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Abstract

A subset of vertices in a graph G is a total dominating set if every vertex
in G is adjacent to at least one vertex in this subset. The total domination
number of G is the minimum cardinality of any total dominating set in G

and is denoted by γt(G). A total dominating set of G having nonempty
intersection with all the independent sets of maximum cardinality in G is
an independent transversal total dominating set. The minimum cardinality
of any independent transversal total dominating set is denoted by γtt(G).
Based on the fact that for any tree T , γt(T ) ≤ γtt(T ) ≤ γt(T ) + 1, in
this work we give several relationships between γtt(T ) and γt(T ) for trees
T which are leading to classify the trees which are satisfying the equality in
these bounds.
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1. Introduction

Researches concerning domination and/or independence in graphs are very fre-
quently presented by several researchers for some decades. One common kind of
investigation deals with studies on domination and independence properties of
trees, and among these investigations common results concern finding character-
izations (constructive, algorithmic or even theoretical) of the trees satisfying a
determined property or achieving a given value of one invariant. As some recent
examples, we cite for instances [1, 5, 7], although there is a long list of them
throughout the literature. In the present article, we continue the research in this
issue by finding several relationships between the independent transversal total
domination number and the total domination number of trees.

Throughout this work we consider G = (V,E) as a simple graph of order
n and size m. That is, graphs that are finite, undirected, and simple. Given a
vertex v of G, NG(v) represents the open neighborhood of v, i.e., the set of all
neighbors of v in G and the degree of v is d(v) = |NG(v)|. The minimum and
maximum degrees of G are denoted by δ(G) and ∆(G), respectively. For any two
vertices u and v, the distance d(u, v) between u and v is the minimum number of
edges on a path between u and v. Given a set of vertices S of G, we use G − S

to denote the graph obtained from G by removing all the vertices of S and the
edges incident with them. If S = {v} for some vertex v, then we simply write
G− v. Also, the subgraph of G induced by D ⊂ V will be denoted by G[D].

A set D ⊂ V (G) is a total dominating set of G if every vertex in V (G) is
adjacent to at least one vertex in D. The total domination number of G is the
minimum cardinality of any total dominating set of G and is denoted by γt(G).
A γt(G)-set is a total dominating set of cardinality γt(G). For more information
on total domination see the recent book [6] or the latest survey [4].

We now consider a kind of partial total domination version in a graph G.
Consider A ⊂ V (G) is a given set of vertices of G. We say that DA ⊂ V (G) is a
total dominating set with respect to A in G (from now on, an A-total dominating
set in G for short), if every vertex in A is adjacent to at least one vertex in DA

(note that there is no inclusion relation between A and DA, i.e., not necessarily
DA ⊂ A nor A∩DA 6= ∅ and so on). The total domination number with respect to
A in G (from now on, A-total domination number in G for short), is the minimum
cardinality of any A-total dominating set in G, and is denoted by γt(A). A γt(A)-
set is an A-total dominating set in G of cardinality γt(A). Clearly, if A = V (G),
then the A-total domination number becomes the standard total domination
number.

In other words, definitions above can be roughly understood as follows. A
γt(A)-set DA is a set of minimum cardinality in G that dominates every vertex
of A. Every vertex from A ∩DA must have a neighbor in DA, but a vertex from
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(V (G) \ A) ∩ DA does not need to have a neighbor in DA. Moreover, one does
not need to dominate vertices from V (G) \ (A∪DA) with DA, although it could
happen.

A set S of vertices is independent if S induces an edgeless graph. An inde-
pendent set of maximum cardinality is a maximum independent set of G. The
independence number of G is the cardinality of a maximum independent set of
G and is denoted by β(G). An independent set of cardinality β(G) is called a
β(G)-set.

A total dominating set of G which intersects every independent set of max-
imum cardinality in G is called an independent transversal total dominating set.
The minimum cardinality of an independent transversal total dominating set is
called the independent transversal total domination number of G and is denoted
by γtt(G). An independent transversal total dominating set of cardinality γtt(G)
is a γtt(G)-set, see [2].

