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Abstract
In recent years, research has begun to focus on the development of non-resonant elliptical vibration-assisted cutting (EVC)
devices, because this technique offers good flexibility in manufacturing a wide range of periodic microstructures with different
wavelengths and heights. However, existing non-resonant EVC devices for diamond turning can only operate at relatively low
frequencies, which limits their machining efficiencies and attainable microstructures. This paper concerns the design and
performance analysis of a non-resonant EVC device to overcome the challenge of low operational frequency. The structural
design of the non-resonant EVC device was proposed, adopting the leaf spring flexure hinge (LSFH) and notch hinge prismatic
joint (NHPJ) to mitigate the cross-axis coupling of the reciprocating displacements of the diamond tool and to combine them into
an elliptical trajectory. Finite element analysis (FEA) using the mapped meshing method was performed to assist the determi-
nation of the key dimensional parameters of the flexure hinges in achieving high operational frequency while considering the
cross-axis coupling and modal characteristics. The impact of the thickness of the LSFH on the sequence of the vibrational mode
shape for the non-resonant EVC device was also quantitatively revealed in this study. Moreover, a reduction in the thickness of
the LSFH can reduce the natural frequency of the non-resonant EVC device, thereby influencing the upper limit of its operational
frequency. It was also found that a decrease in the neck thickness of the NHPJ can reduce the coupling ratio. Experimental tests
were conducted to systematically evaluate the heat generation, cross-axis coupling, modal characteristics and diamond tool’s
elliptical trajectory of a prototype of the designed device. The test results showed that it could operate at a high frequency of up to
5 kHz. The cross-axis coupling ratio and heat generation of the prototype are both at an acceptable level. The machining
flexibility and accuracy of the device in generating microstructures of different wavelengths and heights through tuning opera-
tional frequency and input voltage have also been demonstrated via manufacturing the micro-dimple arrays and two-tier
microstructured surfaces. High-precision microstructures were obtained with 1.26% and 10.67%machining errors in wavelength
and height, respectively.
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1 Introduction

In the engineering field, the demand for microstructured sur-
faces with tailored physical, chemical and mechanical proper-
ties has recently increased dramatically [1–3]. In tribology, for
instance, certain microstructured surfaces not only reduce fric-
tion [4–6] but also shorten the running-in period of automobile
engines and extend their lifetime [7].

Manufacturing technologies such as laser beam machining
(LBM), electrical discharge machining (EDM), focused ion
beam (FIB) machining, lithography, chemical etching and
vibration-assisted diamond cutting have been adopted to ob-
tain microstructured surfaces. Both LBM and EDM use
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thermal energy to remove material, but EDM mainly compli-
ments electrically conductivematerials, which hinder its wide-
spread use. In addition to its high capital cost and low metal
removal rate, it is difficult to machine highly reflective and
transparent materials by LBM [8, 9]. FIB machining can be
applied to the manufacturing of tailored structures on the order
of tens of nanometres [10, 11]; however, FIB is not industrial
viable due to its extremely lowmaterial removal rate [12]. The
surface finish attainable by lithography and chemical etching
is usually low (in several microns) and neither approach is
eco-friendly [13].

Shamoto and Moriwaki [14] first developed the elliptical
vibration-assisted cutting (EVC) technique that can be used to
mitigate the problem of diamond tool’s chemical wear while
machining ferrous metals [15, 16]. Meanwhile, this technique
has also been applied by many researchers to manufacture
microstructures [17–19], nanostructures [20] and hybrid
micro/nanostructures [21]. Compared with conventional dia-
mond cutting, the intermittent tool/workpiece contact endows
the elliptical vibration-assisted diamond cutting technique
with not only a surface-texturing ability but also chip-
breaking [22] and burr-suppression [23] features. It can, there-
fore, obtain both precision and ultra-precision parts with high
efficiency and low environmental impact [24]. In this ap-
proach, the attainable wavelengths and heights of periodical
microstructures are determined by the operational frequencies
and input voltages for the EVC device.

Based on the operational frequency mode, EVC can be
classified into two types: resonant mode and non-resonant
mode. Resonant EVC vibrators can obtain ultrasonic opera-
tional frequency [25, 26] and large vibration amplitude over
tens of micrometres [27] as a result of the high energy effi-
ciency of the resonant mode. However, resonant EVC devices
can only work under a fixed frequency (i.e., resonant frequen-
cy) and therefore can only machine microstructures with a
fixed wavelength and height [28, 29]. By contrast, non-
resonant EVC devices with tunable operational frequency
and vibration amplitude emerged to overcome the problems
of resonant devices. So far, a large variety of microstructures,
such as Angstrom symbols [30], the “thunderbird” logo [30],
trihedrons [30] and V-grooves [31, 32], have been
manufactured with the aid of non-resonant EVC devices.

In general, piezo actuator-generated vibrations are applied
directly [33] or through flexure hinges [34] to vibration-assisted
cutting tools. For example, Heamawatanachai and Bamberg
[35] developed a 2-dimensional (2-D) vibration-assisted cutting
tool for micromachining, which was driven by a piezoelectric
tube. Although this micromachining tool can generate vibration
with an amplitude of up to 10 μm, its operational frequency can
only get 300 Hz. Zhu et al. [36, 37] developed a 2-D vibration-
assisted cutting tool with a novel Z-shaped flexure hinge that
can reach an operational frequency of 500 Hz. Ahn et al. [38]
proposed a flexure-based non-resonant 2-D vibration-assisted

cutting device, which can be operated at a frequency of 1 kHz.
Han et al. [39] proposed a flexure-based EVC device for dia-
mond turning. The frequency sweep test revealed that this de-
vice could obtain the first natural frequency of up to 1.8 kHz.
Negishi and Dow [40] developed a non-resonant EVC device
for diamond turning with which a high-frequency working
mode at 4 kHz could only be achieved with an additional
cooling system, indicating the vital importance of the thermal
control of the high-frequency non-resonant EVC device. They
also developed another kind of non-resonant EVC device with-
out the cooling system; thus, it could only work at up to 400 Hz
[41]. A 2-D non-resonant vibration cutting tool was recently
developed byWang et al. [42] for surface texturing that claimed
a working bandwidth of up to 6 kHz based on the results of the
frequency sweep test. Nevertheless, it was specially designed
for a three-linear-axis machine set-up which is incapable of
diamond turning.

