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Abstract— Reliable outdoor deployment of mobile robots
requires the robust identification of permissible driving routes
in a given environment. The performance of LiDAR and vision-
based perception systems deteriorates significantly if certain
environmental factors are present e.g. rain, fog, darkness.
Perception systems based on Frequency-Modulated Continuous
Wave scanning radar maintain full performance regardless
of environmental conditions and with a longer range than
alternative sensors. Learning to segment a radar scan based
on driveability in a fully supervised manner is not feasible
as labelling each radar scan on a bin-by-bin basis is both
difficult and time-consuming to do by hand. We therefore
weakly supervise the training of the radar-based classifier
through an audio-based classifier that is able to predict the
terrain type underneath the robot. By combining odometry,
GPS and the terrain labels from the audio classifier, we are
able to construct a terrain labelled trajectory of the robot in
the environment which is then used to label the radar scans.
Using a curriculum learning procedure, we then train a radar
segmentation network to generalise beyond the initial labelling
and to detect all permissible driving routes in the environment.

Index Terms— radar, audio, terrain classification, weakly
supervised learning

I. INTRODUCTION

Safe navigation of intelligent mobile robots in unstructured

and unknown outdoor environments (e.g. search and rescue,

agriculture, and mining industry sectors) requires perception

systems which deliver a detailed understanding of surround-

ings regardless of any environmental factor (e.g. weather,

scene illumination, etc). In many environments, some terrains

are unsuitable to traverse and so robust route identification is

a key problem to be solved. To that end, a variety of sensor

technologies have been used for solving related problems,

including: cameras, LiDAR, sonar, audio, and radar.

LiDAR- and vision-based terrain classification systems are

highly susceptible to inclement environmental or atmospheric

conditions: heavy rain, fog, direct sunlight, and dust all

greatly degrade the performance of these systems, thereby

limiting their range of applications.

Frequency-Modulated Continuous Wave (FMCW) scan-

ning radar, in contrast, operates robustly under such adverse

conditions and additionally operates at ranges of up to
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Fig. 1: Overview of the proposed system: audio is recorded

and used to classify the terrain the robot is driving on – here

gravel (red) and grass (green). Using odometry, the robot can

paint this semantic information on top of the radar scan.

many hundreds of metres – relaxing the maximum speed

at which a robot can safely travel and facilitating longer

planning horizons. Indeed, there is a burgeoning interest in

exploiting FMCW radar to enable robust mobile autonomy,

including ego-motion estimation [1]–[5], localisation [5]–[8],

and scene understanding [9]–[11].

As a novel contribution to scene understanding with radar,

this paper presents a system that detects permissible driving

routes from raw radar scans. Specifically, it focusses on the

methodology for the obtainment of labelling and a novel

training procedure for the radar classifier.

Radar measurements are complex, containing significant

multipath reflections, speckle noise, and other artefacts in

addition to the radar’s internal noise characteristics [12]. This

makes the interaction of the electromagnetic wave in the

environment more complex than that of time-of-flight (TOF)

lasers. As obtaining a labelled radar dataset for supervision

– with each scan annotated on a bin-by-bin basis – is

challenging and time consuming, we propose an weakly-

supervised framework using an alternative sensing modality:

audio.

Audio-based terrain classifiers can be used to predict the

permissibility of a driving route when the route is charac-

terised by its terrain (e.g. grass, gravel, asphalt). Predicting

terrain from audio is possible as each interaction between the

robot and the ground has a terrain-specific audio signature.

Audio offers two advantages over other modalities,



(a) (b) (c)

Fig. 2: An example from the training dataset at three stages of the training process. (a) shows initial labelling (b) shows

additional labels generated by stage one of the curriculum and (c) shows the final segmentation result.

e.g. vision-based systems: first, audio is invariant to scene

appearance and less affected by weather conditions, provid-

ing more stable and predictable results; moreover, the use of

microphones is advantageous as audio is a one-dimensional

signal, easing the labelling process as the audio for each

terrain can be collected separately.

