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Abstract: This study aims to uncover the growth characteristics of simultaneously-induced multiple 9 

hydraulic fractures using the discrete element method. We evaluate the influences of in-situ states and 10 

operational parameters on the fracture trajectories. Results reveal that reservoir heterogeneity 11 

magnifies the stress-shadowing effect and causes severe interactions among fractures. Higher 12 

effective stress anisotropy offsets the stress-shadowing effect and force the fractures to propagate in 13 

the direction of maximum stress and results in relative long parallel fractures. Increasing the spacing 14 

can mitigate the stress-shadowing effect to some degree. Injection rate and fluid viscosity have a less 15 

significant influence on the interactions among fractures.  16 
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1 Introduction 19 

Simultaneous multiple fracturing treatment from a horizontal wellbore has been widely used in 20 

the oil/gas industry and the enhanced geothermal system to enlarge the stimulated volume of the 21 

reservoir. It is a prevalent approach to reduce the operation cost, and to create several hydraulic 22 

fractures (HFs) at once [1]. One challenge to effectively use this technique is to generate effective 23 

HFs from all perforation clusters. It is generally believed that longer and persistent fractures along the 24 

orientation of the maximum stress will lead to an optimal conductivity [2-4]. However, the fracture 25 

paths in reality are highly unpredictable.  26 

Analysis of production logs from several basins indicates that about 30% of perforation clusters 27 

might not contribute to production [5-7]. Possible reasons are attributed to the fact that the 28 

interactions among multiple fractures lead to the preferential growth of some fractures during the 29 

treatment. Field analysis results from advanced diagnostic technologies confirm that simultaneous 30 

propagation of multiple fractures is often not uniformly developed [6, 8]. In fact, opening of a fracture 31 

induces excessive compression (known as the ‘stress shadowing’) that causes the adjacent fractures to 32 

curve away from each other and the appearance of the dominant perforation clusters during 33 

simultaneous stimulation of multiple fractures [9-11]. A comprehensive understanding of the stress 34 

shadowing effect and the physical processes underlying the growth of simultaneous multiple HFs is 35 

essential for the proposing of proper treatments which can minimize the negative effect of stress 36 

shadowing and promote more uniform fracture growth.  37 

Several factors including the geological complexity, the uncertainty and spatial variability of 38 

reservoir properties contribute to the complication of physical process underling the multiple 39 

hydraulic fracturing. Moreover, it is still difficult to measure the geometry of hydraulic fractures 40 

directly so far. Limited access to the treated formation makes the interpretation of field monitoring 41 

information more difficult and uncertain [12], and thus hinder our understanding towards the 42 

mechanisms underlying the propagation and interaction among multiple fractures.  43 

An extensive body of experiments have been designed in the laboratory at reduced-scale to 44 

uncover the mechanics of HFs in natural and artificial rocks [13-16]. Although most of the 45 

experiments are conducted on the growth of a single HF, they have confirmed the complexity of the 46 

physical process involved. For instance, multiple experimental results suggest the hydraulic fractures 47 

do not develop symmetrically with respect to the injection hole [13, 17]. Different acoustic emission 48 

(AE) sources distribution and breakdown pressure are identified from the treatments with the use of 49 

oil, water, supercritical and liquid CO2 [15, 17]. The interaction between pre-fracture and induced 50 
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fractures display different modes depending on the approaching angle and differential stress level [18]. 51 

Recently, pioneering work has been done to study the initiation of multiple fractures induced by cyclic 52 

pumping using cuboid concrete specimens [19]. Notwithstanding these findings, the influences of 53 

in-situ and operational parameters deserve a thorough examination to elucidate the mechanisms 54 

underlying the fracturing process. 55 

Numerical approaches have been developed to solve the fully coupled problems underlying the 56 

growth of hydraulic fractures [20-23], which involve several fields of physical concepts including, 57 

elastic deformation, poro-mechanics, fluid mechanics, and fracture mechanics [24]. To model the 58 

hydraulic fracturing, coupling of the following three processes should be considered: the mechanical 59 

deformation caused by the fluid pressure, fluid flow inside the fracture, and the propagation of 60 

fracture. Numerous constitutive equations have been developed to describe each of the physical 61 

process and the coupling process among them. Different with the continuum approach, the 62 

discontinuous methods can simulate the fracturing process of rocks under different stress conditions at 63 

multi-scales with mathematically simple contact relations [25-29].  64 

Based on the pipe-network coupling algorithm, Discrete Element Method (DEM) has been 65 

widely adopted in the simulation of hydro-mechanical responses of rock materials. Both quantitative 66 

and qualitative comparisons with analytical, numerical, experimental or field results have been 67 

conducted to confirm the validity of the numerical approach to reproduce the fluid flow behaviors 68 

[30-32], the hydraulic fracturing [33-36] and the injection induced seismicity [37, 38]. Multi-branched 69 

growth of fractures have also been investigated by DEM simulation, with emphasis on increasing the 70 

hydraulic fracture complexity [39, 40]. Nevertheless, more efforts are still necessary to systematically 71 

evaluate the influences of various factors on the stress shadowing effect and mutual interactions 72 

among multiple fractures. The innovative academic contributions of this study lie in the 73 

comprehensive parametric studies and the acquisition of critical information regarding local rock 74 

deformation, pressure alteration, fracture interaction and reorientation.  75 

We investigate the initiation, propagation and reorientation of simultaneously-induced multiple 76 

hydraulic fractures using the fully-coupled two-dimensional particle flow code (PFC2D) [41]. 77 

