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Abstract

A Roman dominating function on a graph G = (V (G), E(G)) is a func-
tion f : V (G) → {0, 1, 2} satisfying the condition that every vertex u for
which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The
Roman dominating function f is an outer-independent Roman dominating
function on G if the set of vertices labeled with zero under f is an inde-
pendent set. The outer-independent Roman domination number γoiR(G) is
the minimum weight w(f) =

∑
v∈V (G) f(v) of any outer-independent Ro-

man dominating function f of G. A vertex cover of a graph G is a set of
vertices that covers all the edges of G. The minimum cardinality of a ver-
tex cover is denoted by α(G). A graph G is a vertex cover Roman graph

http://dx.doi.org/10.7151/dmgt.2179


268 A. Cabrera Mart́ınez, D. Kuziak and I.G. Yero

if γoiR(G) = 2α(G). A constructive characterization of the vertex cover
Roman trees is given in this article.

Keywords: Roman domination, outer-independent Roman domination, ver-
tex cover, vertex independence, trees.
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1. Introduction

Throughout this work we consider G = (V,E) as a simple graph of order n = |V |.
That is, a graphs that is finite, undirected, and without loops or multiple edges.
Given a vertex v of G, NG(v) represents the open neighborhood of v, i.e., the set
of all neighbors of v in G, and the degree of v is d(v) = |NG(v)|. If S ⊂ V (G),
then the open neighborhood of S is NG(S) =

⋃
v∈S NG(v). Whenever it is no

confusion, we shall skip the subindex G in the notations above. The minimum
and maximum degrees of G are denoted by δ(G) and ∆(G), respectively. For
any two vertices u and v, the distance d(u, v) between u and v is the length of a
shortest u− v path.

A leaf vertex of G is a vertex of degree one. A support vertex of G is a vertex
adjacent to a leaf; a weak support vertex is a support vertex adjacent to exactly
one leaf; a strong support vertex is a support vertex that is not a weak support;
a strong leaf vertex is a leaf vertex adjacent to a strong support vertex; and a
semi-support vertex is a vertex adjacent to a support vertex that is not a leaf.
The set of leaves is denoted by L(G); the set of support vertices is denoted by
S(G); the set of weak support vertices is denoted by Sw(G); the set of strong
support vertices is denoted by Ss(G); the set of strong leaves is denoted by Ls(G);
and the set of semi-support vertices is denoted by SS(G).

A set S of vertices is independent if S induces an edgeless graph. An inde-
pendent set of maximum cardinality is a maximum independent set of G. The
independence number of G is the cardinality of a maximum independent set of
G and is denoted by β(G). An independent set of cardinality β(G) is called a
β(G)-set. A vertex cover of G is a set of vertices S that covers all the edges,
i.e., every edge is incident with a vertex of S. The minimum cardinality of a
vertex cover is denoted by α(G). A vertex cover of cardinality α(G) is called an
α(G)-set.

A dominating set of a graph G is a set S of vertices of G such that every
vertex in V (G)\S is adjacent to at least one vertex in S. The domination number
of G is the minimum cardinality of a dominating set of G and is denoted by γ(G).
The literature on the subject of domination in graphs up to the year 1997 has
been surveyed and detailed in the two books [4, 5].
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A Roman dominating function (RDF) on a graph G is a function f : V (G) →
{0, 1, 2} satisfying that every vertex u for which f(u) = 0 is adjacent to at least
one vertex v for which f(v) = 2. Notice that f generates three sets V0, V1 and V2

such that Vi = {v ∈ V (G) : f(v) = i} for i = 0, 1, 2. In this sense, from now on we
will write f = (V0, V1, V2) so as to refer to the Roman dominating function f . The
weight of an RDF is the value w(f) = f(V (G)) =

∑
u∈V (G) f(u) = |V1| + 2|V2|.

The Roman domination number γR(G) is the minimum weight of an RDF on
G. A vertex v ∈ V2 is said to have a private neighbor if there exists a vertex
w ∈ N(v)∩V0 for which N(w)∩(V1∪V2) = {v}. Roman domination in graphs was
formally defined by Cockayne, Dreyer, Hedetniemi, and Hedetniemi [2] motivated,
in part, by an article in Scientific American of Ian Stewart entitled “Defend the
Roman Empire” [9].

Once the seminal article [2] appeared, the topic immediately attracted the at-
tention of several researchers, which has made that Roman domination in graphs
is nowadays very well studied. Clearly, Roman domination is strongly related
to domination in graphs. Thus, a relatively straightforward relationship (see [2])
states that for any graph G, γ(G) ≤ γR(G) ≤ 2γ(G). The particular case of
graphs satisfying the equality γR(G) = 2γ(G) motivated the definition of the so
called Roman graphs, i.e., graphs G for which γR(G) = 2γ(G). An open prob-
lem concerning characterizing all the Roman graphs still remains open although
some contributions to this topic are already known. Perhaps, the most remark-
able contribution in this direction appeared in [6], where all the Roman trees
were characterized.

An RDF is an outer-independent Roman dominating function (OIRDF) on
G if V0 is an independent set. The outer-independent Roman domination number
γoiR(G) is the minimum weight of an OIRDF on G. An OIRDF with weight
γoiR(G) is called a γoiR(G)-function. The concepts above were introduced and
studied in [1]. In such work was proved that for any graph G, α(G) + 1 ≤
γoiR(G) ≤ 2α(G) and those graphs achieving the equality in the upper bound
were called vertex cover Roman graphs (VC-Roman graphs for short). Hence, an
open problem was then raised up. That was, characterizing all the VC-Roman
graphs. In this sense, and following with the traditions of Roman trees and
some other works in the same style, in this work, we give a characterization of
VC-Roman trees.

In connection with this, we make the following remark commented by a
referee of this work, and we cite exactly his/her words: “By the definition of
vertex cover sets, all the vertices outside the vertex cover set form an independent
set too. Thus, if we add the property of vertex cover on a Roman dominating
function, then it is natural to consider an outer-independent Roman dominating
function. In 1998, the paper Characterization of graphs with equal domination
and covering number by Randerath and Volkmann (see [8]) showed a related result.
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By combining the results of [6], I conjecture that this problem is already solved by
results of the mentioned two papers”. In one direction this is true, but as we next
show, the contrary direction is not true.