Thus, in a word, high-frequency (i.e. over 4 kHz) non-
resonant EVC devices for diamond turning are still rare.
This is not only due to the tool and spindle configuration for
diamond turning but also the low structural stiffness of the
existing vibration-assisted cutting devices, especially in the
direction perpendicular to the tool trajectory plane. High-
frequency vibration easily triggers the twisting motion of the
diamond tool in this direction, which severely distorts the
tool’s trajectory. In addition, high-frequency input signals will
increase the heat generated by the piezo actuators due to the
need for a higher power input. Therefore, overheating of the
piezo actuator is another critical problem which must be over-
come because it will worsen the machining performance of the
non-resonant EVC device, and even cause device failure.
Thus, the existing non-resonant EVC devices for diamond
turning can only reach relatively low operational frequency,
which results in low machining efficiencies and hinders their
industrial applications. Moreover, the severe cross-axis cou-
pling between two reciprocating displacements of the dia-
mond tool must be strictly limited, as excessive coupling will
distort the tool’s elliptical trajectory. Consequently, the di-
mensional parameters of the non-resonant EVC device must
be determined reasonably during the design process to strike a
delicate balance between operational frequency, vibration am-
plitude, coupling effect and heat generation. Thus, the devel-
opment of a high-frequency non-resonant EVC device for
diamond turning with an acceptable coupling ratio and heat
generation to meet the urgent need for producing cost-
effective manufactured microstructured surfaces with great
flexibility is a complicated and challenging task and will be
the research focus of this paper.

This paper presents the design and experimental tests of a
flexure-based non-resonant EVC device for diamond turning
microstructured surfaces. A high first natural frequency of up to
5 kHz is achieved, which is higher than most of the existing
non-resonant EVC devices for diamond turning without an
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additional cooling system. Section 2 will explain the principle
of generating microstructured surfaces by the proposed device.
The overall mechanical design and the determination of the key
dimensional parameters for the non-resonant EVC device will
be described in Section 3. Experimental evaluation of the pro-
totype device will be presented in Section 4. Preliminary ma-
chining trials on pure copper to generate the micro-dimple ar-
rays and two-tier microstructures will be presented in Section 5
to demonstrate the effectiveness of this high-frequency non-
resonant EVC device for diamond turning.

2 Principle of generating microstructured
surfaces

Microgroove is a typical structure with application in automo-
bile engine components for reducing friction and improving
lubrication [4]. In conventional diamond turning process,
when the tool feed per revolution is higher than the width of
the manufactured microgrooves, the intact microgrooves
without overlap can be generated on the machined surface.
To further enlarge the area coverage of the microgroove and
strengthen its lubricating performance, a two-tier microstruc-
ture with tunable wavelength and height was introduced in
this paper, as shown in Fig. 1. This kind of structure includes
two tiers: primary microgrooves and secondary sawtooth

structures which can be generated by the non-resonant EVC
device in one cutting step.

As a two-dimensional machining technique, the tool trajec-
tory generated by the non-resonant EVC device can be split
into two displacements in the depth-of-cut (DOC) and cutting
directions which can be described as:

z tð Þ
y tð Þ

� �
¼

A
2
sin 2πft þ φð Þ
B
2
sin 2πftð Þ

2
64

3
75þ 0

Vct

� �
ð1Þ

where z(t) and y(t) are tool displacements in the z- and y-
directions, respectively. A and B are vibration amplitudes of
the diamond tool in corresponding directions. f is the vibration
frequency. φ is the phase lag between two input sinusoidal
signals. Vc is the nominal cutting speed.

In the EVC process, the critical upfeed velocity Vcri is de-
scribed as follow:

Vcri ¼ 2πf A ð2Þ

The mechanism for the generation of the secondary saw-
tooth structure under different nominal cutting speed conditions
is shown in Fig. 2.When Vc is smaller than Vcri, the tool trajec-
tory between two contiguous vibration cycle will overlap. The
dimension of the peaks for the secondary sawtooth structures in
Fig. 2a should satisfy the following equations [43]:
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Fig. 1 Two-tier microstructured
surfaces generated by the non-
resonant EVC device
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where θ1 and θ2 are two angular positions corresponding to two
adjacent peaks on the machined workpiece. At the same time,
the height of the peaks a can be determined by the amplitude of
tool vibration in the DOC direction and the angular position θ1:

a ¼ A
2

1− sin θ1 þ φð Þj jð Þ ð4Þ

However, when Vc is higher than Vcri, the tool trajectory
will not overlap. Thus, the secondary sawtooth structures, as
shown in Fig. 2b, can be obtained. The height a of the periodic
sawtooth structures equals to the vibration amplitude A in the
DOC direction.

No matter in Fig. 2a or Fig. 2b, the wavelength λ is always
determined by the frequency of the tool vibration and the
nominal cutting speed, which is expressed as follow:

λ ¼ 2πVc

ω
¼ Vc

f
¼ πDiN

f
ð5Þ

where N is the spindle speed, and ω is the angular velocity of
the tool vibration. Di is the instantaneous cutting diameter.

In brief, for the non-resonant EVC process, adjusting the
frequency and amplitude of the tool vibration can change the
wavelength and height of the periodic sawtooth structures.
Thus, the two-tier microstructured surfaces can be obtained.

3 Development of the non-resonant EVC
device

3.1 Mechanical design

The design goal for the non-resonant EVC device is that it can
work at a high frequency of up to 5 kHz with an acceptable
level of cross-axis coupling ratio and thermal generation.
Figure 3a shows the schematic 3D model of this cutting de-
vice, and it mainly includes two parts: a tool holder and a
mounting base. Two high-frequency reciprocating displace-
ments are generated by piezo actuators after inputting sinusoi-
dal signals with certain phase lag. Piezo actuators are pre-
loaded by two round end screws which mounted at the bot-
tom. Moreover, low-capacitance piezo actuators were chosen
in case of overheating. As mentioned before, the low-stiffness
structure of non-resonant EVC device limits its operational
frequency. Thus, the combination of the notch hinge prismatic
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Fig. 2 Generation of sawtooth
structures under different nominal
cutting speed: (a) Vc < Vcri, (b)
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joint (NHPJ) and leaf spring flexure hinge (LSFH) was
adopted to improve the structural stiffness and thereby enlarg-
ing the device’s operational frequency. The NHPJ was de-
signed based on the right circular notch hinges. As a high-
precision translational pair, NHPJ guides and transmits two
perpendicular motions to the diamond tool. More importantly,
it can reduce the cross-axis coupling between the two dis-
placements. Therefore, the diamond tool can move relatively
independent in the z- and y-directions simultaneously. In
Fig. 3a, the tool cradle not only works as a diamond tool
holder but also combines two high-frequency reciprocating
motions to form an elliptical trajectory. Slide guide on the
back of the mounting base can adjust the height of the device
easily, so various types of cutting inserts with different tool
geometries can be selected and replaced conveniently. The
high carbon spring steel 65Mn was chosen as the material
for this non-resonant EVC device, due to its high yield
strength required for long service life under cyclic loading.
The mechanical properties of 65Mn are concluded as density
ρ = 7850 kg/m3, Young’s modulus E = 210 GPa and
Poisson’s ratio ν = 0.288. As shown in Fig. 3b, this device
can be mounted on different diamond turning machines via
the tool height adjustor and connecting base. The overall di-
mension of this device is only 54 mm× 46 mm× 43 mm.

To clarify the design process for the non-resonant EVC
device, a flowchart is shown in Fig. 4. The whole process
mainly consists of static modelling and determination of key
dimensional parameters. After establishing the 3Dmechanical
structural model of the cutting device, static modelling using
the mapped meshing finite element analysis (FEA) and math-
ematical method were both adopted. The dimensions of the
thickness of the LSFH and the neck thickness of the NHPJ
were determined considering the effects of modal characteris-
tics and cross-axis coupling, respectively.