Injection rate is maintained constant during the whole fracturing process to perform a fair comparison 78 

between the stress shadowing effect and the influence of various parameters. Although this scenario 79 

deviates from the reality, where the constant fluid influx into the wellbore is dynamically partitioned 80 

to each fracture so that the wellbore pressure is the same throughout the array, we simplify the 81 

scenario into the mutual interaction among multiple fractures since the fracturing path in reality can 82 

be extremely complex and random. We first validate the numerical model by comparing the stress 83 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

alteration caused by the opening of a fracture with the model. Thereafter, we perform a set of 84 

comparative studies to assess the influences of the in-situ conditions (maximum horizontal stress, 85 

initial pore pressure and reservoir heterogeneity) and operational parameters (intervals, injection rate 86 

and fluid viscosity) on the fracture propagation trajectories.  87 

2 Setup of the DEM model 88 

Genesis of the DEM model follows the procedures recommended by Ref [25], which consists of 89 

4 steps: compact initial assembly; install specified isotropic stress; reduce the number of ‘floating’ 90 

particles; install parallel bonds, and remove from material vessel. As illustrated in Fig 1a, the 200 m × 91 

200 m square-shaped model consists of 11,710 particles and 23,529 parallel bonds. The particle size 92 

follows a uniform distribution (Rmax/Rmin=1.66) with an average diameter of 2.0 m. Model generated in 93 

this way has a coordination number of 4.09. Note that the particle in the model is a simple way to 94 

discretize the space and thus cannot be treated as a single block in the reservoir. Selection of the 95 

particle size and size distribution is optimized by considering both the representativeness of the model 96 

and the computational effectiveness. In this section, we provide brief introductions to the two key 97 

components of the model, i.e., the bonded particle model representing the rock formation and the fluid 98 

flow model simulating the hydro-mechanical coupling responses. After that, we provide detailed 99 

information about the boundary conditions and the selection of micro-parameters.  100 

2.1 Bonded particle model (BPM) 101 

In the DEM model, rock formation is represented by an assembly of discs (yellow circles in Fig 102 

1b) bonded at their contacts (red lines in Fig 1b), known as the bonded particle model [25]. 103 

Interactions between the contacting two particles are described by the force-displacement relationship, 104 

i.e., the linear contact model, while the movements of the particles are governed by the Newton’s 105 

second law. Location, force and displacement of the particles are updated upon a time-stepping 106 

algorithm. The bond may break once the stress acting on it exceeds the strength, in terms of tensile or 107 

shear component. Each bond breakage is idealized to be a crack which can be classified into the 108 

tensile or shear mode according to the failure mechanism. In this way, initiation, propagation and 109 

interaction of fractures can be explicitly simulated.  110 

2.2 Fluid flow model  111 

As illustrated in Fig 1b, a set of domains can be identified in the DEM model by drawing all 112 

contacts between particles (red lines). Each close region is assumed to be a reservoir (Blue dots 113 

enclosed by red lines). These reservoirs are connected by pipes. Fluid flow is simulated in the 2D 114 

DEM model by assuming that each contact has an initial aperture. As illustrated in Fig 1c, with the 115 
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assumption of laminar flow between parallel plates, the volumetric flow rate through the pipe can be 116 

calculated as: 117 

3

12

w P
Q

L


                                   (1) 118 

where w is the aperture of pipe, P  is the pressure difference crossing the pipe and L  is the length 119 

of the pipe (see Fig 1c), which is assumed to be the averaged particle diameter.  120 

A virtual aperture is assumed at the contact to ensure fluid flow can occur crossing two particles 121 

in touch (See Fig 1c). We assume this aperture never decreases to zero. The relation between the 122 

aperture ( w ) and the compressive contact force ( F ) is defined as: 123 

0 0

0

w F
w

F F



                                 (2) 124 

where 0F  is the force when the aperture decreases to half of the residual aperture ( 0w ).  125 

During the fluid flow calculation, each domain receives a certain volume of fluid from its 126 

surrounding pipes. Given the total volume ( Q ) of fluid during one time step ( t ), the update of 127 

fluid pressure can be calculated as: 128 

= ( )
f

d

d

K
P Q t V

V
                               (3) 129 

where fK  is the fluid modulus and dV  is the volume of the domain.  130 

Validity of the fluid flow model to simulate the fully coupled hydro-mechanical responses in 131 

rock formation have been extensively confirmed in terms of the initiation and subsequent growth of 132 

hydraulic fracture from a single hole [33, 35], the interaction with pre-existing fracture [42], injection 133 

induced seismicity [38, 42], fault reactivation [37], permeability alternation [31] and stress alteration 134 

[2, 34]. We apply this same algorithm into the modeling of simultaneous multiple hydraulic 135 

fracturing.  136 

2.3 Boundary condition  137 

We model the reservoir located at an average depth of 3449-3550 m. To represent the typical 138 

stress and operational conditions in this site, the following parameters are determined to define the 139 

initial state of the model: the vertical stress   =82.74 MPa, the maximum principal horizontal stress 140 

     =70.26 MPa, and the initial pore pressure P0=59.32 MPa. The formation is assumed to be 141 

isotropic with the aim to isolate the influence of stress shadowing from the effect of sedimentary 142 
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beddings and pre-existing fractures.  143 