Let T be a tree. A leaf of T is a vertex of degree one. A support vertex of
T is a vertex of degree at least two adjacent to a leaf, and a semi-support vertex
is a vertex adjacent to a support vertex which is not a leaf or a support vertex.
By an isolated support vertex of T we mean an isolated vertex of the subgraph
induced by the support vertices of T . The set of leaves is denoted by L(T ), the
set of support vertices is denoted by S(T ) and the set of semi-support vertices
is denoted by SS(T ). Moreover, S∗(T ) is the set of isolated support vertices of
T , L∗(T ) represents the set of leaves adjacent to vertices of S∗(T ) and the set
SS∗(T ) contains all semi-support vertices adjacent to vertices of S∗(T ) which are
not adjacent to any vertex of S(T ) \ S∗(T ).

The independent transversal total domination number of a graph G has re-
cently been introduced in [2], where several of its combinatorial and compu-
tational properties were presented. Among them, interesting bounds in terms
of γt(G) and δ(G) were proved for γtt(G), namely, for any graph G, γt(G) ≤
γtt(G) ≤ γt(G) + δ(G). A realization result concerning such parameter was also
proved. That is, for every positive integers a, b, c with a ≤ b ≤ a+ c, there exists
a graph G of minimum degree δ(G) = c such that γt(G) = a and γtt(G) = b. An
interesting particular case of the previous bound stands up for the class of tree
graphs. Clearly, since δ(T ) = 1 for any tree T , this bound leads to the following
sandwich-style result already presented in [2].

Observation 1 [2]. If T is a tree on at least two vertices, then

γt(T ) ≤ γtt(T ) ≤ γt(T ) + 1.

One can immediately think into classifying the trees into two types, according
to which value for the independence transversal total domination number they
achieve. In this sense, an open problem concerning characterizing the trees T for
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which either γtt(T ) = γt(T ) or γtt(T ) = γt(T )+1 is satisfied was already presented
in [2]. It is therefore our goal to present conditions which are characteristic for
these two classes of trees and which bring more insight to problems that occurs
dealing with it.

In concordance with this objective, in this paper we assume that |S(T )| ≥ 2
since the case S(T ) = 0 (T is a P2 and γtt(T ) = γt(T ) = 2) and S(T ) = 1 (T is
a star Sn and γtt(T ) = γt(T ) = 2) are straightforward.

2. Relating γt(T ) and γtt(T ) for a Tree T

In order to easily proceed with our exposition from now on we say that a tree T

belongs to the family T0, if γtt(T ) = γt(T ) or T is in the family T1, if γtt(T ) =
γt(T )+1. In Figure 1 we show two examples of trees T6 and T7 where T6 ∈ T1 and
T7 ∈ T0. For T6 note that the set D = {s1, s2} is a unique γt(T6)-set and there
is a unique β(T6)-set formed by the set H = {h1, h2, h3, h4}. Since D ∩H = ∅,
S = D∪{h1} is a γtt(T6)-set and γtt(T6) = γt(T6)+ 1. On the other hand, for T7

we note that the set D = {s1, s2, ss} is a unique γt(T7)-set and there is a unique
β(T7)-set formed by the H = {h1, h2, h3, h4, ss}. Since D ∩ H = {ss}, D is a
γtt(T7)-set, which leads to γtt(T7) = γt(T7).

h2

h1

s1 s2

h3

h4

The graph T6

h2

h1

s1 ss s2

h3

h4

The graph T7

Figure 1. A tree T6 from a family T1 and a tree T7 from a family T0.

Next we present some primary results (some of them are already known),
which will be useful later.

Lemma 2 [3]. For any connected graph G with diameter at least three, there
exists a γt(G)-set that contains no leaves of G.

Observation 3. If v is a support vertex of a tree T , then v is in every γt(T )-set.

The following lemma is obvious and we state it without a proof.

Lemma 4. If v is a leaf of a tree T , then every β(T )-set contains either v or the
support adjacent to v.
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Corollary 5. If T is a tree of order n ≥ 3, then there exists a β(T )-set containing
all the leaves of T .