3.2 Mathematical and finite element static modelling

Although the current non-resonant EVC devices for diamond
turning can control the tool trajectory precisely, their

operational frequencies are still significantly lower than their
resonant counterparts, due to their low structural stiffness. To
overcome this shortcoming and mitigate the cross-axis cou-
pling at the same time, static modelling using the mathemati-
cal method and mapped meshing finite element method was
performed to guide the determination of key dimensional pa-
rameters for the designed device.

Radius R, neck thickness t and width b1 are three critical
parameters of NHPJ, playing crucial roles in determining its
structural stiffness, as is shown in Fig. 5. With the consider-
ation of the width of the tool insert, the width b1 was chosen to
be 10 mm to increase the structural stiffness in the direction
that is vertical to the tool trajectory plane. The rotary stiffness
Kα of the right circular notch hinges of the NHPJ is given by
Weisbord and Paros [44]:

Kα ¼ 2Eb1
9π

ffiffiffiffi
t5

R

r
ð6Þ

Based on the principle of virtual work, the following equa-
tion can be derived:

W ¼ 1

2
FzDz þ 1

2
FyDy ¼ 1

2
KdDz

2 þ 1

2
KdDy

2 þ ΔUz þ ΔUy

ΔUi ¼ 4ΔU f i ¼ z; yð Þ

(
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whereW is the virtual work done byFz and Fy.ΔUi is the total
rotational energy, and ΔUf is the rotational energy of each
notch hinge. Kd is the stiffness of the LSFH [45]:

Kd ¼ 4Eb2l3

L13
ð8Þ

where b2, l and L1 are the width, thickness and length of the
LSFH, respectively.

The expression ofΔUf is shown in the following equation:

ΔU f ¼ 1

2
Kαθi

2
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where L is the distance between two notch hinges.
The LSFH and NHPJ have the same dimensions in both z-

and y-directions, and the external forces Fz and Fy are equal.
Thus, the equivalent stiffness of the combination of LSFH and
NHPJ in both z- and y-directions can be derived based on Eqs.
(8) and (9):

Keql ¼ Kd þ 4Kα

L2
ð10Þ

Eq. (10) can be used to estimate the equivalent stiffness of
the combination of the LSFH and NHPJ.

In addition to the mathematical method, static finite ele-
ment modelling using ANSYS 18.0 was performed as well.
The bottom surface of the mounting base was set to be fixed
support, as shown in Fig. 6. The cutting and thrust forces in
the vibration-assisted diamond turning are usually in the order
of 10−1 N [46, 47], which are far less than actuation force, so
they are ignored.

Currently, coarse tetrahedral meshes generated by the au-
tomatic meshing method are widely used in previous work for
modelling the non-resonant EVC device [39, 48]. However, as
shown in Fig. 6, more regular hexahedron meshes can be
generated with the aid of the mapped meshing method, which
can increase the modelling accuracy [49–51]. Thus, in the
following section, the mapped meshing FEA was employed

to predict the coupling ratio and modal characteristics of this
non-resonant EVC device to help determine its key dimen-
sional parameters of the NHPJ and LSFH.
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Fig. 5 Schematic and moving
mechanism of the combination of
the LSFH and NHPJ
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Fig. 6 The mapped meshing finite element model for the non-resonant
EVC device
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3.3 Determination of key dimensional parameters

3.3.1 Thickness of the LSFH

The thickness l of the LSFH is a critical dimensional param-
eter which has a significant impact on the equivalent stiffness
and thereby determining the modal characteristics of the non-
resonant EVC device, such as the sequence and vibrational
mode shapes of its natural frequencies. In the process of de-
termining the dimension of the thickness of the LSFH, the
finite element modal analysis was used to identify the natural
frequency of the designed device. The vibrational mode
shapes of the first three natural frequencies are shown in
Fig. 7. In mode shape I, the tool cradle moves in a straight
line along the y-direction denoting the reciprocating motion of
the diamond tool in the cutting direction. On the contrary, in
mode shape II, it moves along the z-direction representing the
movement in the DOC direction. Mode shape III is the unde-
sired mode shape which manifests the twisting of the tool
holder. It is worthwhile to point out that the sequence of the
mode shapes might be different under different thickness of
the LSFH.

The first two mode shapes of this device should be coinci-
dent with the diamond tool’s displacements in the cutting and
DOC directions. The frequencies of the first two orders deter-
mine the upper limit of its operational frequency. Thus, the
value of the thickness l should be chosen to adjust the mode
shape I and mode shape II to be the first two mode shapes of
the designed device and increase its natural frequency as high
as possible. Under different thickness, the modal analysis
identified the sequence of the first three resonant frequencies
of the proposed device. The results are shown in Table 1.

When the thickness is 1.6 mm, the mode shape III is the
first mode shape. With the continuous decrease of the thick-
ness of the LSFH, the mode shapes I and II start to become the
first and the second mode shape, gradually overpassing the
mode shape III. Nevertheless, the resonant frequency

continuously decreases as well, because a smaller thickness
would reduce the equivalent stiffness of the LSFH, especially
in the direction that is perpendicular to the tool vibration
plane. The thickness of the LSFH was confirmed to be
1.3 mm to achieve a higher operational frequency.

3.3.2 Neck thickness of the NHPJ

As mentioned previously, the cross-axis coupling of two cy-
clic displacements generated from piezo actuators could have
a negative effect on the transmission of the non-resonant EVC
device and its machining accuracy. Although the neck thick-
ness of the NHPJ has less impact on modal characteristics, it
has a vital influence on the cross-axis coupling. In this paper,
the degree of the cross-axis coupling is described using the
coupling ratio C. The cross-axis coupling ratios C1 and C2 are
defined in the following equations:

C1 ¼ Δy
Dz

and C2 ¼ Δz
Dy

ð11Þ

whereΔz andΔy are maximum parasitic displacements when
the piezo actuator along the y- or z-direction is actuated only.
Dz and Dy are maximum output displacements in the z- and y-
directions when only one piezo actuator is actuated in the
corresponding direction.

(a) Mode Shape I (b) Mode Shape II (c) Mode Shape III

y

zx

Fig. 7 The first three vibrational mode shapes of the designed device: (a) mode shape I; (b) mode shape II; (c) mode shape III

Table 1 Simulation results of finite element modal analysis

Thickness l (mm) Sequence and frequencies (Hz) of the
first three mode shapes

1.6 III: 16000; I: 16608; II: 18277

1.5 III: 15947; I: 16103; II: 17382

1.4 I: 15462; III: 15861; II: 16412

1.3 I: 14700; II: 15421; III: 15796

1.2 I: 13846; II: 14379; III: 15715
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In this paper, the mapped meshing FEA was carried out to
determine the neck thickness of the NHPJ, which aims to keep
the coupling ratio to an acceptable level. In this analysis, the
radius of the NHPJ is set to be 0.8 mm, considering the attain-
able machining accuracy for the fabrication of the designed
device. The value of neck thickness varies from 0.2 to
0.35 mm, according to the dimensional range in previous re-
searches [39, 42, 48]. The results of the calculated cross-axis
coupling ratio by the FEA are shown in Fig. 8.