Prior to the injection of fluid, we apply the initial stress states to the model and then saturate the 144 

formation with the initial pore pressure. The injection points locate along a horizontal well in the 145 

center of the simulated reservoir. The outside model boundary is fixed and impermeable. The size of 146 

the wellbore is assumed to be negligible with respect to the size of the fracture, and thus the wellbore 147 

is represented by an injection point within a domain in the simulation. We maintain the in-situ stresses 148 

constant during the subsequent saturation and injection stages by adjusting the location of boundary 149 

walls through the servo control mechanism. 150 

2.4 Determination of the micro-parameters 151 

The micro mechanical parameters of the DEM model listed in Table 1 are calibrated to match the 152 

uniaxial compressive strength, the Young’s modulus and the Poisson’s ratio of the Haynesville Shale 153 

[43, 44], which can be found in Table 2. These mechanical properties are obtained from the laboratory 154 

tests on brittle Haynesville shale at depth of 3448.8 to 3450.3 m. To do the calibration, we perform a 155 

set of virtual uniaxial compressive tests on the DEM sample with the size of 80×160 m. There are 156 

roughly 40×80 particles across the sample with the particle size adopted in this study. This meets the 157 

limit recommended by the International Society for Rock Mechanics, which requires that the number 158 

of grains cross the minimum boundary should be more than 20 in regard to its largest mineral grain 159 

size [45].  160 

The target formation is saturated with water under in-situ conditions and intact rock has 161 

relatively low in-situ permeability. The equilibrium permeability measured from fluid flow test on the 162 

DEM model with scale of 40×40m under the same in-situ conditions is 5.5 10
-12

 m/s. Although the 163 

initial pore pressure is present in the model, it is assumed that most of the fluid flow occurs in the 164 

hydraulically induced fracture. These assumptions are reasonable and have little, if any, effect on 165 

model predictions. Considering the time scale of fluid transport along the open fractures and the 166 

relative small aperture of contacts compared with the fractures, leak-off into the matrix due to the 167 

permeability is negligible.  168 

3 Validation of the DEM model   169 

We first model the growth of a single fracture stimulated at the formation center and examine the 170 

stress alternation induced by the fracture opening with an analytical solution from reference [46]. 171 

Setup of the DEM model and boundary condition for the simulation are summarized in Table 3. 172 

3.1 Growth of a single hydraulic fracture 173 
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We perform injection treatment at point (0, 0) with a constant rate of 2.12 10
-5

 m
3
/s. Note that 174 

the injection rate adopted in this study cannot be directly related to the actual values due to the 2D 175 

nature of the model [33]. In practice, we choose a rate high enough to induce fracturing but low 176 

enough to maintain stability. The well pressure history in Fig 2 follows the typical responses obtained 177 

from hydraulic fracturing tests [17, 47], namely, the well pressure increases gradually till a maximum 178 

value, known as the breakdown pressure (Pb=176.4 MPa), accompanied by the initiation of fracture. 179 

Subsequently, the well pressure drops in a zig-zag pattern, and ultimately approaches to a constant 180 

value. The number of cracks increases at an approximately linear rate over time. After the opening of 181 

the first crack, slope of the pressure curve at the secondary increasing stages (e.g., from Point B to C) 182 

gradually decreases, indicating that the stress needed for the formation of new cracks decreases with 183 

the longer fracture. According to Eq. (4)[48], the length of a fracture ( a ) is inversely proportional to 184 

the stress ( ) required to induce bond breakage as fracture toughness ( K ) is an intrinsic property of 185 

a rock and is a constant. 186 

( )IK C a                                  (4) 187 

where ( )C   is a geometrical factor. This factor is a function of the ratio between crack length and 188 

sample width (known as  ) and can be calculated from the following equation: 189 

 
1/2

2 4( ) sec 1 0.025 0.06
2

C


  
  

    
  

                      (5)  190 

During the whole fracturing process, all cracks form in terms of tensile failure, which is in line 191 

with the linear elastic fracture mechanics. Tempo-spatial evolution of the cracks in Fig 3 illustrates 192 

that the single HF propagates vertically as dictated by the initial stress state. However, rather than the 193 

systematic growth path predicted by ideal continuum models, the geometry of a single fracture is 194 

asymmetric with respect to the injection point. The fracture propagates either upward or downward, 195 

depending on the relative resistance at the two fracture tips. 196 

Fig 4 displays the magnitude of fluid pressure along the fracture at various stages. Overall, the 197 

pressure drops with the growth of fracture. The pressure is not necessarily uniform along the fracture. 198 

Soon after the formation of new cracks (Point B in Fig 2), the pore pressure at the newly-appeared 199 

fracture tip is much lower than those close to the injection point. At the stages ahead the formation of 200 

new cracks (Point A and C in Fig 2), the pore pressure stays almost constant along the whole fracture 201 

after a certain period of fluid diffusion. 202 
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3.2 Comparison with the analytical solution 203 

We install a set of measurement circles with a diameter of 10 m (see Fig 5a) to monitor the stress 204 

states within the model. Spacing between the adjacent circles equals to 5 m. This diameter is selected 205 

considering both the representativeness of specific point and the accuracy of the measured stress. We 206 

measure the interior stresses ( xx , yy  and xy ) after the application of in-situ stress ( maxH  and 207 

V ) and after the formation is fully saturated. The effective horizontal stress (
'

xx ) can be calculated 208 

by: 209 

'