In contrast with Lemma 2, Observation 3 and Lemma 4 imply that for every
tree T from T1, every γt(T )-set must be without leaves. Otherwise, there exists a
γt(T )-set that contains some leaves and its support vertices, and by Lemma 4, we
have that T ∈ T0. Notice that the above condition is trivially fulfilled whenever
S∗(T ) = ∅, and one can expect more problems if S∗(T ) 6= ∅. In concordance with
this, we next make a separation of the study in the cases where S∗(T ) = ∅ or
S∗(T ) 6= ∅.

2.1. The tree T is without isolated support vertices

In this subsection we deal with trees for which S∗(T ) = ∅. This means that
every support vertex has a neighbor among the support vertices, and in view
of Observation 3, we need to consider vertices in V (T ) \ (L(T ) ∪ S(T )). The
following theorem describes these relationships.

Theorem 6. Let T be a tree of order at least four with S∗(T ) = ∅, let F =
T − (L(T ) ∪ S(T )) and let A = V (F ) \ SS(T ). The tree T belongs to T1 if
and only if for every γt(A)-set DA in F there exists a β(F )-set B such that
B ∩DA = ∅.

Proof. Let T be a tree of order at least four with S∗(T ) = ∅. By Observation 3,
every support vertex is in every γt(T )-set. Since S

∗(T ) = ∅, every support vertex
has a support vertex as a neighbor and every support vertex is totally dominated
by every γt(T )-set. Let F = T − (L(T ) ∪ S(T )) and A = V (F ) \ SS(T ).

Suppose first that for every γt(A)-set DA in F there exists a β(F )-set B

such that B ∩ DA = ∅. Let DA be any γt(A)-set in F . We will show that
D = DA ∪ S(T ) is a γt(T )-set. As already mentioned, every support vertex is
dominated by another support vertex and hence by D. Clearly, every leaf is
adjacent to its support vertex and therefore, also dominated by D. Also, every
vertex from A is adjacent to a vertex from DA by the definition. Finally, every
vertex from SS(T ) is also adjacent to a support vertex which is in D. Altogether,
D is a total dominating set of T . On the other hand, all vertices from S(T ) must
be in any γt(T )-set and all vertices that have no neighbor in S(T ) are in A. By
the definition of a γt(A)-set in F , there exists no set of smaller cardinality that is
an A-total dominating set in F . Hence, D is a γt(T )-set. Let now Q = B∪L(T ).
Clearly, Q is an independent set, as B ⊂ V (F ) and there are no edges between
leaves of T and vertices of F . Moreover, Q is a β(T )-set because B is a β(F )-set
and by Corollary 5. Now, B ∩ DA = ∅ implies that Q ∩ D = ∅ and therefore,
γtt(T ) > γt(T ). By Observation 1 we have γtt(T ) = γt(T ) + 1 and T ∈ T1.

Let now T ∈ T1, which implies that γtt(T ) = γt(T ) + 1. By Observation 1
and the definition of class T1, for every γt(T )-set D there exists a β(T )-set Q such
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that D ∩ Q = ∅. As all support vertices are in D by Observation 3, all leaves
must be in Q by Lemma 4 and maximality of Q. We claim that DA = D ∩ V (F )
and B = Q ∩ V (F ) are the desired γt(A)-set and β(F )-set, respectively. Clearly,
B ∩ DA = ∅ follows immediately from D ∩ Q = ∅. Also, DA is an A-total
dominating set in F , since D is a total dominating set of T , and there are no
edges between vertices of A and V (T )\V (F ). If DA is not a γt(A)-set in F , then
there exists a set D′

A which is a γt(A)-set in F with |D′

A| < |DA|. This yields a
contradiction with D being a γt(T )-set, since D′

A ∪ S(T ) is a total dominating
set of T of cardinality less than |D|. Hence, DA is a γt(A)-set in F . Similarly,
if B is not a β(F )-set, then there exists an independent set B′ of V (F ) such
that |B| < |B′|. Again this yields a contradiction with B being a β(F )-set,
since L(T ) ∪ B′ is an independent set of larger cardinality than Q. This final
contradiction ends the proof.