In [8], the graphs G of minimum degree one for which α(G) = γ(G) were
characterized. Also, in [6], the trees T for which γR(T ) = 2γ(T ) were character-
ized. A combination of both properties, for a tree T , means that γR(T ) = 2α(T ).
Now, since γR(G) ≤ γoiR(G) and γoiR(G) ≤ 2α(G) are satisfied for any graph
G, we can deduce that 2α(T ) = γR(T ) ≤ γoiR(T ) ≤ 2α(T ). Thus, there must
be equalities in the chain of inequalities above, and therefore γoiR(T ) = 2α(T ),
or equivalently, T is a VC-Roman tree (notice that this is satisfied in general for
any Roman graph of minimum degree one). Now, for the contrary, if we assume
that a tree T is a VC-Roman tree (γoiR(T ) = 2α(T )), then this does not mean
T is a Roman tree for which α(T ) = γ(T ). As an example, we can observe the
VC-Roman tree T in Figure 1 for which α(T ) = γ(T ) = 3, γoiR(T ) = 6 and
γR(T ) = 5.

Figure 1. A VC-Roman tree T for which γoiR(T ) = 6, α(T ) = γ(T ) = 3 and γR(T ) = 5.

Consequently, we observe that the trees belonging to the intersection family
of the families given in [6] and [8] is a subfamily of the family of trees which we
construct in our work.

2. Results

The next theoretical characterization for VC-Roman graph was given in [1]. How-
ever, such characterization lacks of usefulness, since it is precisely based on finding
a γoiR(G)-function.

Proposition 1 [1]. A graph G is a VC-Roman graph if and only if it has a
γoiR(G)-function f = (V0, V1, V2) with V1 = ∅.

The following well-known result, due to Gallai [3], states the relationship
between the independence number and the vertex cover number of a graph.

Theorem 2 (Gallai, [3]). A vertex set S of a graph G is independent if and only
if the set V (G) \ S is a vertex cover. Moreover, α(G) + β(G) = |V (G)|.

By the definition of VC-Roman graphs, Proposition 1 and Theorem 2, the
next results follow.
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Proposition 3. Let G be a VC-Roman graph and let f = (V0, ∅, V2) be a γoiR(G)-
function. Then

(i) V0 is a β(G)-set.

(ii) V2 is an α(G)-set.

(iii) Every vertex in V2 has a private neighbor.

Proof. First notice that 2|V2| = γoiR(G) = 2α(G) and so, |V2| = α(G). More-
over, by Theorem 2, it follows |V0| = β(G), which completes the proof of (i)
and (ii). On the other hand, let v be a vertex belonging to V2. By definition,
N(v) ∩ V0 6= ∅. Now, suppose that v does not have a private neighbor. Hence,
every vertex w ∈ N(v) ∩ V0 satisfies that {v} ( N(w) ∩ V2. Consider a function
f ′ = (V ′

0 , V
′

1 , V
′

2) = (V0, {v}, V2 \ {v}). Since V ′

0 = V0, we observe that f ′ is an
OIRDF on G and satisfies that w(f ′) < w(f), a contradiction. Thus, every vertex
in V2 has a private neighbor, and the proof of (iii) is complete.

One consequence of the proposition above is the next theorem, which will
further play an important role.

Theorem 4. Let G be a VC-Roman graph and let f = (V0, ∅, V2) be a γoiR(G)-
function. Then V (G) = L(G) ∪ S(G) ∪ SS(G), where V0 = L(G) ∪ SS(G) and
V2 = S(G).

Proof. We first note that Proposition 3(iii) implies that every vertex belonging
to V2 is a support vertex of G since every vertex of V2 has a private neighbor
x ∈ V0 which has no neighbor in V0. Thus, x must be a leaf and so, V2 ⊂ S(G).
Now, suppose that there exists a support vertex u belonging to V0. As V0 is an
independent set, the leaf w adjacent to u belongs to V2, but then w does not
have a private neighbor, which is a contradiction with Proposition 3(iii). Thus,
every support belongs to V2 and therefore, V2 = S(G). Also, the independent
set V0 satisfies that V0 ⊂ N(V2), which means that V0 = L(G) ∪ SS(G) and, in
consequence, that V (G) = L(G) ∪ S(G) ∪ SS(G), which ends the proof.

Corollary 5. If G is a VC-Roman graph, then δ(G) = 1.

We next continue with some other extra properties of VC-Roman graphs
which will further on be useful.

Proposition 6. Let G be a VC-Roman graph with SS(G) = ∅. Then every
support vertex is a strong support vertex.

Proof. Let f = (V0, ∅, V2) be a γoiR(G)-function. By Theorem 4 we have f =
(L(G), ∅, S(G)). Suppose there exists a support vertex s satisfying |N(s) ∩
L(G)| = {h}. Now, it is readily seen that f ′ = ((L(G)\{h})∪{s}, {h}, S(G)\{s})
is an OIDRF on G of weight less than w(f), a contradiction, since f is a γoiR(G)-
function. Thus, every support vertex is a strong support vertex.
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Proposition 7. Let G be a graph containing a strong support vertex v. Then
there exists a γoiR(G)-function f satisfying f(v) = 2.

Proof. Let v ∈ Ss(G) and let h1, h2 ∈ N(v) ∩ L(G). Let f be a γoiR(G)-
function satisfying f(v) 6= 2. First, we note that f(v) 6= 1, (otherwise f(v) = 1
implies that f(h1) = f(h2) = 1 and the function g satisfying that for every
u ∈ V (G) \ {v, h1, h2}, g(u) = f(u), g(v) = 2, g(h1) = g(h2) = 0 is an OIRDF
with weight less that f , which is a contradiction). Thus, it must happen f(v) = 0,
which implies f(h1) = f(h2) = 1. Now, by considering a function as that g

defined above, we can clearly note that g is an OIRDF with the same weight as
f . Therefore, g is a γoiR(G)-function that satisfies the necessary requirements.

Corollary 8. Let G be a graph containing a strong leaf vertex v. Then there
exists a γoiR(G)-function f satisfying f(v) = 0.

Observation 9. Let T be a tree where V (T ) = L(T )∪S(T )∪SS(T ) and L(T )∪
SS(T ) is an independent set. Then

(i) L(T ) ∪ SS(T ) is a β(T )-set.

(ii) S(T ) is an α(T )-set.

(iii) f = (L(T ) ∪ SS(T ), ∅, S(T )) is an OIRDF.

In order to present our characterization we need the following definitions. A
near outer-independent Roman dominating function, abbreviated near-OIRDF,
of a graph G, relative to a vertex v, is a function f = (V0, V1, V2) satisfying the
following.