0xx xx P                                      (6) 210 

The horizontal stress in Fig 5b fluctuates around the applied horizontal in-situ stress ( maxH211 

=70.26 MPa). The degree of fluctuation becomes less significant after the formation is fully saturated 212 

(See Fig 5c), implying that presence of pore pressure leads to the adjustment of particle location and 213 

the redistribution of contact forces towards a more uniform mode.  214 

Sneddon [46] developed the solutions to calculate the stress state in the interior of an infinite 215 

‘two-dimensional; elastic medium’ induced by the opening of an internal fracture under the action of a 216 

uniform liquid pressure ( 0p ) inside as the only load. As illustrated in Fig 6, the components of stress 217 

( x , y  and xy ) at any point in the vicinity of the fracture (from x c  to x c ) are given by: 218 

0 1 21 1

2 2
1 2

1 1 1
( ) ( cos( ) 1)

2 2 2
x y

r
p

r r

                          (7) 219 

32

2
0 1 2

1 2

1 sin 3
( ) ( ) sin ( )

2 2
y x

r c
p

c r r


                        (8) 220 

32

2
0 1 2

1 2

sin 3
( ) cos ( )

2
xy

r c
p

c r r


                         (9) 221 

For the maximum shear stress: 222 

32

2
0

1 2

sin
=p ( )

r c

c r r


                            (10) 223 
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We select three stages (i.e., Stage A, C and D in Fig 2 and Fig 3) to do the comparison as the 224 

fluid pressure at these stages is uniformly distributed and thus meets the prerequisites of the 225 

theoretical model. States of the fracture are provided in Table 4. Length of the fracture ( L ) is 226 

estimated from the coordination of the upper and lower tips (( upx , upy ) and ( lowx , lowy )), by 227 

assuming it to be linear and continuous:  228 

   
2 2

up low up lowL y y x x                           (11) 229 

Fig 7 compares the geometry of the fracture and the contours of 
'

xx  obtained numerically and 230 

theoretically. Negative stress indicates that the corresponding site is under compression. General well 231 

agreement exists between the numerical and theoretical results in sense of the stress state with the 232 

growth of fracture. The fracturing-induced stress alterations appear in certain areas of the model. 233 

Specifically, opening of HF exerts horizontal compressive stress perpendicular to the fracture 234 

trajectory. The degree of alternation declines with distance from the fracture. Tensile stress (positive 235 

magnitude in Fig 7b and 7c) concentrates ahead of the fracture tips. Difference exists between the 236 

numerical and theoretical results in terms of stress magnitude close to the fracture since the measured 237 

stresses are an averaged state of certain number of particles, which cannot reflect the sharp transition 238 

close to the fracture interface and the tips.  239 

4. Simultaneous multiple hydraulic fracturing  240 

We first carry out individual fracturing treatment at the four points spaced with 17 m (see Fig 1a), 241 

using the same injection rate with the single hydraulic fracturing test. The well pressure histories in 242 

Fig 8a present the similar trend with the single HF test (Fig 2). However, slope of the curve varies 243 

from case to case due to the non-uniform volume of domains representing the injection points and the 244 

number of pipes surrounding each domain. Under the same injection rate, smaller domain leads to a 245 

higher well pressure after the same time. Moreover, the breakdown pressure varies from 210.1 to 246 

336.4 MPa, depending on the local tensile strength of the bond and the local force distribution. The 247 

values of break down pressure from simulation are much higher than the value commonly 248 

encountered in the experimental and field treatments. Possible reasons will be discussed in Section 5. 249 

The difference among well pressures becomes smaller with the ongoing of test. Ultimately, all 250 

pressures approach to a same magnitude. In Fig 8b, fracture geometry shows that all the four fractures 251 

propagate vertically, with the aperture gradually decreasing from the injection point to the tips. 252 

However, the fracture trajectory is site-dependent. Fractures A and D are almost symmetric with 253 
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respect to the injection points while fracture C only propagates downward. This discrepancy is caused 254 

by the nonuniformity of rock properties. During the fracturing process, competition exists between the 255 

two fracture fronts, depending on the local contact force and local bond strength. Consequently, the 256 

fracture propagates along the path with least resistance.  257 

4.1 The reference case  258 

For comparison purpose, we simultaneously inject fluid at the four points with the same setup of 259 

the individual treatment case (Fig 8). All well pressure histories (Fig 9) follow the similar trend with 260 

the single HF discussed previously. The well pressures also approach to a same magnitude with the 261 

ongoing of fracturing. Breakdown pressures obtained from the simultaneous injection test are close to 262 

those obtained from the individual injection test (see Fig 10a). This can be explained by the fact that 263 

the perturbation of local contact force around the injection points are negligible at the breakdown 264 

pressure stage, as confirmed by the force network in Fig 10b and Fig 10c. 265 

Fig 11 and Fig 12 illustrate the growth of fractures and the corresponding contours of 
'

xx . 266 

Different with the individual case, stress-shadowing influences the development of multiple fractures. 267 

Initiation of early fractures (A and D) alter the magnitudes and orientations of the local principle 268 

stress (see Fig 12 when tinj=1323 and 1639s), and hence affect the propagation direction of the late 269 

fractures (B and C in Fig 11 when tinj=2347 and 3212s). The interaction between fractures also affects 270 

the growth of early fractures, e.g., propagation of fracture D starts to approach the outer of formation 271 

from tinj=2347 to 4229 s. When the fracture branches grow in the area far from the existing fractures 272 

where stress shadow effect is less pronounced, they turn back toward the direction of the far-field 273 

maximum in situ stress (fractures B and D after 4229 s). The lower tips of fracture B and D are 274 

suppressed by compression stress induced by facture A and C. On the contrary, the upper tips of A and 275 