As the neck thickness of the NHPJ continuously decreases,
the coupling ratio slumps. The coupling ratio in the cutting
direction is two times higher than that in the DOC direction.
This can be attributed to the beak-shaped tool cradle, which
will deteriorate the degree of coupling in the cutting direction.
Even so, when the neck thickness is 0.2 mm, the coupling
ratio in the cutting direction decreases to be 4.93%. Hence,
considering the manufacturing feasibility, the dimension of
the neck thickness t is confirmed to be 0.2 mm. Several im-
portant dimensional parameters of the non-resonant EVC de-
vice proposed in this paper are given in Table 2.

The equivalent stiffness of the combination of the LSFH
and NHPJ for the designed device in the z- and y-directions is
52.1 N/μm and 50.9 N/μm, based on the results of the mapped
meshing FEA. The small difference can be attributed to the
fact that the tool cradle is not exactly symmetrical. From Eq.
(10), the equivalent stiffness of the combination of the LSFH
and NHPJ was calculated as 56.1 N/μm. The relative stiffness

differences along the z- and y-directions are 7.13% and 9.27%,
indicating good consistency between the mapped meshing
finite element model and the established mathematical model.

4 Experimental results and discussions

4.1 Experimental setup

A prototype of the designed non-resonant EVC device was
manufactured and assembled. The performance of this device
was evaluated through thermal, dynamic and tool trajectory
tests, which would be discussed in the following sections. As
shown in Fig. 9, two excitation signals were generated by a
dual-channel function generator (TGF4042, Aim-TTi) and
then applied to piezo actuators (PSt150, Piezomechanik). In
this process, the low-voltage signals need to be amplified by
the power amplifier (E01.A2, CoreMorrow) before driving the
piezo actuators. The displacements of the diamond tool in the
cutting and DOC directions were captured by two capacitive
sensors (Lion Precision CPL190) whose bandwidth is 15 kHz.
The measurement results were collected and recorded by a
data acquisition card (USB-1608HS, Measurement
Computing), and its sampling frequency is 65 kHz.

4.2 Analysis of heat generation

Heat and temperature management is a crucial problem and
has to be concerned in the first place, as overheating interferes
with the performance and reliability of the piezo actuator. A
long-term operation under high temperature can even damage
the piezo actuators. The heat generation power Ph of each
piezo actuator is expressed as:

Ph ¼ 1

2
KU2Cf ð12Þ

where U and f are the peak-to-peak voltage and the frequency
of input harmonic signal, respectively. C is the capacitance of
the piezo actuator, which is 1.8 μF. K is the proportion of the
average power consumption that is converted into heat.
Negishi [52, 53] reported that, based on the experimental re-
sults, 22% of the electrical power flowing through the actuator
was lost to heat. Thus, considering the extreme condition,K is
chosen to be 0.25 in this paper.

Due to the upper limit of the power amplifier’s drive capa-
bility, there is a strong negative correlation between the
highest operational frequency and the input voltage. Thus,
several tests were carried out to investigate the relationships
between the highest operational frequency, the heat generation
power and the input voltage. The results are illustrated in
Fig. 10.

6.70%

5.00%

3.59%

2.32%

13.64%

10.43%

7.53%

4.93%

0%

5%

10%

15%

0.35 0.3 0.25 0.2

C
o

u
p

li
n
g
 r

at
io

 

Neckness thickness of the NHPJ (mm)

C

C

Fig. 8 Cross-axis coupling ratio under different neck thickness

Table 2 Dimensional
parameters of the
designed non-resonant
EVC device

Parameters Values (mm)

Radius R (NHPJ) 0.8

Neck thickness t (NHPJ) 0.2

Width b1 (NHPJ) 10

Length L (NHPJ) 4.4

Width b2 (LSFH) 5

Thickness l (LSFH) 1.3

Length L1 (LSFH) 5.5
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The voltage of the input signals varies from 12 to 132 V
instead of 150 V to protect the piezo stacks from damage.
With the increase of input voltage, the heat generation power
of the piezo actuator increases, and reaches its maximum val-
ue when the voltage is 132 V. At this moment, the heat gen-
eration power is only 2.74 W, which is competent under an
air-cooled working condition.

4.3 Experimental modal test

In order to investigate the dynamic response and determine the
operational frequency range of the proposed device, a series of
experimental modal tests were carried out using an impact
hammer (PCB Piezotronics 086C03) and accelerometers
(PCB Piezotronics 333B50). The testing results are illustrated
in Fig. 11.

As shown in Fig. 11a, the frequency response of the de-
signed device in the DOC and cutting directions are in good
agreement in the frequency ranges of below 5 kHz and above
6 kHz, except two close response peaks at 5.1 and 5.5 kHz.
This phenomenon indicates that the first natural frequency of
the developed device in the cutting direction is most likely
between 5.1 and 5.5 kHz.

To verify this assumption, the frequency sweep tests were
carried out by setting the input voltage for the piezo actuator in
the cutting direction at 12 V. The frequency swept from 0 to
10 kHz with an interval of 100 Hz. The amplitude-frequency
response is illustrated in Fig. 11b. The results of the frequency
sweep tests are in good agreement with those of the impact
hammer modal test. It can, therefore, identify that the first
natural frequency of the designed device is 5.2 kHz in the
cutting direction, whereas its first natural frequency in the
DOC direction is 8.5 kHz. It is worth mentioning that the
natural frequency obtained from the FEA is higher than those
from experiments. In addition to the manufacturing errors of
the proposed device, imperfect and complicated contacts be-
tween piezo actuators, tool holder and mounting bases are
other reasons for the difference. Nevertheless, the upper limit
of the operational frequency for the designed non-resonant
EVC device was confirmed to be 5 kHz which is slightly
lower than its first natural frequency.

4.4 Evaluation of the coupling effect

The coupling tests were performed by using two sinusoidal
input signals of 500 Hz for both piezo actuators. The two
inputs have the same voltage of 132 V. Please note that only
one piezo actuator was activated in each test, while the piezo
actuator along the other direction has no input signal. The
displacements of the proposed non-resonant EVC device in

DOC 

direction

Cutting

direction

Feed

direction

Non-resonant EVC device

Vacuum chuck

Displacement probes

Function generator

Data acquisition card

Power amplifier

Capacitive sensor

Fig. 9 Experimental setup

Fig. 10 The highest operational frequency and heat generation power of
the non-resonant EVC device under different input voltages
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the cutting and DOC directions were captured, which are
shown in Fig. 12.