(i) v ∈ V0.

(ii) V0 is an independent set.

(iii) Every vertex u ∈ V0 \ {v} is adjacent to at least one vertex in V2.

The weight of a near-OIRDF of G relative to v is the value f(V (G)) =∑
u∈V f(u). The minimum weight of a near-OIRDF on G relative to v is called

the near outer-independent Roman domination number of G relative to v, which
we denote as γnoiR(G; v). Notice that, for every vertex v of G we have γoiR(G) ≤
γnoiR(G; v) + 1. We now define a vertex v to be a near stable vertex in G, if
γoiR(G) ≤ γnoiR(G; v). In this sense, the set of near stable weak support vertices
of G is denoted by Sns

w (G). For example, every weak support of a path P5 is a
near stable weak support vertex. We remark that the terminology of “near” style
parameters and “near stable” vertices with respect to a parameter is a very well
known and commonly used technique in domination theory. In order to simply
mention a recently published example where this was used, we can for instance
refer to [7].

With all the tools presented till now, we are then able to begin with the
characterization of the family of VC-Roman trees. To this end, we need the
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following operations F1, F2, F3, F4 and F5 on a tree T (by attaching a path P

to a vertex v of T we mean adding the path P and joining v to a vertex of P ).
Also, we assume that |S(T )| ≥ 1, since the case |S(T )| = 0 ( when T is a path
P2 and T is a VC-Roman tree) is straightforward.

Operation F1. Attach a path P1 to a vertex v ∈ S(T ).

Operation F2. Attach a path P2 to a vertex v ∈ Ls(T ).

Operation F3. Attach a path P3 to a vertex v ∈ SS(T ), by joining v to the
support vertex of P3.

Operation F4. Attach a path P3 to a vertex v ∈ Ss(T ) ∪ Sns
w (T ), by joining v

to the support vertex of P3.

Operation F5. Attach a path P5 to a vertex v ∈ Ss(T ) ∪ Sns
w (T ), by joining v

to the semi-support vertex of P5.

Let F be the family of trees defined as F = {T | T = P3 or T is obtained
from P3 by a finite sequence of the operations F1, F2, F3, F4 or F5}. We first show
that every tree of the family F is a VC-Roman tree.

Lemma 10. If T ∈ F , then T is a VC-Roman tree.

Proof. We proceed by induction on the number r(T ) of operations required to
construct the tree T . If r(T ) = 0, then T = P3 is a VC-Roman tree. This
establishes the base case. Hence, we now assume that k ≥ 1 is an integer and
that each tree T ′ ∈ F with r(T ′) < k satisfies that T ′ is a VC-Roman tree.

Let T ∈ F be a tree with r(T ) = k. Then T can be obtained from a tree
T ′ ∈ F with r(T ′) = k− 1 by one of the operations F1, F2, F3, F4 or F5. We shall
prove that T is a VC-Roman tree. To this end, and using Theorem 4, we consider
the γoiR(T

′)-function f ′ = (L(T ′) ∪ SS(T ′), ∅, S(T ′)) (notice that such f ′ exists
because T ′ is a VC-Roman tree). We consider the following situations.

Case 1. T is obtained from T ′ by operation F1. Assume T is obtained from
T ′ by adding the vertex u and the edge uv where v ∈ S(T ′). Notice that u

is a leaf of T . By using Observation 9 we see that the function f = (L(T ′) ∪
SS(T ′)∪{u}, ∅, S(T ′)) = (L(T )∪SS(T ), ∅, S(T )) is an OIRDF on T with weight
w(f) = γoiR(T

′). So, γoiR(T ) ≤ w(f) = γoiR(T
′). Now, since u ∈ L(T ) and

v ∈ S(T ′), it follows v ∈ Ss(T ). So, by Proposition 7 there exists a γoiR(T )-
function g such that g(v) = 2 and for every leaf h adjacent to v, g(h) = 0. Thus,
γoiR(T ) = w(g) = g(V (T ′)) + g(u) = g(V (T ′)). Note also that g restricted to
V (T ′) is an OIRDF on T ′, which leads to γoiR(T

′) ≤ g(V (T ′)) = γoiR(T ). Thus,
we get γoiR(T ) = γoiR(T

′). On the other hand, it is easy to see that α(T ) = α(T ′)
and by using the hypothesis γoiR(T

′) = 2α(T ′) (because T ′ is a VC-Roman tree),
we deduce γoiR(T ) = 2α(T ) and T is a VC-Roman tree.
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Case 2. T is obtained from T ′ by operation F2. Assume T is obtained from
T ′ by adding the path u1u2 and the edge u1v where v ∈ Ls(T

′). Notice that
u1 ∈ S(T ) and u2 ∈ L(T ), and let u ∈ Ss(T

′) ∩ N(v). By using Observation 9,
we see that the function f = (L(T ′) ∪ SS(T ′) ∪ {u2}, ∅, S(T

′) ∪ {u1}) = (L(T ) ∪
SS(T ), ∅, S(T )) is an OIRDF on T with weight w(f) = γoiR(T

′) + 2 and so,
γoiR(T ) ≤ w(f) = γoiR(T

′) + 2. On the other hand, let g be a γoiR(T )-function
such that the number of vertices labeled with one under g is minimum. Now
consider the function g restricted to V (T ′), say g′. Suppose g′ is not an OIRDF on
T ′. Hence, this can only happen when g′(v) = 0 and g′(u) 6= 2. Thus, it must be
g(u1) = 2 and g′(u) = 1, which also leads to g′(u′) = 1 for any leaf u′ ∈ N(u)\{v}
(note that at least one of such leaves exists because u ∈ Ss(T

′)). So, we can
redefine g by making g(u) = 2 and g(u′) = 0 and obtain a γoiR(T )-function with
a smaller number of vertices labeled with one under g, which is a contradiction.
Thus, g′ is an OIRDF on T ′ and so, g(V (T ′)) = g′(V (T ′)) = w(g′) ≥ γoiR(T

′).
Moreover, we observe that 1 ≤ g(u1) + g(u2) ≤ 2. If g(u1) + g(u2) = 1, then this
can only occur when g(u1) = 0 and g(u2) = 1, which leads to g(v) = 2 and g(u)
can take any value. In such case, we can again redefine g by making g(u) = 2,
g(v) = g(u′) = 0, g(u1) = 2 and g(u2) = 0 and obtain a new function g′′ which
satisfies one of the following situations.

• g′′ has weight smaller than g ( if g(u) 6= 0 and u has only one leaf neighbor),
and this is not possible.