C fall in the region of stress shadow of facture B and D and are suppressed. As a result, alternative 276 

upward and downward fractures appear.   277 

This scenario is regarded as the reference case. In the subsequent two sections, we 278 

systematically change the in-situ states (maximum horizontal stress, initial pore pressure and 279 

formation heterogeneity) and the operation parameters (injection point spacing, injection rate and 280 

fluid viscosity) and evaluate the influence these factors on the characteristics of multiple fractures. In 281 

these results, we mainly focus on the geometry of the fractures at the last stage of stimulation.  282 

4.2 Influences of in situ conditions 283 

To describe the in situ stress deviator, the anisotropy ratio of effective stress ( ) is defined as: 284 
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where 
'

V  and 
'

H  represent the effective vertical stress and the maximum effective horizontal 286 

stress, respectively. We conduct hydraulic fracturing tests on the same formation with the reference 287 

case but varying the magnitude of the vertical stress, the maximum horizontal stress and the initial 288 

pore pressure. Details about the tests are summarized in Table 5. 289 

For the case with larger effective stress deviator (  =4.12), all fractures propagate 290 

approximately along the maximum stress direction (Fig 13a and 13c). The growth paths of fractures 291 

are almost consistent despite the short inclined segments in fracture B soon after the fracture initiation 292 

in Fig 13a caused by stress shadowing. After a certain height, when fracture B overcome the stress 293 

shadowing region, it grows upward along the in-situ stress direction again. For the case with lower 294 

stress deviator ( =1.49), the influence of stress shadowing is more significant (see Fig 13b and 13d). 295 

Fracture A and D surpass others and dominate the propagation. The propagation of two inner fractures 296 

(B and C) are severely suspended due to stress interaction with outer fractures at the very beginning. 297 

Especially, fracture C grows in the longitude direction due to locally altered stress orientation. The 298 

simulation results confirm that fractures in the middle region have smaller aperture because of the 299 

increased compressive stresses resulting from other fractures [49]. Maximum fracture aperture 300 

appears at the segments just exceeding the region of stress shadowing.   301 

Another parameter contributing to the effective differential stress is the initial pore pressure. We 302 

carry two simulations with P0=55 and 65 MPa, respectively. The case with lower pore pressure leads 303 

to smaller effective stress anisotropy ( =1.82), where the stress shadowing influence is more 304 

significant. In Fig 14a, fractures generated in the altered stress field (fracture C and the initial segment 305 

of fracture B) are shorter and narrower with orientation deviating significantly from the in-situ 306 

maximum stress orientation. Fracture A, B and C combine to one major fracture ultimately. The 307 

growth of fracture D is obviously suppressed with a comparative small fracture width. There is limited 308 

fracture divergence when P0=65 MPa, because the larger stress anisotropy offsets the effect of fracture 309 

turning due to the stress shadow and forces the fracture to go in the direction of maximum stress. 310 

Nevertheless, the growth of the two inner fractures (B and C) are suppressed by the two outer ones 311 

acting as the dominant fractures (See Fig 14b). 312 

We mimic the texture heterogeneity of rock formation by generating samples with particle size 313 

distribution of Rmax/Rmin=1.4, 1.66, 1.8 and 2.0, respectively. For each distribution, three packing 314 
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modes are generated by changing the random number. Simulation results show significant difference 315 

between the four cases (see Fig 15). In general, the narrower particle size distribution results in a 316 

formation with more uniform properties, in which the parallel fractures can propagate along the 317 

maximum principle stress direction for a relative long distance (Fig 15a). Conversely, wider particle 318 

size distribution leads to a more heterogeneous fabric, non-uniform force network and thus the 319 

concentration of low and high forces. As illustrated in Fig 15c and 15d, heterogeneous rock properties 320 

cause the localization of hydraulic fractures and magnify the stress shadowing effect. Fracturing is 321 

affected by the local stress in the region within the outer fractures where fractures around becomes 322 

inclined and propagate towards the longest one. For the case with largest particle size distribution (Fig 323 

15d), even the longest fracture propagates in an inclined path, rather than the far-field stress 324 

dominated vertical direction. Therefore, assumption of radial symmetric fracture growth may only 325 

work for the ideal isotropic media while ignoring the formation heterogeneity may underestimate the 326 

stress shadowing effect.   327 

4.3 Influence of operational parameters  328 

Since most of the in-situ states are intrinsic for a specific reservoir, we test the possibility of 329 

mitigating the stress shadowing effect by changing the injection scheme.  330 

We perform another two injection tests at four points evenly spaced with D=10 m and 20 m, 331 

respectively. As compared in Fig 16, increasing the spacing between the injection points can 332 

potentially decease the level of interaction between the HFs. The most obvious interactions appear in 333 

the model with the minimum spacing (Fig 16a), in which altered local stress orientation cause fracture 334 

B propagating horizontally towards A and combining into one major fracture after a short time. 335 