We remark that the A-domination features used in Theorem 6 concern the
subgraph F of the tree T , namely DA is an A-total dominating set in F , but no
relationship with vertices in V (T )\V (F ) exists. We next observe some particular
case of the theorem above.

Corollary 7. Let T be a tree of order at least four with S∗(T ) = ∅. If V (T ) =
L(T ) ∪ S(T ) ∪ SS(T ), then T belongs to T1.

Proof. Since V (T ) = L(T ) ∪ S(T ) ∪ SS(T ), the set A from Theorem 6 is an
empty set. Hence the condition of Theorem 6 is trivially fulfilled and T ∈ T1.

Notice that a special case of the corollary above occurs also when SS(T ) = ∅,
which will be discussed in Theorem 12, while particularizing some cases of the
main results of this work. By Observation 1, a tree T is either in T1 or in T0.
The next theorem follows directly from negation of condition of Theorem 6.

Theorem 8. Let T be a tree of order at least four with S∗(T ) = ∅, let F =
T − (L(T ) ∪ S(T )) and let A = V (F ) \ SS(T ). The tree T belongs to T0 if and
only if there exists a γt(A)-set DA in F such that for every β(F )-set B it follows
B ∩DA 6= ∅.

2.2. The tree T contains isolated support vertices

In this part we consider trees with S∗(T ) 6= ∅. An important difference can occur
in this case. Namely, it can happen that there exists a γt(T )-set which contains
a leaf. Such a case immediately implies that T ∈ T0 by Lemma 4. Therefore
the following terminology is natural. A tree T is a good tree, if there exists a
γt(T )-set which contains at least one leaf, and T is a bad tree otherwise, that is,
every γt(T )-set is without leaves. The next theorem and its proof are similar to
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Theorem 6 and its proof, but they contain some important differences, mainly
because the definitions of F and A are different from that ones of Theorem 6.

Theorem 9. Let T be a tree of order at least four with S∗(T ) 6= ∅, let F =
T − ((L(T )\L∗(T ))∪ (S(T )\S∗(T ))) and let A = V (F )\ (SS(T )\SS∗(T )). The
tree T belongs to T1 if and only if T is a bad tree and for every a γt(A)-set DA

in F there exists a β(F )-set B such that B ∩DA = ∅.

Proof. Let T be a tree of order at least four with S∗(T ) 6= ∅. By Observation 3,
every support vertex is in every γt(T )-set. Let F = T − ((L(T )\L∗(T ))∪ (S(T )\
S∗(T ))) and let A = V (F ) \ (SS(T ) \ SS∗(T )).

Suppose first that T is a bad tree and for every γt(A)-set DA in F there exists
a β(F )-set B such that DA ∩ B = ∅. Let DA be any γt(A)-set in F . We will
show that D = DA ∪ S(T ) is a γt(T )-set. As already mentioned, every support
vertex which is not in S∗(T ) is dominated by another support vertex, and hence,
by D. Clearly, every leaf is adjacent to its support vertex, and therefore, also
dominated by D. Also, every vertex from A is adjacent to a vertex from DA

by the definition (recall that also vertices from S∗(T ) are in A). Finally, every
vertex from SS(T ) is also adjacent to a support vertex which is in D. Altogether,
D is a total dominating set of T . On the other hand, all the vertices from S(T )
must be in any γt(T )-set and all vertices that have no neighbor in S(T ) \ S∗(T )
are in A. By the definition of the γt(A)-set in F , there exists no set of smaller
cardinality than DA, which is an A-total dominating set in F . Because there is
no edge between vertices of A and vertices of S(T )\S∗(T ), they have no influence
on any γt(A)-set in F . Hence, D is a γt(T )-set. Moreover, D ∩ L∗(T ) = ∅, since
T is a bad tree. Let now S = B ∪ (L(T ) \L∗(T )) (notice that by the maximality
of B, and because B ∩ DA = ∅, all leaves from L∗(T ) must be in B). Clearly,
S is an independent set as B ⊂ V (F ), and there are no edges between leaves
in L(T ) \ L∗(T ) of T and vertices of F . Moreover, S is a β(T )-set because B

is a β(F )-set and by Corollary 5. Now, B ∩ DA = ∅ implies that S ∩ D = ∅,
and therefore, γtt(T ) > γt(T ). By Observation 1 we have γtt(T ) = γt(T ) + 1 and
T ∈ T1.