As shown in Fig. 12a, when the piezo actuator along the
DOC direction was actuated only, the maximum parasitic
displacement in the cutting direction is 0.08 μm, whereas
the maximum displacement in the DOC direction is
1.70 μm. Likewise, the results in Fig. 12b illustrates that,
when the piezo actuator along the cutting direction was
solely actuated, the maximum parasitic displacement in
the DOC direction is 0.20 μm. At this moment, the maxi-
mum displacement in the cutting direction is 2.05 μm.
Thus, the calculated cross-axis coupling ratios C1 and C2

are 4.71% and 9.76%, respectively. The actual cross-axis
coupling ratio is as twice as the results obtained from FEA,
whereas it is very close to the simulation results when the
neck thickness is 0.3 mm. The manufacturing error of the
developed device would be a major source that contributed
to such a big difference. Despite that, the cross-axis cou-
pling ratio is still at an acceptable level.

4.5 Tests on the elliptical trajectory

Two sinusoidal input excitation signals with different phase
lags were applied to the piezo actuators whose voltage varies
from 24 to 132 V. Based on the results from the experimental
modal tests, the trajectory tests were carried out from 500 to
5 kHz. Notably, as a result of the limitation of the power
amplifier’s drive capability, the voltage of the input signal
needs to be tuned according to its input frequency. The dis-
placements of the designed device in the cutting and DOC
directions under different input signals were collected and
combined. Then, the device’s elliptical trajectories were ob-
tained and were shown in Fig. 13.

With the decrease of the input voltage, the amplitude of the
elliptical trajectory reduced from 2.1 μm to several hundred
nanometres, showing a good manufacturing range of this non-
resonant EVC device. When the phase lag between two input
signals varied from 0 to 180°, the tool’s trajectory was firstly
compressed to a straight line and then stretched into a regular

5.5 kHz

5.1 kHz

8.3 kHz

10.0 kHz

5.2 kHz

8.0 kHz
9.9 kHz

8.5 kHz

Fig. 11 (a) Experimental modal
tests. (b) Frequency response of
the non-resonant EVC device
with swept excitation in the cut-
ting direction

Fig. 12 Experimental results of
the cross-axis coupling: (a) the
DOC direction, (b) the cutting
direction
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ellipse. The similar trend appeared in all operational frequen-
cies. Thus, the experimental results approve that regular ellip-
tical trajectory of the designed device can always be generated
under a high frequency of up to 5 kHz.

5 On-machine performance tests

5.1 Preliminary machining performance tests

The effectiveness of the proposed non-resonant EVC device
was evaluated through preliminary diamond turning tests.
Two machining trials were conducted on a disc-shaped pure
copper workpiece under different operational conditions. Two
concentric annuli on the workpiece represent these two ma-
chining areas. The tool feed per revolution, DOC and spindle
speed were set to be 5 mm/min, 3 μm and 30 rev/min, respec-
tively. The nose radius of the diamond tool is 0.5 mm.
Different operational conditions of the device were employed,
and the detailed parameters are listed in Table 3. Two small
square areas on the machined surface were selected for mea-
surement by a white light interferometer (Zygo CP300). The
distances between the centres of the measurement areas and
the workpiece’s centre of rotation are 11.1 mm and 7.6 mm,
respectively. These two distances were used to estimate the
designed values of the wavelength of the machined micro-
structures in measurement areas.

Figure 14a shows the machined micro-dimple arrays gen-
erated under the operational frequency of 500 Hz (Exp. 1).
When the operational frequency is 1000 Hz (Exp. 2), the
nominal cutting speed Vc is higher than its corresponding crit-
ical upfeed velocity Vcri, so the secondary sawtooth structures
were obtained. The generated two-tier microstructures are
shown in Fig. 14b.

The comparison on the wavelengths and heights between the
designed and machined microstructures along measurement
lines is shown in Table 4. The measured wavelengths of the
machined microstructures agree well with the designed values
in both machining trials with errors of − 0.86% and − 1.26%,
owing to the excellent frequency stability of the designed device.
The measured heights of the machined microstructures are
2.27 μm and 1.34 μm with errors of 0.17 μm and − 0.16 μm.
The difference is less than 10.67%. The roughness of the ma-
chined surfaces is measured after application of a high-pass filter
with a cut-off frequency of 177 Hz to eliminate waviness and
form components. The surface roughness Ra is 46 nm and
66 nm in Exp. 1 and Exp. 2, respectively.

Fig. 13 Elliptical trajectories of the designed device under different operational conditions: (a) 500 Hz at 132 V, (b) 1 kHz at 96 V, (c) 1.5 kHz at 72 V,
(d) 2.5 kHz at 48 V, (e) 4 kHz at 30 V, (f) 5 kHz at 24 V

Table 3 Operational conditions in the machining trials

Experiment no. Operational frequency (Hz);
input voltage (V)

Cutting diameter (mm)

1 500; 132 20–26

2 1000; 96 13–19
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5.2 Benchmarking with other work

The comparison of the key performance indicators of the pro-
posed device with other published work is shown in Table 5.

In summary, the prototype of the designed non-resonant
EVC device can work at a high operational frequency of up

to 5 kHz. The equivalent stiffness at the tool tip reaches
50.9 N/μm in the cutting direction and 52.1 N/μm in the
DOC direction. Compared with the existing work, the high-
stiffness property of the designed device increases its opera-
tional frequency but sacrifices the amplitude outputs in both
directions to some extent. Thus, the vibration amplitudes can

100 µm

Measurement line

+2.5

µm

-2.5

(a) 

+2.2

µm

-2.0

Measurement line

(b) 100 µm

Fig. 14 Microphotographs, 3D surface topographies and sectional profiles of the machined structures: (a) Exp. 1, (b) Exp. 2

Table 4 Dimensional errors of
the machined microstructures Experiment no. Dimensions Designed values (μm) Measured values (μm) Errors (%)

1 Wavelength 69.7 69.1 −0.86%
Height 2.1 2.27 8.10%

2 Wavelength 23.9 23.6 −1.26%
Height 1.5 1.34 −10.67%

Table 5 Comparison of the key performance indicators with other published work

Features This work Li et al. [31] Han et al. [39] Wang et al. [42]

Operational frequency (kHz) 5 2.5 1.8 6

Vibration amplitude (μm) 2 2.5 24 16

Equivalent stiffness (N/μm) 50.9; 52.1 N/A 25 0.4; 1.5

Machinable shapes Circular Circular Circular Circular; trapezoidal dimples

Surface roughness Ra (nm) <66 <59 N/A N/A

Machined materials Pure copper N/A 6061Al Aluminium alloy

If applicable to diamond turning Yes Yes Yes No
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reach over 2 μm, which is relatively lower than some existing
designs. The designed non-resonant EVC device can generate
circular microstructures such as micro-dimple arrays and two-
tier microstructures with tunable wavelength and height.
Although trapezoidal microstructures have been generated
by some designs, they are not applicable to diamond turning.
The surface roughness of the complex microstructures gener-
ated in this work is less than 66 nm, which is slightly higher
than those machined by Li et al. [31]. However, merely simple
V-grooves were generated in their work. The surface rough-
ness is not available in other references. The preliminary dia-
mond turning trials are currently carried out on pure copper,
and its performance on hard-to-machine materials, such as
stainless steel, silicon, silicon carbide and optical glasses, de-
serves further investigation. Nevertheless, the good agreement
in the designed and the measured dimensions of the micro-
structures verified the effectiveness of this high-frequency
non-resonant EVC device for diamond turning.