Ultimately, two prominent fractures dominate the growth with fracture A propagating upward and 336 

fracture C propagating downward. Larger spacing may lead to relative longer fractures with parallel 337 

patterns (see Fig 16b and c) but still stress shadowing influence can be identified from the inclined 338 

segments within the interaction regions. 339 

With a fixed spacing of 17m, we evaluate the influence of injection rate by conducting hydraulic 340 

fracturing with the rate of 0.25, 0.5, 2.0, and 4.0 times of the reference case, respectively. Fig 17 341 

compares the ultimate fracturing patterns. Compared with the in-situ states and the spacing, injection 342 

rate has a relative minor influence on the final fracture path. Although the injection time varies, 343 

fractures in all the four cases propagate following the same path. Stress shadowing effect forces 344 

fracture B propagates away from fracture A at the initial injection phase. Once fracture B overcomes 345 

the stress shadowing region, it turns back to propagate upward again. The final fracturing is 346 

dominated by two fractures propagate downward (fracture A and C) and two propagate upward 347 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

(fracture B and D).  348 

We also evaluate the influence of injection fluid viscosity by performing hydraulic fracturing 349 

tests with  =0.0002, 0.0005, 0.005 and 0.02 Pa.s. Generally, fluid viscosity does not influence the 350 

trajectory of the fractures much (Fig 18), which is in line with the influence of injection rate. 351 

Interaction between nearby fractures exists in a short range, in the form of inclined sections in fracture 352 

A, B and D close to the injection points. Once the fracture exceeds its neighboring fractures, stress 353 

shadow effect is less pronounced, and the fracture turns back toward the direction of the far-field 354 

maximum in-situ stress.  355 

5. Discussions  356 

The breakdown pressures in all cases significantly overestimate the pumping pressure during an 357 

actual hydraulic fracturing operation. This pressure corresponds to the pressure in the injection 358 

domain when the first bond breaks and depends on the concentration of local contact force, the tensile 359 

strength of a single bond, the unrealistic injection rate and the domain volume. Therefore, the 360 

breakdown pressure in the DEM model deviates from the physical cases. During the fracture 361 

propagation, the well pressure still overestimates the realistic magnitude. Possible reasons include the 362 

much higher fracture toughness of the bonded particle model as a consequence of the selected large 363 

particle size [25], the implementation of the solid-fluid interaction and inherent issue resulting from 364 

the assumption of a discretization in blocks. We make an engineering decision to use a model with 365 

high toughness in order to obtain results with practical run time. Our previous study has proved the 366 

capacity of flat-jointed model in reproducing both the tensile strength and confinement dependent 367 

compressive strength of brittle rocks [50]. Inserting the fluid-flow algorithm into the flat-jointed 368 

contact model provides a promising approach to quantitatively capture the fracturing toughness and 369 

hydraulic fracturing pressure [51]. 370 

During the injection treatment, fracturing occurs when the effective stress exceeds the tensile 371 

resistance. Breakdown pressure for the formation with low permeability can be estimated using [52, 372 

53]: 373 

max 03b H VP T P                                  (13) 374 

where T  represents the tensile resistance of the rock formation.  375 

We conduct seven sets of virtual direct tensile tests on the DEM samples with the width ranging 376 

from 6 m to 60 m and the height/width ratio fixed as 2.0. For each set, we change the random number 377 

and generate 6 samples with different packing. Corresponding tensile strengths are summarized in Fig 378 
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19 together with the tensile strength of a single bond. With the increase of the sample size, the tensile 379 

strength dramatically drops from the bond strength and then gradually approaches to a constant value 380 

around 15 MPa. Taking the tensile strength of a single bond into Eq. 13, we can get the breakdown 381 

pressure to be around 117.7 MPa, which is much lower than those presented in Fig 10a. This is caused 382 

by the concentration of local contact force. At the subsequent breakdown stages (Point A and C in Fig 383 

2), the equivalent tensile strength approaches ~15 MPa. The breakdown pressure calculated from this 384 

tensile strength equals to 83.72 MPa. This magnitude agrees well with the well pressure range 385 

between the formation of initial fracture and the propagation stage (see Fig 8), confirming that the 386 

simulation results are self-consistent although they overestimate the realistic fracture toughness and 387 

well pressure.  388 

As acknowledged in Section 1, we simultaneously inject fluid into the domains with the same 389 

rate, resembling the case where fluid is uniformly divided into each fracture. This scenario deviates 390 

from the reality, where the constant fluid influx into the wellbore is dynamically partitioned to each 391 

fracture so that the wellbore pressure is the same throughout the array. Fracture geometry has been 392 

confirmed to be dependent on not only the stress-shadow effect but also the dynamic partitioning of 393 

flow rate [1, 5]. Future study is necessary to mimic the nonuniform development of multiple fractures 394 

induced by the uneven partitioning of flow rate into each fracture, depending on the flow resistance 395 

from fractures by assuming that a uniform pressure exists at all injection points.  396 

According to the theoretical analyses from Detournay [20, 54], two dissipative processes exist 397 

during fluid-driven fracturing process, i.e., fracturing of the rock (toughness) and dissipation in the 398 

fracturing fluid (viscosity). In the viscosity-dominated regime, the energy expended in the creation of 399 

new fracture surfaces is small compared to the energy dissipated in viscous flow, while in the 400 

toughness-dominated regime, the viscous dissipation is small compared to the energy dissipated at the 401 

crack tip. The conclusion of independence from injection rate and viscosity is assured because the 402 

large toughness will have driven the system into a toughness dominate regime. Therefore, the 403 

simulation results regarding the influence of injection rate and fluid viscosity are valid under the 404 

specific rock properties considered herein. In other words, the results are not universal for other rock 405 

with different property. It is necessary to quantitatively capture the tensile strength (i.e., fracture 406 

toughness) of the specific rock type and verify if it belongs to the regime where fluid flow is more 407 

important in the future study. Orthogonal experimental design considering the influence of fracture 408 

toughness and fluid flow parameters is also worth conducting to assess the transition of hydraulic 409 

fracturing regimes. 410 
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6 Conclusions 411 