• g′′ has the same weight as g ( if g(u) = 0 or u has more than one leaf neighbor),
but a smaller number of vertices labeled with one under g′′ than g, and this
is a contradiction with the choice of g.

Thus, the only possibility is that g(u1) + g(u2) = 2. So, we obtain γoiR(T ) =
w(g) = g(V (T ′)) + g(u1) + g(u2) ≥ γoiR(T

′) + 2, and consequently, γoiR(T ) =
γoiR(T

′) + 2.

By using again Observation 9, Proposition 3 and Theorem 4 we see that
α(T ) = |S(T )| = |S(T ′)| + 1 = α(T ′) + 1. By hypothesis we know γoiR(T

′) =
2α(T ′) (because T ′ is a VC-Roman tree). Therefore, γoiR(T ) = γoiR(T

′) + 2 =
2α(T ′) + 2 = 2(α(T )− 1) + 2 = 2α(T ) and T is a VC-Roman tree.

Case 3. T is obtained from T ′ by operation F3. Assume T is obtained from
T ′ by adding the path u1u2u3 and the edge u2v where v ∈ SS(T ′). Notice that
u2 ∈ Ss(T ) and u1, u3 ∈ Ls(T ). By Observation 9 we get that the function
f = (L(T ′) ∪ SS(T ′) ∪ {u1, u3}, ∅, S(T

′) ∪ {u2}) = (L(T ) ∪ SS(T ), ∅, S(T )) is
an OIRDF on T with weight w(f) = γoiR(T

′) + 2 and so, γoiR(T ) ≤ w(f) =
γoiR(T

′) + 2. On the other hand, based on Proposition 7 and Corollary 8, we
consider a γoiR(T )-function g satisfying that g(u2) = 2 and g(u1) = g(u3) = 0,
and such that number of vertices labeled with one is minimum. Again, we consider
the function g restricted to V (T ′), say g′. If g′ is not an OIRDF on T ′, then
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this can only happen when g(v) = 0 and all its neighbors in T ′ have labels
different from two. Let u be a support adjacent to v and let u′ be a leaf adjacent
to u. It must clearly happen that g(u) = 1 (it cannot be g(u) = 0 because
g(v) = 0) and g(u′) = 1. Thus, by a similar reasoning as in some cases above,
we redefine g by making g(u) = 2 and g(u′) = 0, which is a contradiction with
the choice of g, since we obtain a function with a smaller number of vertices
labeled with one. Thus, g′ is an OIRDF on T ′ and so, g(V (T ′)) = g′(V (T ′)) =
w(g′) ≥ γoiR(T

′). Moreover, we see that g(u1) + g(u2) + g(u3) ≥ 2. Therefore,
γoiR(T ) = w(g) = g(V (T ′)) + g(u1) + g(u2) + g(u3) ≥ γoiR(T

′) + 2 and, as a
consequence, γoiR(T ) = γoiR(T

′) + 2.

Again, by Observation 9, Proposition 3 and Theorem 4 we get α(T ) =
|S(T )| = |S(T ′)| + 1 = α(T ′) + 1. It is known by hypothesis that γoiR(T

′) =
2α(T ′) (because T ′ is a VC-Roman tree). Therefore, γoiR(T ) = γoiR(T

′) + 2 =
2α(T ′) + 2 = 2(α(T )− 1) + 2 = 2α(T ) and T is a VC-Roman tree.

Case 4. T is obtained from T ′ by operation F4. Assume T is obtained from
T ′ by adding the path u1u2u3 and the edge u2v where v ∈ Ss(T

′)∪Sns
w (T ′). Also,

let w be a leaf-neighbor to v. Notice that u2 ∈ Ss(T ) and u1, u3 ∈ Ls(T ). By
using Observation 9, it is readily seen that the function f = (L(T ′) ∪ SS(T ′) ∪
{u1, u3}, ∅, S(T

′)∪{u2}) = (L(T )∪SS(T ), ∅, S(T )) is an OIRDF on T with weight
w(f) = γoiR(T

′) + 2 and so, γoiR(T ) ≤ w(f) = γoiR(T
′) + 2. Now, we consider

the next two cases.

Case 4.1. v ∈ Ss(T
′). In concordance with Proposition 7 and Corollary 8,

we consider a γoiR(T )-function g satisfying that g(v) = g(u2) = 2 and g(u1) =
g(u3) = 0. Now, we notice that the function g restricted to V (T ′), say g′, is
an OIRDF on T ′. Thus, it is satisfied that γoiR(T

′) ≤ g′(V (T ′)) = g(V (T ′)).
Moreover, since g(u1) + g(u2) + g(u3) = 2 we get γoiR(T ) = w(g) = g(V (T ′)) +
g(u1)+g(u2)+g(u3) ≥ γoiR(T

′)+2 and, as a consequence, γoiR(T ) = γoiR(T
′)+2.

Case 4.2. v ∈ Sns
w (T ′). In concordance with Proposition 7 and Corollary

8, we consider a γoiR(T )-function h such that the number of vertices labeled
with one under h is minimum and satisfying h(u2) = 2, h(u1) = h(u3) = 0.
If h(v) = 2, then, by using some similar procedure as in Case 4.1 we obtain
γoiR(T ) = γoiR(T

′) + 2. Thus, we notice that h(v) = 0 (otherwise, if h(v) = 1,
then the function f ′ defined by f ′(v) = 2, f ′(w) = 0 and f ′(x) = h(x) for
every x ∈ V (T ) \ {v, w}, is a γoiR(T )-function with a smaller number of vertices
labeled with one under h, which is a contradiction). Now consider the function h

restricted to V (T ′), say h′. It is easy to see that h′ is a near-OIRDF on T ′, and
as v ∈ Sns

w (T ′), then, γoiR(T
′) ≤ γnoiR(T

′; v) ≤ h′(V (T ′)) = h(V (T ′)). Moreover,
since h(u1) + h(u2) + h(u3) = 2, we get γoiR(T ) = w(h) = h(V (T ′)) + h(u1) +
h(u2) + h(u3) ≥ γoiR(T

′) + 2 and, as a consequence, γoiR(T ) = γoiR(T
′) + 2.
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In addition, for both subcases, by Observation 9, Proposition 3 and Theorem
4 we observe that α(T ) = |S(T )| = |S(T ′)| + 1 = α(T ′) + 1. By hypothesis,
we know that γoiR(T

′) = 2α(T ′) (because T ′ is a VC-Roman tree). Therefore,
γoiR(T ) = γoiR(T

′) + 2 = 2α(T ′) + 2 = 2(α(T ) − 1) + 2 = 2α(T ) and T is a
VC-Roman tree.