6 Conclusions

A flexure-based high-frequency non-resonant EVC device
with tunable operational frequency and amplitude for dia-
mond turning microstructures was developed and evaluated
in this study. The flexure-based design that combines the
LSFH and NHPJ can not only transmit and connect the recip-
rocating displacements of the diamond tool but also offers an
improved operational frequency. The conclusions can be
drawn as follows:

(1) A decrease in the neck thickness of the NHPJ could
reduce the cross-axis coupling ratio, while a reduction
in the thickness of the LSFH could not only reduce the
natural frequency of the designed non-resonant EVC de-
vice but also change the sequence of its vibrational mode
shapes.

(2) The systematic experimental evaluation of the proposed
device demonstrated that it could achieve a high-
frequency and non-resonant working mode with an ac-
ceptable level of cross-axis coupling ratio and thermal
generation. Moreover, the device’s elliptical trajectories
with different amplitudes could be conveniently generat-
ed by tuning the operational frequency, input voltage and
phase lag.

(3) The prototype of the designed non-resonant EVC device
can work at an operational frequency of up to 5 kHz,
which is higher than its non-resonant counterparts in
the field of diamond turning. Its vibration amplitudes in
the cutting and DOC directions can reach over 2 μm,
although the high-frequency and high-amplitude work-
ing modes cannot be achieved simultaneously due to the

limitation of the drive capability of the current power
amplifier.

(4) The designed non-resonant EVC device can accurately
generate complex microstructures such as micro-dimple
arrays and two-tier microstructures with tunable wave-
length and height on pure copper. Furthermore, the
wavelength and height errors of less than 1.26% and
10.67% were demonstrated in the machining trials,
showing good consistency with the designed dimensions
of the bespoke microstructures.

Authors’ contributions Zhengjian Wang and Xichun Luo contributed to
the conceptualization, writing and editing. Zhengjian Wang, Fei Ding,
Liang Yang and Jianguo Zhang contributed to the methodology. Haitao
Liu and Andrew Cox provided resources. Wenlong Chang performed
project administration.

Funding This work was supported by the EPSRC (EP/K018345/1, EP/
T024844/1), Royal society-NSFC International exchange scheme (IEC/
NSFC/181474). The authors would also gratefully acknowledge the fi-
nancial support from the China Scholarship Council (CSC).

Availability of data and materials All data underpinning this publication
are openly available from the University of Strathclyde Knowledge Base.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflicts of
interest.

Ethical approval Not applicable.

Consent to participate Yes, consent to participate from all the authors.

Consent to publish Yes, consent to publish from all the authors.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included
in the article's Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Zhang C, Shi G, Ehmann KF (2017) Investigation of hybrid micro-
texture fabrication in elliptical vibration-assisted cutting. Int J Mach
Tools Manuf 120:72–84. https://doi.org/10.1016/j.ijmachtools.
2017.04.009

2. Wu M, Liu J, He J, Chen X, Guo Z (2020) Fabrication of surface
microstructures bymask electrolyte jet machining. Int JMach Tools

Int J Adv Manuf Technol

https://doi.org/
https://doi.org/10.1016/j.ijmachtools.2017.04.009
https://doi.org/10.1016/j.ijmachtools.2017.04.009


Manuf 148:103471. https://doi.org/10.1016/j.ijmachtools.2019.
103471

3. Zhang S, Zhou Y, Zhang H, Xiong Z, To S (2019) Advances in
ultra-precision machining of micro-structured functional surfaces
and their typical applications. Int J Mach Tools Manuf 142:16–
41. https://doi.org/10.1016/j.ijmachtools.2019.04.009

4. Costa HL, Hutchings IM (2007) Hydrodynamic lubrication of tex-
tured steel surfaces under reciprocating sliding conditions. Tribol
Int 40:1227–1238. https://doi.org/10.1016/j.triboint.2007.01.014

5. Liew KW, Kok CK, Ervina Efzan MN (2016) Effect of EDM
dimple geometry on friction reduction under boundary and mixed
lubrication. Tribol Int 101:1–9. https://doi.org/10.1016/j.triboint.
2016.03.029

6. Vilhena LM, Ramalho A, Cavaleiro A (2017) Grooved surface
texturing by electrical discharge machining (EDM) under different
lubrication regimes. Lubr Sci 29:493–501. https://doi.org/10.1002/
ls.1383

7. Bruzzone AAG, Costa HL, Lonardo PM, Lucca DA (2008)
Advances in engineered surfaces for functional performance.
CIRP Ann 57:750–769. https://doi.org/10.1016/j.cirp.2008.09.003

8. Bhattacharyya B, Doloi B (2020) Chapter FourMachining process-
es utilizing thermal energy. Modern Machining Technology, pp
161–363. https://doi.org/10.1016/b978-0-12-812894-7.00004-9

9. Dubey AK, Yadava V (2008) Laser beammachining-a review. Int J
Mach Tools Manuf 48:609–628. https://doi.org/10.1016/j.
ijmachtools.2007.10.017

10. Kant K, Losic D (2013) Focused Ion Beam (FIB) Technology for
Micro- and Nanoscale Fabrications. In: FIB Nanostructures.
Springer, pp 1–22. https://doi.org/10.1007/978-3-319-02874-3_1

11. Krauss PR, Chou SY (1996) Sub-10 nm imprint lithography and
applications. In: 1997 55th Annual Device Research Conference
Digest. IEEE, pp 90–91. https://doi.org/10.1109/DRC.1997.6124

12. Luo X, Sun J, Ritchie JM, ChangW,WangW (2011) Deterministic
fabrication of nanostructures for plasmonic lens by focused ion
beam. Int J Adv Manuf Technol 57:1003–1009. https://doi.org/10.
1007/s00170-011-3336-0

13. Chen W, Huo D, Hale J, Ding H (2018) Kinematics and tool-
workpiece separation analysis of vibration assisted milling. Int J
Mech Sci 136:169–178. https://doi.org/10.1016/j.ijmecsci.2017.
12.037

14. Shamoto E, Moriwaki T (1994) Study on elliptical vibration cut-
ting. CIRP Ann 43:35–38. https://doi.org/10.1016/S0007-8506(07)
62158-1

15. Song YC, Nezu K, Park CH, Moriwaki T (2009) Tool wear control
in single-crystal diamond cutting of steel by using the ultra-
intermittent cutting method. Int J Mach Tools Manuf 49:339–343.
https://doi.org/10.1016/j.ijmachtools.2008.10.014

16. Zhang SJ, To S, Zhang GQ (2017) Diamond tool wear in ultra-
precision machining. Int J Adv Manuf Technol 88:613–641.
https://doi.org/10.1007/s00170-016-8751-9