We conduct a suite of DEM simulations to investigate the stress-shadowing effect and the 412 

growth characteristics of simultaneously-induced multiple fractures under the influences of different 413 

factors including the in-situ states and the operational parameters.  414 

Comparison between the theoretical model and simulation results from a single hydraulic 415 

fracture confirms the validity of the DEM model to reproduce the fracturing-induced stress alteration. 416 

A single hydraulic fracture propagates along the path with least resistance and ultimately leads to the 417 

trajectory parallel with the orientation of maximum far field stress but asymmetric with respect to the 418 

injection point due to the non-uniformity of formation properties. 419 

Simulation results reveal that the in-situ states play a more dominant role on the interactions 420 

among multiple hydraulic fractures. Stress shadowing effect suppress some HFs by the compressive 421 

stresses exerted on them by neighboring HFs. Interactions among multiple fractures lead to the 422 

appearance of some dominant fractures, propagating either upward or downward. The 423 

stress-shadowing effect diminishes with higher effective stress anisotropy, depending on the in-situ 424 

stress difference and the initial pore pressure. Non-uniformity of formation properties magnifies the 425 

stress shadowing effect and causes the severe interactions among fractures. Increasing the spacing 426 

between injection points may mitigate the interactions to a certain degree while changing injection 427 

rate and fluid viscosity has a relative minor influence on the stress shadowing and interaction among 428 

multiple fractures.  429 
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Table 1. Micro-parameters used in the DEM model to simulate the propagation of 

simultaneously-induced multiple hydraulic fractures. 

Particle property Parallel bond property Hydraulic property  

Property  Value  Property  Value  Property  Value 

Particle density (kg/m3) 3169 Parallel bond modulus 

(GPa) 

23 Bulk modulus of 

fluid (GPa) 

1 

Young’s modulus (GPa) 23 Parallel bond normal 

strength (MPa) 

49±9.8 Fluid viscosity 

(Pa.s)  

0.002 

Friction coefficient 0.5 Parallel bond shear 

strength (MPa) 

49±9.8 Pressure when the 

aperture decreases 

to half (MPa) 

20 

Minimum particle size, 

Rmin (m) 

0.752 Ratio between normal 

and shear stiffness 

2.5 The residual 

aperture (m) 

5×10-4 

Ratio between maximum 

and minimum particle 

size, Rmax/Rmin   

1.66 Radius multiplier  1.0 Gap multiplier  1.0 

Ratio between normal 

and shear stiffness, kn/ks 

2.5     
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Table 2. Comparison between the mechanical properties obtained from the experiments and the DEM 

simulations on the uniaxial compression test. 

 Uniaxial compressive 

strength (MPa) 

Young’s modulus (GPa) Poisson ratio 

Experimental results 60.74 27.58 0.27 

DEM results  60.46 27.39 0.25 
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Table 3 Setup of the DEM model and boundary condition for the simulation of simultaneous 

hydraulic fractures.  

Model setup  Magnitude Boundary condition Magnitude  

Width (m) 200 Initial pore pressure (MPa) 59.32 

Height (m) 200 Horizontal stress (MPa) 70.26 

Coordination number  4.09 Vertical stress (MPa) 82.74 

Initial isotropic stress 

(MPa) 

1.0 Loading rate when applying the 

in-situ stress (s-1) 

0.0001 

Number of parallel bonds 23529   
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Table 4. States of the injection-induced single fracture at different stages. Stages A, C, and D are 

marked in Fig 7.  

Stage 

Injection 

time, tinj 

(sec) 

Coordinates of 

upper fracture tip 

Coordinates of 

lower fracture tip 

Coordinates of 

fracture center 
Fracture 

length (m) 

Half fracture 

length (m) 
x y x y x y 

A 3275 3.09 3.66 -2.68 -10.71 0.2 -3.53 15.49 7.75 

C 4011 3.09 6.59 -4.56 -28.53 -0.74 -10.97 35.94 17.97 

D 7650 4.54 39.31 -4.56 -28.53 -0.01 5.39 68.45 34.23 
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Table 5. Cases designed to evaluate the influence of in-situ stress and pore pressure states on the 

interaction among multiple hydraulic fractures.  

Case  Vertical stress,    

(MPa) 

Maximum horizontal 

stress,       (MPa) 

Initial pore pressure, 

P0 (MPa) 

Effective stress 

anisotropy ratio,   

Base case 82.74 70.26 59.32 2.14 

Case I 82.74 65.00 59.32 4.12 

Case II 82.74 75.00 59.32 1.49 

Case III 75.66 70.26 59.32 1.49 

Case IV 104.43 70.26 59.32 4.12 

Case V 82.74 70.26 55.0 1.82 

Case VI 82.74 70.26 65.0 3.37 
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Figure 1. (a) Setup of the DEM model for the simulation of simultaneous multiple hydraulic fractures. 

The formation is saturated under the initial pore pressure P0=59.32 MPa. (b) Schematic diagram of the 

hydro-mechanical coupling model. (c) Idealization of fluid flow through the contact between two 

particles. 