Case 5. T is obtained from T ′ by operation F5. Assume T is obtained from
T ′ by adding the path u1u2u3u4u5 and the edge u3v where v ∈ Ss(T

′)∪ Sns
w (T ′).

Notice that u3 ∈ SS(T ), u2, u4 ∈ S(T ) and u1, u5 ∈ L(T ). By Observation 9 we
deduce that the function f = (L(T ′)∪SS(T ′)∪{u1, u3, u5}, ∅, S(T

′)∪{u2, u4}) =
(L(T )∪ SS(T ), ∅, S(T )) is an OIRDF on T with weight w(f) = γoiR(T

′) + 4 and
so, γoiR(T ) ≤ w(f) = γoiR(T

′) + 4. Now, we consider the following two cases.

Case 5.1. v ∈ Ss(T
′). We consider a γoiR(T )-function g for which g(v) = 2

(this can be asserted based on the fact that v ∈ Ss(T
′) together with Proposition

7 and Corollary 8). In concordance with this, we readily seen that g restricted
to V (T ′), say g′, is an OIRDF on T ′, which means g((V (T ′)) = g′(V (T ′)) ≥
γoiR(T

′). Also, we see that g(u1) + g(u2) + g(u3) + g(u4) + g(u5) ≥ 4. Thus,
γoiR(T ) = w(g) = g(V (T ′))+g(u1)+g(u2)+g(u3)+g(u4)+g(u5) ≥ γoiR(T

′)+4,
which allows to claim γoiR(T ) = γoiR(T

′) + 4.

Case 5.2. v ∈ Sns
w (T ′). Let z be a leaf neighbor of v. We consider a γoiR(T )-

function h such that the number of vertices labeled with one under h is minimum.
Again, we note that if h(v) = 2, then by using some similar procedure, as in
Case 5.1, we obtain that γoiR(T ) = γoiR(T

′) + 4. On the other hand, we notice
that h(v) = 0 (otherwise, if h(v) = 1, then the function h1 defined by h1(v) = 2,
h1(z) = 0 and h1(x) = h(x) for every x ∈ V (T )\{v, z}, is a γoiR(T )-function with
a smaller number of vertices labeled with one under h1, which is a contradiction).
Now consider the function h restricted to V (T ′), say h′. It is easy to see that h′ is a
near-OIRDF on T ′. As v ∈ Sns

w (T ′), we get γoiR(T
′) ≤ γnoiR(T

′; v) ≤ h′(V (T ′)) =
h(V (T ′)). Moreover, since h(u1) + h(u2) + h(u3) + h(u4) + h(u5) ≥ 4, we deduce
γoiR(T ) = w(h) = h(V (T ′))+h(u1)+h(u2)+h(u3)+h(u4)+h(u5) ≥ γoiR(T

′)+4
and, as a consequence, γoiR(T ) = γoiR(T

′) + 4.

Again, for both subcases, by Observation 9, Proposition 3 and Theorem 4 it
follows α(T ) = |S(T )| = |S(T ′)| + 2 = α(T ′) + 2. By hypothesis we know that
γoiR(T

′) = 2α(T ′) (because T ′ is a VC-Roman tree), which leads to γoiR(T ) =
γoiR(T

′) + 4 = 2α(T ′) + 4 = 2(α(T ) − 2) + 4 = 2α(T ) and therefore, T is a
VC-Roman tree.

We now turn our attention to the opposite direction concerning the lemma
above. In this sense, from now on we shall need the following terminology and
notation in our results. Given a tree T and a set S ⊂ V (T ), by T − S we denote
a tree obtained from T by removing from T all the vertices in S and all the edges
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incident with a vertex in S (if S = {v} for some vertex v, then we simply write
T−v). For a vertex x of a tree T , a subtree Tx at x of a rooted tree T is the subtree
induced by the descendants of x together with x (rooted tree and descendants are
understood as it is common in the literature). Moreover, we denote by P (x, y)
the set of vertices of one shortest path between x and y, including x and y. We
next show that every VC-Roman tree belongs to the family F .

Lemma 11. If T is a VC-Roman tree, then T ∈ F .

Proof. We proceed by induction on the order n ≥ 3 of the VC-Roman tree T .
If n = 3, then T = P3 that belongs to F . If n = 4, then T is either a path P4 or
a star S3 with three leaves. Notice that P4 is not a VC-Roman tree and that the
star S3 can be obtained from P3 by applying operation F1. More in general, if T
is any star Sn, then T can be obtained from P3 by repeatedly applying operation
F1. These facts establish the base case of the induction procedure. We assume
next that k > 4 is an integer and that each VC-Roman tree T ′ with |V (T ′)| < k

satisfies T ′ ∈ F .
Let T be a VC-Roman tree and |V (T )| = k. Then, by Proposition 1 and

Theorem 4, there exists a γoiR(T )-function f = (V0, ∅, V2), where V0 = L(T ) ∪
SS(T ) (note that this implies that SS(T ) induces a subgraph without edges),
V2 = S(T ) and V (T ) = L(T )∪S(T )∪SS(T ). We consider now several situations.

Case 1. |Ss(T )| = 0. Clearly, any support vertex is adjacent to exactly one
leaf. Also, since k > 4, and by Proposition 6, |SS(T )| > 0. Let h, h′ be two leaves
at the maximum possible distance in T such that there is v ∈ SS(T ) ∩ P (h, h′)
with d(v, h) = 2 or d(v, h′) = 2. Without loss of generality assume that d(v, h) =
2. Let s be the support vertex adjacent to h, P (h, h′)∩ (N(v) \ {s}) = {w} (w is
also a support vertex since v cannot have other kind of neighbor) and assume T

is rooted at h′. We have now some possible scenarios.

Case 1.1. |N(v)| = 2. We first observe that |N(s) ∩ S(T )| = 0. That is, if
there exists r ∈ N(s) ∩ S(T ) such that N(r) ∩ L(T ) = {hr}, then the function
g = (((L(T )∪SS(T ))\{hr})∪{r}, {hr}, S(T )\{r}) is an OIRDF on T satisfying
that w(g) < w(f) = γoiR(T ), which is a contradiction. Hence |N(s)| = 2, where
N(s) = {v, h} and N(v) = {s, w}. We consider the tree T ′ = T − {s, h}. In
T ′, the vertex v is a strong leaf and the vertex w is a strong support. By using
Proposition 7 and Corollary 8, we can deduce that the function f restricted to
V (T ′), say f ′ = (V ′

0 , V
′

1 , V
′

2) is a γoiR(T
′)-function which has V ′

1 = ∅. Thus, by
Proposition 1, T ′ is a VC-Roman tree and, by inductive hypothesis, T ′ ∈ F .
Since T can be obtained from T ′ by operation F2, we get T ∈ F .