Let now T ∈ T1, which implies that γtt(T ) = γt(T ) + 1. By Observation 1
and by the definition, for every γt(T )-set D there exists a β(T )-set S such that
D ∩ S = ∅. By Lemma 4, D contains no leaves and T is therefore a bad tree.
As all support vertices are in D by Observation 3, it follows that all leaves must
be in S, by Lemma 4 and maximality of S. We claim that DA = D ∩ V (F )
and B = S ∩ V (F ) are the desired γt(A)-set in F and β(F )-set, respectively.
Clearly, B ∩DA = ∅ follows immediately from D∩S = ∅. Also, DA is an A-total
dominating set in F , since D is a total dominating set of T and there are no
edges between vertices of A and S(T ) \ S∗(T ). If DA is not a γt(A)-set in F ,
then there exists a set D′

A which is a γt(A)-set in F with |D′

A| < |DA|. This
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yields a contradiction with D being a γt(T )-set, since the set D
′

A∪S(T ) is a total
dominating set of T of cardinality less than D. Hence, DA is a γt(A)-set in F .
Similarly, if B is not a β(F )-set, then there exists an independent set B′ of V (F )
such that |B| < |B′|. Again this yields a contradiction with B being a β(F )-set,
since (L(T )\L∗(T ))∪B′ is an independent set of larger cardinality than S. This
final contradiction completes the proof.

Since the result above is mainly based on bad trees, it would be desirable to
describe their properties in order to give more insight into their structure. This
is next presented.

Proposition 10. Let T be a tree with S∗(T ) 6= ∅. The tree T is a bad tree if and
only if for every vertex v ∈ S∗(T ) and for every u ∈ N(v) ∩ SS(T ) ∩ D, there
exists x ∈ N(u) \ {v} with N(x) ∩D = {u}, for every γt(T )-set D.

Proof. Let T be a bad tree, let D be a γt(T )-set and let v ∈ S∗(T ). Since T is
a bad tree, leaves adjacent to v are not in D and so, v is totally dominated by
at least one of its semi-support vertices, say u (that is u ∈ D). If all vertices at
distance two from u, which are not neighbors of v (note that there are neighbors
of v which are at distance two from u, for instance other semi-support vertices
and all leaves adjacent to v) are in D, then (D \ {u}) ∪ {y} is a γt(T )-set for
some leaf y ∈ N(v). This is a contradiction with T being a bad tree. So, u
totally dominates at least one vertex different from v, say x, which is not totally
dominated by any other vertex from D (notice that x may be in D or not). Thus,
one direction of the proof is done.

On the other hand, if, namely, there exists v ∈ S∗(T ) such that there is
u ∈ N(v)∩SS(T )∩D for which every x ∈ N(u)\{v} satisfies that N(x)∩D 6= {u}
for some γt(T )-set D, then D′ = D \ {u} ∪ {y} is also a γt(T )-set for any leaf
y ∈ N(v). Thus, T is a good tree, which completes the proof.

As in the previous subsection, we can obtain a characterization of a tree in
the class T0 by negating the condition of Theorem 9.

Theorem 11. Let T be a tree of order at least four with S∗(T ) 6= ∅, let F =
T − ((L(T ) \L∗(T ))∪ (S(T ) \S∗(T )) and let A = V (F ) \ (SS(T ) \SS∗(T )). The
tree T belongs to T0 if and only if either T is a good tree, or T is a bad tree and
there exists a γt(A)-set DA in F such that B ∩DA 6= ∅ for every β(F )-set B.