Once the audio-based terrain classifier has been trained,

we exploit it to weakly supervise the radar classifier training.

Visual Odometry (VO) and GPS are used to trace the

trajectory of the robot on the radar scan as if it were a

canvas (see Figure 1) and each traversed bin is classified

by the audio classifier.

II. RELATED WORK

Mature techniques for identifying the driveable area of

urban environments with cameras and LiDARs often learn

to semantically segment the entire scene through the use

of fully labelled datasets such as Cityscapes [13] or by

weak supervision and demonstration as in [14]. In non-urban

outdoor environments, path detection is closely related to

the task of terrain classification [15]. For the environment

in which our system was trained and tested, all permissible

driving routes belong to one terrain class (gravel) and so

for this application the tasks of permissible driving route

identification and terrain classification are equivalent.

Vision-based terrain classification is perhaps the most

traditional approach due to its associated intuitiveness and

affordability. In [16], colour segmentation is employed to

identify different terrains, while [15] performs both colour

and texture segmentation for path detection. However in [16],

problems arising due to variations in illumination are ex-

posed. Although these problems are mitigable, when also

paired with environmental factors such as fog, heavy rain

and dust clouds, these systems alone seem unfit for robust

autonomy.

LiDAR can be used to build successful terrain classifiers

by observing the texture of the 3D point-cloud as seen

in [17]. In low light conditions LiDAR works well, however

it suffers greatly in the presence of rain and fog, limiting its

applicability in much the same way as vision.

As mentioned in Section I, audio can also be used for

terrain classification. Terrain-specific audio signatures are

invariant to scene appearance and much less influenced by

weather conditions compared with vision and LiDAR-based

methods. The obvious disadvantage to this technique is that

only the terrain the robot is currently operating on can be

classified. As discussed in this paper, this characteristic can

be leveraged for labelling purposes. [18] reports classification

of nine different terrains with an accuracy of 99.41% by

leveraging advances in Deep Learning (DL) and using a

Convolutional Neural Network (CNN) classifier. The audio

features used for the CNN classifier were spectrograms

generated with the Short Time Fourier Transform (STFT).

Despite the lower spatial resolution and compression of

height information, in [19] it is shown in the context of

a Simultaneous Localisation and Mapping (SLAM) sys-

tem that while producing slightly less accurate maps than

LiDARs, radars are capable of capturing details such as

corners and small walls. This is reflected in literature as

extensive research has been done using millimetre-wave

radar systems for odometry, obstacle detection, mapping and

outdoor reconstruction [1], [12], [20]. Radar is invariant to

almost all environmental factors posed by even the most

extreme environments, such as dusty underground mines,

blizzards [21], [22]. Less work, however, has been carried out

to investigate radar’s performance on more comprehensive

scene understanding tasks such as terrain classification or

path identification. [23] presents an outdoor ground segmen-

tation technique using a millimetre wave radar, however the

chosen method limits its range of operation.

Perhaps most similar to our work is a visual terrain clas-

sifier which is also supervised by learned acoustic features

presented in [24]. In our work, however, we focus on the

usage of radar, which has advantages over vision in terms

of robustness to both weather and illumination as well as

sensor range. This work exposes at the same time challenges

specific to the modality – especially the high sparsity of

labelling. This is overcome with a stronger focus on the

training procedure for the proposed network by explicitly

promoting generalisation.

III. METHODOLOGY

Our method is based on our early investigation described

in [9]. Learning to segment driveable routes in a radar scan

– in a supervised manner – requires that routes in each

scan are labelled. For a dataset of sufficient size (in the

order of thousands of training examples), doing this by

hand is a prohibitively time-consuming process. We there-

fore opt to weakly supervise the training of a radar-based

segmentation network with an audio-based classifier that is



(a) Spectrogram (b) Mel-frequency spectrogram (c) Gammatonegram

Fig. 3: Visualisation of each time-frequency diagram used as feature representation for audio. Each diagram is generated

from a clip length of 0.5 s, shows frequencies up to half the sampling frequency and uses a bandwidth resolution of 100Hz.

trained independently of the radar-based classifier. Audio

is collected for each terrain separately (making labelling

trivial by tagging each sample as the whole sequence) and

used to train the audio classifier for later use. Although the

same labelling strategy could have been used to label radar

directly, using audio as the labelling signal greatly increases

the flexibility of the system by allowing multiple passes

on different terrains in the same sequence and thus adding

examples of both classes on single frames and at the same

time lowering the sparsity of the labels.