Case 1.2. |N(v)| = 3. In this case, we first note that N(v) ⊂ S(T ). Let
N(v) = {s, w, s1}. As |Ss(T )| = 0, let N(s1) ∩ L(T ) = {h1} and N(w) ∩ L(T ) =
{hw}. By the maximality of P (h, h′), if |N(s1)| > 2, then every neighbor of s1
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other than v is a support. In such case, if there exists a neighbor of s1 other than
v, then we proceed with s1 instead of s, to construct a function g as in Case 1.1,
and obtain a contradiction. Thus, it follows that |N(s1)| = 2.

Suppose now that N(w)∩ (SS(T ) \ {v}) = ∅ and consider the function g for
which g(v) = 2, g(s) = g(s1) = g(w) = 0 and g(h) = g(h1) = g(hw) = 1 and
g(u) = f(u) for u ∈ V (T ) \ {v, s, h, s1, h1, w, hw}. It can be easily checked that g
is an OIRDF on T and that w(g) < w(f) = γoiR(T ), a contradiction.

In this sense, we may assume N(w)∩ (SS(T ) \ {v}) 6= ∅ and we consider the
tree T ′ = T − {h, s, v, s1, h1}. In T ′, the vertex w is also a weak support vertex.
Moreover, we claim that the γoiR(T )-function f restricted to V (T ′), say f ′, is a
γoiR(T

′)-function. It is clear that f ′ is an OIRDF on T ′. We consider a γoiR(T
′)-

function g′ and suppose that w(g′) < w(f ′) = γoiR(T ) − 4. Now, we consider
the function g on T , defined by g(v) = 2, g(s) = g(s1) = 0, g(h) = g(h1) = 1
and g(x) = g′(x) for every x ∈ V (T ′). We observe that g is an OIRDF on T

satisfying that w(g) = w(g′) + 4 < w(f ′) + 4 = γoiR(T ), a contradiction. Thus,
f ′ = (V ′

0 , V
′

1 , V
′

2) is a γoiR(T
′)-function with V ′

1 = ∅. So, T ′ is a VC-Roman tree,
and by inductive hypothesis, T ′ ∈ F .

On the other hand, let f ′′ be a γnoiR(T
′, w)-function and we consider the

function g′′ on T , defined by g′′(v) = 2, g′′(s) = g′′(s1) = 0, g′′(h) = g′′(h1) = 1
and g′′(x) = f ′′(x) for every x ∈ V (T ′). We observe that g′′ is an OIRDF on
T , and so, we obtain γoiR(T

′) + 4 = γoiR(T ) ≤ w(g′′) = γnoiR(T
′, w) + 4. Thus,

γoiR(T
′) ≤ γnoiR(T

′, w), which means w ∈ Sns
w (T ′). Since T can be obtained from

T ′ by operation F5, we deduce that T ∈ F .

Case 1.3. |N(v)| > 3. Let N(v) = {s, w, s1, . . . , sr} with r ≥ 2. As |Ss(T )| =
0 and the neighbors of v are only support vertices, we assume N(si) ∩ L(T ) =
{hi} for 1 ≤ i ≤ r. By the maximality of P (h, h′), every neighbor of si other
than v is a support with 1 ≤ i ≤ r. If there exists a support neighbor of si
for some i, other than v, then we proceed with si instead of s, to construct
a function g as in Case 1.1, and obtain a contradiction. Thus, it follows that
|N(si)| = 2 for 1 ≤ i ≤ r. Now, we consider the function g for which g(v) = 2,
g(s) = g(si) = 0 and g(h) = g(hi) = 1 for 1 ≤ i ≤ r and g(u) = f(u) for
u ∈ V (T )\{v, s, h, s1, h1, . . . , sr, hr}. It can be easily checked that g is an OIRDF
on T and that w(g) < w(f) = γoiR(T ), a contradiction again.

Case 2. |Ss(T )| > 0 and 2|Ss(T )| < |Ls(T )|. Let v be a strong support vertex
satisfying |N(v) ∩ Ls(T )| ≥ 3. Let h ∈ N(v) ∩ Ls(T ) and T ′ = T − h. Since
f(v) = 2 and f(h) = 0, we note that the γoiR(T )-function f restricted to V (T ′) is
an OIRDF on T ′ and so, γoiR(T

′) ≤ f(V (T ′)) = w(f)−f(h) = γoiR(T ). Now, let
g = (V ′

0 , V
′

1 , V
′

2) be a γoiR(T
′)-function satisfying g(v) = 2, which can be claimed

by Proposition 7, since v is a strong support vertex of T ′. It can be checked
that the function g′ on T defined as g′(h) = 0 and g′(x) = g(x) otherwise, is an
OIRDF on T . Thus, γoiR(T ) ≤ w(g′) = γoiR(T

′) and, so γoiR(T ) = γoiR(T
′). It is
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then possible to deduce that g can be understood as the restriction of f to V (T ′)
(for which V ′

1 = ∅). Thus, by Proposition 1, it follows that T ′ is a VC-Roman
tree. By inductive hypothesis, T ′ ∈ F , and since T can be obtained from T ′ by
operation F1, we obtain that also T ∈ F .

Case 3. |Ss(T )| > 0, 2|Ss(T )| = |Ls(T )| and |SS(T )| = 0. In this case, by
Proposition 6, it follows that every support vertex is a strong support vertex.
Let s, s′ be two strong support vertices at the maximum possible distance in T .
It is easy to see that |N(s) ∩ Ss(T )| = 1 (since |SS(T )| = 0 by assumption)
and |N(s) ∩ L(T )| = 2. Let N(s) ∩ L(T ) = {h1, h2} and consider the tree
T ′ = T − {s, h1, h2}. By Proposition 7 and Corollary 8, we can assume f(s) = 2
and, in this sense, we can deduce that the function f restricted to V (T ′), say
f ′ = (V ′

0 , V
′

1 , V
′

2) is a γoiR(T
′)-function which has V ′

1 = ∅. Thus, by Proposition
1, T ′ is a VC-Roman tree and, by inductive hypothesis, T ′ ∈ F . Since T can be
obtained from T ′ by operation F4, we get T ∈ F .

