tion faces from BioID database.

(a) (b)

(c) (d)

Figure 6: Recognition samples from FG-NET.

4.2. Expression recognition

FG-NET database [19] was used in the experiment. The
database contains 399 video sequences of 6 prototypic
emotional expressions and a neutral expression from 18 in-
dividuals. For each expression of each person, at least 3 se-
quences are provided. In the experiment, one sequence of
each expression is left out for test, and the rest are used as
the training samples. The recognition result is presented in
Table 1 and some samples are shown in Figure 6. The re-
sults show that “Happiness,” “Surprise,” and “Neutral” are
detected with relative high accuracy while other more sub-
tle expressions were a little bit harder to recognize, espe-
cially for “Sadness”. During testing, we found that “Sadness,”
“Anger,” “Fear,” and “Disgust” are confused with each other
frequently, sometimes even human beings are not able to
discriminate them, however, they are seldom confused with
other expressions. Thus, if these four expressions are treated
as one, together with “Happiness,” “Surprise,” and “Neutral,”
we can estimate user’s emotional state more accurately on a
higher level. Naming the new expression as unhappy, classi-
fication result for 4 expressions are presented in Table 2. In
this way, the system is able to tell with an 85.5% accuracy if
the user is in good mood, bad mood, or just surprised. We
also tested the system in practical conditions, some samples
are shown in Figure 7. The results show that the system is rel-

(a) (b)

(c) (d)

Figure 7: Recognition samples for real-time test.

Table 1: Recognition results for 7 expressions classification.

Expression Recognition rate

Happiness 85.2%

Sadness 78.9%

Fear 80.7%

Disgust 81.6%

Surprise 86.3%

Anger 83.3%

Neutral 84.9%

Table 2: Recognition results for 4 expressions classification.

Expression Recognition rate

Happy 85.2%

Unhappy 85.6%

Surprise 86.3%

Neutral 84.9%

atively robust against complex background and lighting con-
ditions, furthermore, it works on the images taken from a
practical range of distances from user to camera.

5. MOG IMPLEMENTATION ISSUES

In this section, we indicate the manner in which the pro-
posed system can be incorporated in an MOG. A typical
MOG is a complex distributed system connecting thousands
of users. Two main types of network architecture are em-
ployed, namely, client-server and peer-to-peer [20]. We re-
frain from any comparative discussion about the two types
of architecture since this paper is not about such considera-
tions.
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The system presented in this paper is implemented on the
client side as it constitutes a user interface device enhance-
ment. The system outputs a classification of the current emo-
tion of the player and this is transmitted to the server. It is
possible that an XML-based description of the emotions is
employed. The game logic server running of the centralized
server would incorporate a module that can parse the XML
message and send the appropriate message to the game world
module which in turn issues the necessary message that al-
lows the correct view of the avatar to be generated. Thus,
the facial expression recognition system allows a rendering of
the appropriate avatar with the required emotion on clients’
world views.

6. CONCLUSIONS

In this paper, we presented an automatic facial expression
recognition system for MOGs. Several algorithms are im-
proved and extended to meet the specific requirements. De-
spite recent advances in computer vision techniques for face
detection, facial landmarks localization, and feature extrac-
tion, building a facial expression recognition system for real-
life applications still remains challenging.
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