2.3. Particularizing some situations

The two main results of the previous subsections are frequently difficult to deal
with while trying to classify a tree to be in T0 or in T1. In concordance with this,
in this subsection, we give some more useful necessary conditions for a tree to be
either in T0 or in T1.
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Theorem 12. Let T be any tree of order n. If |S(T )|+ |L(T )| = n, then T ∈ T1.

Proof. Clearly, |S(T )| + |L(T )| = n implies that every vertex of T is either a
support or a leaf. Also it implies that |L(T )| ≥ |S(T )| because every support is
adjacent to at least one leaf. Therefore, L(T ) is a β(T )-set. On the other hand,
notice that S(T ) is the unique γt(T )-set and does not intersect every β(T )-set,
which means γtt(T ) ≥ γt(T ) + 1. By Observation 1, γtt(T ) = γt(T ) + 1 and
T ∈ T1.

Theorem 13. Let T be a tree of order n such that |S(T )|+ |L(T )| = n− 1.

(a) If |S∗(T )| > 0, then T ∈ T0.

(b) If |S∗(T )| = 0, then T ∈ T1.

Proof. Let B be any β(T )-set. If |S(T )| + |L(T )| = n − 1, then there exists a
unique s′ ∈ SS(T ). Clearly s′ ∈ B.

(a) Let v ∈ S∗(T ). Since v is an isolated support, it cannot be adjacent to
any support. Moreover, since T is not a star (|S∗(T )| > 0), v must be adjacent
to s′. Now, in order to totally dominate v and its adjacent leaves, S(T ) ∪ {s′}
can be chosen as a γt(T )-set, according to Lemma 2. Moreover, S(T ) ∪ {s′}
intersects B, and since B is arbitrary, S(T ) ∪ {s′} is an independent transversal
total dominating set. So γtt(T ) ≤ γt(T ) and by Observation 1, the result follows.

(b) |S∗(T )| = 0 implies that every support is adjacent to at least one other
support. So, S(T ) is a total dominating set, which is also the unique γt(T )-set.
Thus, S(T ) is a γt(T )-set and may not intersect B (in particular it does not
intersect the β(T )-set mentioned in Corollary 5). This means that at least an
extra vertex is needed in any γt(T )-set to be a γtt(T )-set. So, γtt(T ) ≥ γt(T )+1.
By Observation 1, γtt(T ) ≤ γt(T ) + 1, which completes the proof.

From now on, we center our attention on those trees for which |S(T )| +
|L(T )| < n − 1. Herein we denote by P (u, v) the set of vertices of the shortest
path between u and v and by Bu,v = P (u, v) ∩ B, where B is a maximum
independent set. Moreover, given a γt(T )-set D that contains no leaves, we set
SSD(T ) = SS(T ) ∩D.

Proposition 14. Let T be a tree such that |S(T )|+ |L(T )| < n− 1 and S∗(T ) =
S(T ). If D is a γt(T )-set that contains no leaves, then for any β(T )-set B

containing all leaves of T , SSD(T ) ∩B 6= ∅ holds.

Proof. Let h1 and h2 be two diametrical leaves of T . Assume the subgraph
induced by P (h1, h2) is h1s1v1 · · · vrs2h2, where h1, h2 ∈ B, s1, s2 ∈ S(T ), and
v1, vr ∈ SS(T ) since S∗(T ) = S(T ). Note that v1 and vr exist because S∗(T ) =
S(T ), |S(T )|+ |L(T )| < n− 1 and h1 and h2 are diametrical.
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Now, suppose that SSD(T ) ∩ B = ∅ for some β(T )-set B containing all
the leaves of T . Thus v1, vr 6∈ B. Let B′

h1,h2
be a maximum independent set

containing h1 and h2 in the subgraph induced by P (h1, h2). It is not difficult to
observe that B′

h1,h2
∩ {v1, vr} 6= ∅, and that |B′

h1,h2
| > |Bh1,h2

|, since v1, vr 6∈ B.
Consider now Ah1,h2

= {b1, . . . , bk} as the set of vertices of degree at least three in
T belonging to B′

h1,h2
, but not to Bh1,h2

. If Ah1,h2
= ∅, then (B \Bh1,h2

)∪B′

h1,h2

is an independent set in T of cardinality larger than |B|, a contradiction. So
Ah1,h2

6= ∅.