Through the use of odometry and GPS, we obtain the

data collection robot’s timestamped trajectory in the environ-

ment. The audio terrain classifier is then used to accurately

predict the terrain at each timestamp. By combining both,

we produce a terrain-labelled trajectory of the robot in

the environment (depicted in Figure 1) which is used as

sparse labelling. For the purpose of segmenting paths in

our environment, only the terrain labels denoting gravel are

required.

A. Audio Classification

As audio is best interpreted as a sequence of frequencies

correlated in time, we discuss its representation in the form

of different types of spectrograms. As suggested in [18],

spectrograms can be used as 1-channel images to feed into

a CNN. This is effective as the success of CNN classifiers

is in their ability to learn features automatically from data

containing local spatial correlations. By assuming local spa-

tial correlations in a spectrogram, the classifier recognises

the temporal correlation of characteristic audio frequencies.

Our CNN classifier follows a standard architecture with

several convolutional layers and max-pooling for downsam-

pling.

For audio representation, we assess the performance of

three types of spectrograms (results found in Section V). The

representations considered are: Spectrograms, Mel-frequency

spectrograms and Gammatonegrams (see Figure 3).

Spectrograms are the simplest time-frequency diagrams

and are generated directly by the STFT. Mel-frequency

spectrograms and gammatonegrams are motivated by the idea

that the human auditory system does not perceive pitch in a

linear manner. For humans, lower frequencies are percep-

tually much more important than higher frequencies and

this can be represented in time-frequency representations.

Gammatonegrams extend this biological inspiration, using

filter banks modelled on the human cochlea and have been

successfully used before in a robotics context [25].

The implementation used to generate both spectrograms

and mel-frequency spectrograms is courtesy of VOICEBOX:

Speech Processing Toolbox for MATLAB1 and the MAT-

LAB toolbox: Gammatone-like spectrograms2 is used to

generate gammatonegrams.

B. From Audio to Labelled Radar

In order to project terrain labels from audio into radar

scans, we make use of the visual odometry estimate on the

platform and GPS. VO produces a locally accurate, smooth

trajectory and contains important orientation estimates. Al-

though the estimates are locally accurate, they tend to drift

over longer distances. In contrast, GPS measurements are

globally accurate, but suffer from significant noise resulting

in a non-smooth trajectory and contain low quality informa-

tion about the orientation of the robot. In order to leverage

the benefits of both techniques, we fuse these data streams

using an Extended Kalman Filter (EKF).

Once the robot’s trajectory has been generated, it is

labelled using the audio classifier to predict the terrain

for each timestamp. Finally, the labelled trajectory is fitted

automatically to each radar scan using the position and

orientation estimates from the EKF.

C. Radar Segmentation Training Procedure

The nature of the method used for collecting the labels

means that the radar scans are both inexactly and sparsely la-

belled. The inexactness comes from measurement errors from

the GPS and VO, and the sparsity comes from our inability

to thoroughly traverse every driveable surface observed in

the radar scans. This means that the training procedure must

be designed such that the network can learn a more complex

model than the labelling might immediately suggest.

To do this, data augmentation and a label propagation tech-

nique are used to design a two stage curriculum learning pro-

cedure. As described in [26], the idea of curriculum learning

is that neural networks perform better when presented with

the most understandable training examples first. This is done

in the first stage by limiting the network’s receptive field

by only showing the network very small crops of the global

scan. In this way, the network is restricted to simply learning

1Found at www.ee.ic.ac.uk/hp/staff/dmb/voicebox/

voicebox.html. Produced by Mike Brookes, Dept. Electrical and
Electronic Engineering, Imperial College in 1997.