17. Hosseinabadi HN, Sajjady SA, Amini S (2018) Creating micro
textured surfaces for the improvement of surface wettability
through ultrasonic vibration assisted turning. Int J Adv Manuf
Technol 96:2825–2839. https://doi.org/10.1007/s00170-018-
1580-2

18. Liu X,Wu D, Zhang J (2018) Fabrication of micro-textured surface
using feed-direction ultrasonic vibration-assisted turning. Int J Adv
Manuf Technol 97:3849–3857. https://doi.org/10.1007/s00170-
018-2082-y

19. Gandhi R, Sebastian D, Basu S, Mann JB, Iglesias P, Saldana C
(2016) Surfaces by vibration/modulation-assisted texturing for tri-
bological applications. Int J Adv Manuf Technol 85:909–920.
https://doi.org/10.1007/s00170-015-7968-3

20. Zhang J, Suzuki N, Wang Y, Shamoto E (2015) Ultra-precision
nano-structure fabrication by amplitude control sculpturing method

in elliptical vibration cutting. Precis Eng 39:86–99. https://doi.org/
10.1016/j.precisioneng.2014.07.009

21. Xu S, Shimada K, Mizutani M, Kuriyagawa T (2014) Fabrication
of hybrid micro/nano-textured surfaces using rotary ultrasonic ma-
chining with one-point diamond tool. Int J Mach Tools Manuf 86:
12–17. https://doi.org/10.1016/j.ijmachtools.2014.06.005

22. KimGD, Loh BG (2007) Characteristics of chip formation in micro
V-grooving using elliptical vibration cutting. J Micromechanics
Microengineering 17:1458–1466. https://doi.org/10.1088/0960-
1317/17/8/007

23. Hussein R, Sadek A, Elbestawi MA, Attia MH (2019) Elimination
of delamination and burr formation using high-frequency vibration-
assisted drilling of hybrid CFRP/Ti6Al4V stacked material. Int J
AdvManuf Technol 105:859–873. https://doi.org/10.1007/s00170-
019-04248-2

24. Jieqiong L, Jinguo H, Xiaoqin Z, Zhaopeng H, Mingming L (2016)
Study on predictive model of cutting force and geometry parame-
ters for oblique elliptical vibration cutting. Int J Mech Sci 117:43–
52. https://doi.org/10.1016/j.ijmecsci.2016.08.004

25. Guo P, Ehmann KF (2013) Development of a tertiary motion gen-
erator for elliptical vibration texturing. Precis Eng 37:364–371.
https://doi.org/10.1016/j.precisioneng.2012.10.005

26. Wang J, Liao WH, Guo P (2020) Modulated ultrasonic elliptical
vibration cutting for ductile-regime texturing of brittle materials
with 2-D combined resonant and non-resonant vibrations. Int J
Mech Sci 170:105347. https://doi.org/10.1016/j.ijmecsci.2019.
105347

27. Zhang J, Cui T, Ge C, Sui Y, Yang H (2016) Review of micro/nano
machining by utilizing elliptical vibration cutting. Int J Mach Tools
Manuf 106:109–126. https://doi.org/10.1016/j.ijmachtools.2016.
04.008

28. Yang Z, Zhu L, Zhang G, Ni C, Lin B (2020) Review of ultrasonic
vibration-assisted machining in advanced materials. Int J Mach
Tools Manuf 156:103594. https://doi.org/10.1016/j.ijmachtools.
2020.103594

29. Zheng L, Chen W, Huo D (2020) Review of vibration devices for
vibration-assisted machining. Int J Adv Manuf Technol 108:1631–
1651. https://doi.org/10.1007/s00170-020-05483-8

30. Brehl DE, DowTA (2008) Review of vibration-assisted machining.
Precis Eng 32:153–172. https://doi.org/10.1016/j.precisioneng.
2007.08.003

31. Li G, Che L, Wang B, et al (2014) Experimental study on elliptical
vibration cutting for optical microstructures. 7th Int Symp Adv Opt
Manuf Test Technol DesManuf Test Micro- Nano-Optical Devices
Syst 9283:928304. https://doi.org/10.1117/12.2069915

32. Zhang C, Ehmann K, Li Y (2015) Analysis of cutting forces in the
ultrasonic elliptical vibration-assisted micro-groove turning pro-
cess. Int J Adv Manuf Technol 78:139–152. https://doi.org/10.
1007/s00170-014-6628-3

33. Loh BG, Kim GD (2012) Correcting distortion and rotation direc-
tion of an elliptical trajectory in elliptical vibration cutting by mod-
ulating phase and relative magnitude of the sinusoidal excitation
voltages. Proc Inst Mech Eng Part B J Eng Manuf 226:813–823.
https://doi.org/10.1177/0954405411431375

34. Hong MS, Ehmann KF (1995) Generation of engineered surfaces
by the surface-shaping system. Int J Mach Tools Manuf 35:1269–
1290. https://doi.org/10.1016/0890-6955(94)00114-Y

35. Heamawatanachai S, Bamberg E (2009) Design and characteriza-
tion of a PZT driven micromachining tool based on single-point
tool tip geometry. Precis Eng 33:387–394. https://doi.org/10.
1016/j.precisioneng.2008.10.006

36. Le Zhu W, Zhu Z, He Y et al (2017) Development of a novel 2-D
vibration-assisted compliant cutting system for surface texturing.
IEEE/ASME Trans Mechatronics 22:1796–1806. https://doi.org/
10.1109/TMECH.2017.2693996