Case 4. |Ss(T )| > 0, 2|Ss(T )| = |Ls(T )| and |SS(T )| > 0. Let h, h′ be two
leaves at the maximum possible distance in T such that there is v ∈ SS(T ) ∩
P (h, h′) with d(v, h) = 2 or d(v, h′) = 2. Without loss of generality assume that
d(v, h) = 2. Let s be the support vertex adjacent to h and assume T is rooted
at h′. Note that N(v) ⊂ S(T ) (since SS(T ) ⊂ V0) and |N(v)| ≥ 2. We have now
some possible scenarios.

Case 4.1. |N(v)| = 2 and |N(s) ∩ S(T )| ≥ 1. If there exists a vertex
r ∈ N(s) ∩ S(T ) such that N(r) ∩ L(T ) = {hr} (r is not a strong support), then
the function g = ((L(T )\{hr})∪{r}, {hr}, S(T )\{r}) is an OIRDF on T satisfying
that w(g) < w(f) = γoiR(T ), a contradiction. Thus, N(s)∩S(T ) ⊂ Ss(T ) (every
support neighbor of s is a strong support). Now, this fact together with the
maximality of P (h, h′) allows to claim that there is a subtree Tq, with q ∈ N(s),
which is a tree whose vertices are only strong support vertices: the vertex q itself
together with other k ones, say r1, r2, . . . , rk, (notice that such vertices belong to
Ss(T )) where |N(rk)∩S(Tq)| ≥ 1, and leaves such that N(rk)∩L(Tq) = {hk1 , hk2}
(since 2|Ss(T )| = |Ls(T )|). Moreover, note that there is at least one of such strong
supports, say rj , such that |N(rj) ∩ S(Tq)| = 1.

If k ≥ 1, then the strong support rk is adjacent to another strong support
(which could be the vertex q). Thus, by using a similar procedure as in Case 3
and, without loss of generality, assuming that rk satisfies |N(rk)∩S(Tq)| = 1, we
obtain that T ′ = T − {rk, hk1 , hk2} is a VC-Roman tree. Thus, by the inductive
hypothesis, T ′ ∈ F . Since T can be obtained from T ′ by operation F4, we get
T ∈ F .

On the other hand, assume that k = 0. Let N(s) ∩ S(T ) = {q} and let
hq1 , hq2 ∈ N(q) ∩ L(T ). Let T ′ = T − {q, hq1 , hq2}. We note that f restricted
to V (T ′), say f ′ = (V ′

0 , V
′

1 , V
′

2), is an OIRDF on T ′, and so γoiR(T
′) ≤ w(f) −
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(f(q) + f(hq1) + f(hq2)) = γoiR(T ) − 2. Now, suppose that f ′ restricted to
V (T ′) is not a γoiR(T

′)-function. Let g be a γoiR(T
′)-function. It follows that

w(g) = γoiR(T
′) < f(V (T ′)) = γoiR(T ) − 2. Moreover, we consider the function

g′ such that g′(x) = g(x) for every x ∈ V (T ′) and g′(q) = 2, g′(hq1) = g′(hq2) = 0.
It is easy to see that g′ is an OIRDF on T satisfying that w(g′) = w(g) + 2 =
γoiR(T

′)+2 < γoiR(T ), a contradiction. Thus, as V
′

1 ⊂ V1 = ∅, and by Proposition
1, it follows that T ′ is a VC-Roman tree. By inductive hypothesis T ′ ∈ F .

Now, we may assume s ∈ Sw(T
′) (otherwise, if s ∈ Ss(T

′), then T can be
obtained from T ′ by operation F4, and we obtain T ∈ F), and we consider a
γnoiR(T

′; s)-function g. Notice that g(s) = 0 and g(h) = g(v) = 1. Now, we
consider the function g′ on T ′ defined by g′(s) = 2, g′(h) = g′(v) = 0 and
g′(x) = g(x) for every x ∈ V (T ′) \ {h, s, v}. We notice that g′ is an OIRDF on
T ′ and so, γoiR(T

′) ≤ γnoiR(T
′; s). Therefore, s ∈ Sns

w (T ′), and since T can be
obtained from T ′ by operation F4, we obtain that T ∈ F .

Case 4.2. |N(v)| = 2, |N(s) ∩ S(T )| = 0 and s ∈ Ss(T ). Hence, by the
maximality of P (h, h′) and since 2|Ss(T )| = |Ls(T )|, it must happen that N(s) =
{h, h1, v} where h1 is a strong leaf. Let T ′ = T − {h, h1, s}. We note that f

restricted to V (T ′) is an OIRDF on T ′, and so γoiR(T
′) ≤ f(V (T ′)) = w(f) −

(f(h) + f(h1) + f(s)) = γoiR(T ) − 2 (according to the choice of f). Let g′ be a
γoiR(T

′)-function. Since v has degree two in T and is adjacent to a support vertex
w other than s, the vertex v is a strong leaf and w is a strong support in T ′. Hence,
by Proposition 7 and Corollary 8, we may consider that g′(w) = 2 and g′(v) = 0.
Let the function g on T be such that g(x) = g′(x) for every x ∈ V (T ′), g(s) = 2
and g(h) = g(h1) = 0. It is easy to see that g is an OIRDF on T satisfying that
γoiR(T ) ≤ w(g) = w(g′)+ 2 = γoiR(T

′)+ 2, and so γoiR(T
′) = γoiR(T )− 2. Thus,

the function g′ = (V ′

0 , V
′

1 , V
′

2), which is a γoiR(T
′)-function, can be understood as

f restricted to V (T ′). Consequently, as V ′

1 ⊂ V1 = ∅, by Proposition 1, it follows
that T ′ is a VC-Roman tree and, by inductive hypothesis T ′ ∈ F . Since T can
be obtained from T ′ by operation F2 and F1, we obtain T ∈ F .