Let bi ∈ Ah1,h2
and let hℓ be a leaf of T such that P (bi, hℓ)∩P (h1, h2) = {bi}.

Among all such leaves we choose for hℓ the one that is closest to bi. Moreover,
assume Bbi,hℓ

= {bi, bℓ1 , . . . , bℓq , hℓ}. Notice that, since hℓ ∈ B and SSD(T )∩B =
∅, it follows bℓq 6∈ {sℓ, ssℓ}, where sℓ, ssℓ ∈ P (bi, hℓ) are the support and semi-
support vertices, respectively, with hℓ adjacent to sℓ. Proceeding as above, for a
set B′

bi,hℓ
we observe that B′

bi,hℓ
∩ {sℓ, ssℓ} 6= ∅. Thus, |B′

bi,hℓ
| ≥ |Bbi,hℓ

|.

We continue an analogous procedure and consider the vertices belonging to
a set Abi,hℓ

(in the case that Abi,hℓ
6= ∅). We again construct a set P (zi, hq) in

the manner, where zi ∈ P (bi, hℓ), and repeat the process. Clearly, this procedure
always finish at a finite number of steps, since the graph is finite.

Such process of construction gives at the end an independent set of cardinality
larger than |B| which is not possible. Therefore, it must happen that SSD(T ) ∩
B 6= ∅ for every β(T )-set B containing all leaves of T .

With the result above in mind we give another sufficient condition for clas-
sifying a tree to T0.

Theorem 15. Let T be a tree of order n. If |S(T )|+ |L(T )| < n−1 and S∗(T ) =
S(T ), then T ∈ T0.

Proof. Let D be a γt(T )-set that contains no leaves. Clearly, every support
vertex of T is in D, and for every support vertex s there is a semi-support vertex
ss adjacent to s, which is in D, since S∗(T ) = S(T ). We consider now any
β(G)-set B. If B does not contain all the leaves of T , then B contains at least
one support vertex. So, D ∩ B 6= ∅. Now, if B contains all leaves of T , then by
Proposition 14, B satisfies SSD(T )∩B 6= ∅. So, D∩B 6= ∅ and as a consequence,
D is an independent transversal total dominating set. Therefore, γtt(T ) ≤ γt(G)
and by Observation 1 the equality follows, which leads to T ∈ T0.

A particular case of the result above can be given as follows for a specific
class of trees.

Corollary 16. Let T be a tree different from a star. If the distance between any
two leaves is even, then T ∈ T0.
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Proof. Let the distance between any two leaves of T be even. If two different
support vertices are adjacent, then two leaves attached to them are at distance
three, which is not possible. Therfore, S∗(T ) = S(T ). Moreover, since T is not a
star, it must happen |S(T )|+ |L(T )| < n−1. Hence, Proposition 14 and Theorem
15 lead to T ∈ T0.

We end our exposition with a simple result for the class of trees T such that
|S(T )| + |L(T )| < n − 1 and |S∗(T )| < |S(T )|. Clearly, in such situation, there
are adjacent support vertices. Let Sa(T ) = S(T ) \ S∗(T ), i.e., Sa(T ) is the set of
non-isolated support vertices, let La(T ) be the set of leaves adjacent to a vertex
in Sa(T ), and let SSa(T ) be the set of semi-support vertices adjacent to a vertex
in Sa(T ). By using these sets, the next result is an immediate consequence of
Corollary 7.

Corollary 17. Let T be a tree of order n with |S(T )| + |L(T )| < n − 1. If
V (T ) = La(T ) ∪ Sa(T ) ∪ SSa(T ), then T ∈ T1.
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