Int J Adv Manuf Technol

https://doi.org/10.1016/j.ijmachtools.2019.103471
https://doi.org/10.1016/j.ijmachtools.2019.103471
https://doi.org/10.1016/j.ijmachtools.2019.04.009
https://doi.org/10.1016/j.triboint.2007.01.014
https://doi.org/10.1016/j.triboint.2016.03.029
https://doi.org/10.1016/j.triboint.2016.03.029
https://doi.org/10.1002/ls.1383
https://doi.org/10.1002/ls.1383
https://doi.org/10.1016/j.cirp.2008.09.003
https://doi.org/10.1016/b978-0-12-812894-7.00004-9
https://doi.org/10.1016/j.ijmachtools.2007.10.017
https://doi.org/10.1016/j.ijmachtools.2007.10.017
https://doi.org/10.1007/978-3-319-02874-3_1
https://doi.org/10.1109/DRC.1997.6124
https://doi.org/10.1007/s00170-011-3336-0
https://doi.org/10.1007/s00170-011-3336-0
https://doi.org/10.1016/j.ijmecsci.2017.12.037
https://doi.org/10.1016/j.ijmecsci.2017.12.037
https://doi.org/10.1016/S0007-8506(07)62158-1
https://doi.org/10.1016/S0007-8506(07)62158-1
https://doi.org/10.1016/j.ijmachtools.2008.10.014
https://doi.org/10.1007/s00170-016-8751-9
https://doi.org/10.1007/s00170-018-1580-2
https://doi.org/10.1007/s00170-018-1580-2
https://doi.org/10.1007/s00170-018-2082-y
https://doi.org/10.1007/s00170-018-2082-y
https://doi.org/10.1007/s00170-015-7968-3
https://doi.org/10.1016/j.precisioneng.2014.07.009
https://doi.org/10.1016/j.precisioneng.2014.07.009
https://doi.org/10.1016/j.ijmachtools.2014.06.005
https://doi.org/10.1088/0960-1317/17/8/007
https://doi.org/10.1088/0960-1317/17/8/007
https://doi.org/10.1007/s00170-019-04248-2
https://doi.org/10.1007/s00170-019-04248-2
https://doi.org/10.1016/j.ijmecsci.2016.08.004
https://doi.org/10.1016/j.precisioneng.2012.10.005
https://doi.org/10.1016/j.ijmecsci.2019.105347
https://doi.org/10.1016/j.ijmecsci.2019.105347
https://doi.org/10.1016/j.ijmachtools.2016.04.008
https://doi.org/10.1016/j.ijmachtools.2016.04.008
https://doi.org/10.1016/j.ijmachtools.2020.103594
https://doi.org/10.1016/j.ijmachtools.2020.103594
https://doi.org/10.1007/s00170-020-05483-8
https://doi.org/10.1016/j.precisioneng.2007.08.003
https://doi.org/10.1016/j.precisioneng.2007.08.003
https://doi.org/10.1117/12.2069915
https://doi.org/10.1007/s00170-014-6628-3
https://doi.org/10.1007/s00170-014-6628-3
https://doi.org/10.1177/0954405411431375
https://doi.org/10.1016/0890-6955(94)00114-Y
https://doi.org/10.1016/j.precisioneng.2008.10.006
https://doi.org/10.1016/j.precisioneng.2008.10.006
https://doi.org/10.1109/TMECH.2017.2693996
https://doi.org/10.1109/TMECH.2017.2693996


37. Yuan Y, Zhang D, Jing X, Zhu H, Zhu WL, Cao J, Ehmann KF
(2019) Fabrication of hierarchical freeform surfaces by 2D compli-
ant vibration-assisted cutting. Int J Mech Sci 152:454–464. https://
doi.org/10.1016/j.ijmecsci.2018.12.051

38. Ahn J-H, Lim H-S, Son S-M (1999) Improvement of micro-
machining accuracy by 2-dimensional vibration cutting. In: Proc
ASPE. pp. 150–153

39. Han J, Lin J, Li Z, LuM, Zhang J (2019) Design and computational
optimization of elliptical vibration-assisted cutting system with a
novel flexure structure. IEEE Trans Ind Electron 66:1151–1161.
https://doi.org/10.1109/TIE.2018.2835425

40. Negishi N (2003) Elliptical vibration assisted machiningwith single
crystal diamond tools. MS Diss North Carolina State Univ

41. Cerniway M (2001) Elliptical diamond milling: kinematics, force
and tool wear. MS Diss North Carolina State Univ

42. Wang J, Du H, Gao S et al (2019) An ultrafast 2-D non-resonant
cutting tool for texturing micro-structured surfaces. J Manuf
Process 48:86–97. https://doi.org/10.1016/j.jmapro.2019.10.023

43. Guo P, Lu Y, Ehmann KF, Cao J (2014) Generation of hierarchical
micro-structures for anisotropic wetting by elliptical vibration cut-
ting. CIRP Ann 63:553–556. https://doi.org/10.1016/j.cirp.2014.
03.048

44. Paros JM, Weisbord L (1965) How to design flexure hinges. Mach
Des 37:151–156

45. Lin J, Han J, LuM, Yu B, Gu Y (2017) Design, analysis and testing
of a new piezoelectric tool actuator for elliptical vibration turning.
Smart Mater Struct 26:85008. https://doi.org/10.1088/1361-665x/
aa71f0

46. Zhou M, Eow YT, Ngoi BKA, Lim EN (2003) Vibration-assisted
precision machining of steel with PCD tools. Mater Manuf Process
18:825–834. https://doi.org/10.1081/AMP-120024978

47. Chen W, Zheng L, Teng X, Yang K, Huo D (2018) Cutting mech-
anism invest igat ion in vibrat ion-assisted machining.
Nanomanufacturing Metrol 1:268–276

48. Chen K, Si C, Guo P (2017) Design of a high bandwidth nonreso-
nant tertiary motion generator for elliptical vibration texturing. J
Micro Nano-Manufacturing 5:11008. https://doi.org/10.1115/1.
4035473

49. Yong YK, Lu T-F, Handley DC (2008) Review of circular flexure
hinge design equations and derivation of empirical formulations.
Precis Eng 32:63–70. https://doi.org/10.1016/j.precisioneng.2007.
05.002

50. Raghavendra MRA, Kumar AS, Jagdish BN (2010) Design and
analysis of flexure-hinge parameter in microgripper. Int J Adv
Manuf Technol 49:1185–1193. https://doi.org/10.1007/s00170-
009-2478-9

51. Yong YK, Lu TF (2009) Comparison of circular flexure hinge
design equations and the derivation of empirical stiffness formula-
tions. IEEE/ASME Int Conf Adv Intell Mechatronics, AIM:510–
515. https://doi.org/10.1109/AIM.2009.5229961

52. Brocato BC (2004) Micromachining using EVAM (elliptical vibra-
tion assisted machining). MS Diss North Carolina State Univ

53. Negishi N (2003) Elliptical vibration assisted machiningwith single
crystal diamond tools. MS Diss North Carolina State Univ

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

Int J Adv Manuf Technol

https://doi.org/10.1016/j.ijmecsci.2018.12.051
https://doi.org/10.1016/j.ijmecsci.2018.12.051
https://doi.org/10.1109/TIE.2018.2835425
https://doi.org/10.1016/j.jmapro.2019.10.023
https://doi.org/10.1016/j.cirp.2014.03.048
https://doi.org/10.1016/j.cirp.2014.03.048
https://doi.org/10.1088/1361-665x/aa71f0
https://doi.org/10.1088/1361-665x/aa71f0
https://doi.org/10.1081/AMP-120024978
https://doi.org/10.1115/1.4035473
https://doi.org/10.1115/1.4035473
https://doi.org/10.1016/j.precisioneng.2007.05.002
https://doi.org/10.1016/j.precisioneng.2007.05.002
https://doi.org/10.1007/s00170-009-2478-9
https://doi.org/10.1007/s00170-009-2478-9
https://doi.org/10.1109/AIM.2009.5229961

	A high-frequency non-resonant elliptical vibration-assisted cutting device for diamond turning microstructured surfaces
	Abstract
	Introduction
	Principle of generating microstructured surfaces
	Development of the non-resonant EVC device
	Mechanical design
	Mathematical and finite element static modelling
	Determination of key dimensional parameters
	Thickness of the LSFH
	Neck thickness of the NHPJ


	Experimental results and discussions
	Experimental setup
	Analysis of heat generation
	Experimental modal test
	Evaluation of the coupling effect
	Tests on the elliptical trajectory

	On-machine performance tests
	Preliminary machining performance tests
	Benchmarking with other work

	Conclusions
	References