Case 4.3. |N(v)| = 2, |N(s)∩ S(T )| = 0 and s ∈ Sw(T ). Let T
′ = T −{s, h}

and let f ′ = (V ′

0 , V
′

1 , V
′

2) be the restriction of f to V (T ′). Notice that f ′ is an
OIRDF, and so γoiR(T

′) ≤ w(f ′) = f(V (T ′)) = w(f)−(f(s)+f(h)) = γoiR(T )−2.
Let s′ be the other support vertex adjacent to v. It is not difficult to see that s′ is
a strong support vertex in T ′, since s′ is a support in T , and also v becomes a leaf
in T ′, which is also adjacent to s′. Also v ∈ Ls(T

′). Suppose that f restricted to
V (T ′) is not an OIRDF of minimum weight on T ′. By Proposition 7, there exists
a γoiR(T

′)-function g′ satisfying g′(s′) = 2 and g′(v) = 0. Also, it is satisfied
w(g′) < w(f ′) = f(V (T ′)) = γoiR(T )− 2. Consider now the function g such that
g(x) = g′(x) for every x ∈ V (T ′), g(s) = 2 and g(h) = 0. Thus, it is easy to see
that g is an OIRDF on T satisfying that w(g) = w(g′) + 2 < f(V (T ′)) + 2 =
γoiR(T ), a contradiction. Therefore, f restricted to V (T ′) is a γoiR(T

′)-function.
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Since V ′

1 ⊂ V1 = ∅, by Proposition, 1, it follows that T ′ is a VC-Roman tree. By
inductive hypothesis, it is known that T ′ ∈ F and, since T can be obtained from
T ′ by operation F2, we deduce that T ∈ F .

Case 4.4. |N(v)| > 2 and |N(s) ∩ S(T )| ≥ 1. We proceed analogously to
Case 4.1 to obtain that T ∈ F .

Case 4.5. |N(v)| > 2, |N(s) ∩ S(T )| = 0 and s ∈ Ss(T ). Assume N(s) ∩
L(T ) = {h, h1} (since s is a strong support). Let T ′ = T −{s, h, h1}. Notice that
v ∈ SS(T ′) since v ∈ SS(T ). Also, note that f restricted to V (T ′) is an OIRDF
on T ′, and so γoiR(T

′) ≤ f(V (T ′)) = w(f)− (f(s)+ f(h)+ f(h1)) = γoiR(T )− 2.
Let g′ be a γoiR(T

′)-function and consider the function g such that g(x) = g′(x)
for every x ∈ V (T ′), g(s) = 2 and g(h) = g(h1) = 0. We observe that g is
an OIRDF on T satisfying that γoiR(T ) ≤ w(g) = w(g′) + 2 = γoiR(T

′) + 2,
which leads to γoiR(T ) = γoiR(T

′) + 2. Also, by Observation 9, we see that
α(T ′) = α(T ) − 1. From these above equalities and the fact that T is a VC-
Roman tree, we get γoiR(T

′) = 2α(T ′) , which implies that T ′ is a VC-Roman
tree. By the inductive hypothesis T ′ ∈ F . In addition, since T can be obtained
from T ′ by operation F3, we obtain that T ∈ F .

Case 4.6. |N(v)| > 2, |N(s) ∩ S(T )| = 0 and s ∈ Sw(T ). Note that N(v) ⊂
S(T ). We can consider that N(v) = {u, s, s1, s2, . . . , sr} with r ≥ 1 where u, s ∈
P (h, h′) ∩ S(T ) and for all i ∈ {1, 2, . . . , r}, it follows that si is a support vertex
with N(si) = {v, hi} and hi is a leaf adjacent to si. Notice that, if there is one of
such support vertices, say si, with |N(si)| > 2, then by the maximality of P (h, h′)
it follows that N(si) ⊂ S(T ) ∪ L(T ), and by using some similar procedures as
above we get the desired results. These are Case 4.4 if |N(si)∩S(T )| ≥ 1, or Case
4.5 if |N(si) ∩ S(T )| = 0 and s ∈ Ss(T ). Thus, without loss of generality we can
make the previous assumption concerning the degrees of the supports s1, . . . , sr.

Since T is a VC-Roman tree, it must happen r = 1. Otherwise, if r > 1,
then we consider a function g on T , satisfying g(v) = 2, g(s) = g(s1) = g(s2) =
· · · = g(sr) = 0, g(h) = g(h1) = g(h2) = · · · = g(hr) = 1, and g(x) = f(x)
for every vertex x ∈ V (T ) \ {v, s, s1, h1, . . . , sr, hr}. Clearly, g is an OIRDF
on T for which w(g) < w(f) = γoiR(T ), and this is a contradiction. Thus,
|N(v)| = {u, s, s1} and let T ′ = T − {v, s, h, s1, h1}. We also notice that u ∈
S(T ′) (since u ∈ S(T )), and that f restricted to V (T ′) is an OIRDF on T ′. So,
γoiR(T

′) ≤ f(T ′) = w(f) − (f(v) + f(s) + f(h) + f(s1) + f(h1)) = γoiR(T ) − 4.
Now, suppose u ∈ Ss(T

′).

Let g′ be a γoiR(T
′)-function. By Proposition 7, we know that g′(u) =

2. Consider the function g such that g(x) = g′(x) for every x ∈ V (T ′) and
g(v) = 0, g(s) = g(s1) = 2 and g(h) = g(h1) = 0. It is easy to see that g is an
OIRDF on T satisfying that γoiR(T ) ≤ w(g) = w(g′) + 4 = γoiR(T

′) + 4. Thus
γoiR(T ) = γoiR(T

′) + 4. By Observation 9, we also get that α(T ′) = α(T ) − 2.
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Since γoiR(T ) = 2α(T ) (T is a VC-Roman tree), we deduce γoiR(T
′) = 2α(T ′),

and this implies T ′ is a VC-Roman tree and by inductive hypothesis T ′ ∈ F .
Since T can be obtained from T ′ by operation F5, we obtain that T ∈ F .

Finally, suppose u ∈ Sw(T
′), and consider a γnoiR(T

′;u)-function g′. Notice
that in such case g′(u) = 0. Let g be a function on T defined by g(v) = 2, g(s) =
g(s1) = 0, g(h) = g(h1) = 1 and g(x) = g′(x) for every x ∈ V (T )\{h, s, h1, s1, v}.
We notice that g is an OIRDF on T , and so, γoiR(T

′)+4 = γoiR(T ) ≤ γnoiR(T
′;u)+

4. Thus, γoiR(T
′) ≤ γnoiR(T

′;u), which implies that u ∈ Sns
w (T ′). Since T can be

obtained from T ′ by operation F5, we obtain that T ∈ F , which completes all
the cases of the proof.

As an immediate consequence of Lemmas 10 and 11, we have the desired
characterization, which is the goal of this article.

Theorem 12. Let T be a tree. Then T is a VC-Roman tree if and only if T ∈ F .
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