  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

Figure 2. Well pressure history and the number of cracks from the single hydraulic fracturing 

treatment. Cracks are classified into tensile and shear modes according to their failure mechanism.  
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Figure 3. Growth of the single hydraulic fracture when injection is operated at the center of the 

formation. The thickness of the short line is proportional to the aperture of each crack, which are all 

formed as tensile failure. The aperture is normalized by 0.1 m. Corresponding stages are marked in the 

well pressure history in Fig 2.  
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Figure 4. Distribution of the fluid pressure along the hydraulic fracture at various stages. 

Corresponding stages are marked in the well pressure history (Fig 2). The solid red line indicates the 

magnitude of initial pore pressure (  =59.32 MPa).  
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Figure 5. (a) Layout of the measurement circles. (b) Horizontal stress (   ) measured after the 

application of in-situ stresses (     =70.26 MPa;   =82.74 MPa); (c) Effective horizontal stress 

(   
 ) measured after the formation is fully saturated under the initial pore pressure. Negative 

magnitude indicates the corresponding site is under compression.   
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Figure 6. Schematic diagram of the model for the analytical solution (after Sneddon 1946). The 

pre-existing fracture is represented by the red solid line.  
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Figure 7. Induced cracks (top row), contour of    
  measured from the DEM model (middle row), and 

contour of    
  predicted by the analytical solution (bottom row). Three stages in Fig 2 are considered: 

(a) Stage A; (b) Stage C; and (c) Stage D. 
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Figure 8. (a) Well pressure history from the four injection points when they are operated individually. 

(b) Geometry of the fractures in the end of the stimulation. Short lines represent the cracks. Color of the 

short lines indicates the formation time of fracturing. The thickness of the short line is proportional to 

the aperture of each crack. The maximum aperture (wmax), breakdown pressure time and magnitude are 

provided accordingly. 
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Figure 9. Well pressure histories from the simultaneous multiple hydraulic fracturing from a horizontal 

well. Spacing between adjacent injection points (D) equals to 17 m.  
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Figure 10. (a) Comparison of the breakdown pressure obtained from the simultaneous injection (solid 

symbols) and from individual injection tests (open symbols). (b) and (c) illustrate the contact force 

network around the injection point (blue dot) at the breakdown pressure stage obtained from the 

individual and simultaneous injection case, respectively. Thickness of the line is proportional to the 

magnitude of contact force. 
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Figure 11. Initiation and propagation of the simultaneous multiple hydraulic fractures. Short red lines 

represent the cracks.  

  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

Figure 12. Contour of horizontal effective stress monitored from the DEM model at various stages 

during the growth of simultaneous multiple hydraulic fractures. 
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Figure 13. Influences of the in-situ stress anisotropy: (a)       65 MPa,    82.74 MPa; (b) 

      75 MPa,    82.74 MPa; (c)       70.26 MPa,    104.43 MPa; and (d) 

      70.26 MPa,    75.66 MPa. Short lines represent the cracks. Color of the short lines 

indicates the formation time of fracturing. The thickness of the short line is proportional to the aperture 

of each crack with the maximum magnitude (wmax) provided accordingly. 
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Figure 14. Influence of initial pore pressure (P0): (a) P0=55 MPa; (b) P0=65 MPa. All other parameters 

are the same with the reference case. Short lines represent the cracks. Color of the short lines indicates 

the formation time of fracturing. The thickness of the short line is proportional to the aperture of each 

crack with the maximum magnitude (wmax) provided accordingly. 
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Figure 15. Influence of the formation heterogeneity. The particle size distribution is: (a) Rmax/Rmin=1.4, 

(b) Rmax/Rmin =1.66, (c) Rmax/Rmin =1.8 and (d) Rmax/Rmin =2.0. three packing modes are generated for each 

particle size distribution range. All other parameters are the same with the reference case. Short lines 

represent the cracks. Color of the short lines indicates the formation time of fracturing. The thickness of 

the short line is proportional to the aperture of each crack with the maximum magnitude (wmax) provided 

accordingly. 
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Figure 16. Influence of the spacing between injection points: (a) D=10 m, (b) D=17 m, and (c) D=20 m. 

All other parameters are the same with the reference case. Short lines represent the cracks. Color of the 

short lines indicates the formation time of fracturing. The thickness of the short line is proportional to 

the aperture of each crack with the maximum magnitude (wmax) provided accordingly. 
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Figure 17. Influence of the injection rate. The injection rate equals to: (a) 1/4; (b) 1/2; (c) 2.0; and (d) 

4.0 times of the reference case. Short lines represent the cracks. Color of the short lines indicates the 

formation time of fracturing. The thickness of the short line is proportional to the aperture of each crack 

with the maximum magnitude (wmax) provided accordingly.  
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Figure 18. Influence of the fluid viscosity: (a)  =0.0002 Pa.s; (b)  =0.0005 Pa.s; (c)  =0.005 Pa.s; (d) 

 =0.02 Pa.s. All other parameters are the same with the reference case. Short lines represent the cracks. 

Color of the short lines indicates the formation time of fracturing. The thickness of the short line is 

proportional to the aperture of each crack with the maximum magnitude (wmax) provided accordingly. 
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Figure 19. Tensile strength obtained from direct tensile tests on the DEM samples with various scales. 

For each scale, six samples were conducted by changing the random number. The ratio between height 

and width is kept constant as 2.0 for all the samples.  

 