2Found at www.ee.columbia.edu/˜dpwe/LabROSA/matlab/

gammatonegram/. Produced by Dan Ellis, Dept. of Electrical Engineer-
ing, Columbia University in 2009.



what a path looks like and is relieved of learning more

complex concepts such as scene context. By comparison to

the more difficult task of simultaneously segmenting multiple

paths in the global scan, the network generalises much better

on the simpler task of segmenting small crops (as suggested

in [26]). For this reason, we are able to generalise beyond

the initially incomplete labelling (see Figure 2). Before input

to the network, crops are also flipped, rotated, elastically

deformed and rescaled to expose the network to paths that

are of different orientations, shapes and widths. This data

augmentation promotes a broader understanding of how a

path looks, thus assisting with generalisation.

Upon completion of the first stage, the network accurately

segments small sections of paths contained in crops of the

global scan (whether initially labelled or not) but is unsuited

to segmenting the whole scan. The second stage of the

curriculum is therefore to train the network to segment a

whole scan containing multiple paths in one forward pass.

By combining the predictions of the network from stage one

and the original labelling, we obtain a more complete and

exact set of labels from which the network can be trained to

complete the more complex task. The idea of using a trained

network’s predictions to augment the labels is presented in

a classification context in [27], however we adapt it to a

segmentation context (described in Section V-B).

For the segmentation network, we chose a U-Net archi-

tecture [28], which has proven effective for segmentation

of radar scans [2], [10]. A U-Net is a Fully Convolutional

Network (FCN) containing downsampling and upsampling

paths with skip connections between paths to propagate fine

detail.

IV. EXPERIMENTAL SETUP

This section discusses the platform and the dataset col-

lected and used for training and testing of our system.

A. Platform and Sensors

A Clearpath Husky A200 robot was fitted with micro-

phones and radar, for audio recording and route identifica-

tion, and with cameras and GPS for odometry estimation.

The audio data was recorded by using two Knowles omni-

directional boom microphones, mounted in proximity to the

two front wheels, and an ALESIS IO4 audio interface, at a

sampling frequency of 44.1 kHz and a resolution of 16 bits.

We used a Navtech CTS350-X FMCW scanning radar,

mounted on top of the platform with an axis of rotation

perpendicular to the road. The radar operates at a frequency

of 76GHz to 77GHz, yielding up to 3600 range readings,

each constituting one of the 400 azimuth readings with a scan

rotation rate of 4Hz. The radar’s range resolution in short

and long range configurations is 0.0438m and 0.1752m

respectively, resulting in ranges of 157m and 630m.

Images for VO were gathered by a Point Grey Bumblebee

2 camera, mounted facing the direction of motion on the

front of the platform. GPS measurements were collected with

a GlobalSat BU-353-S4 USB GPS Receiver.

B. Dataset

As discussed in Section III, audio was collected for each

terrain separately. It was recorded from both microphones

for 15min per terrain class, corresponding to approximately

7200 spectrograms per class (using a clip length of 0.5 s).

Audio for grass and gravel terrains was collected in Univer-

sity Parks and the asphalt terrain in the Radcliffe Observatory

Quarter.

Datasets for training and testing the classifier were col-

lected with the radar in both the long range and short range

configurations to ensure the network performs well regard-

less of specific radar configuration. We collected training

data in two locations in University Parks, Oxford and testing

data in two different locations in the same park. The audio

classifier in combination with VO and GPS provides labelling

for the training datasets. Figure 2 shows one location where

the training dataset was collected comprises of two paths

surrounded by grass. As the radar scan covers an area

of 1 587 600m2 in its longest range configuration, it is

impractical to traverse every path observed by the radar. For

this reason, we leave the side path untraversed (and therefore

unlabelled), such that we can test the segmentation network’s

ability to generalise effectively.

V. RESULTS

This section presents experimental evidence of the efficacy

of our system.

A. Reliability of the Audio Supervisory Signal

An investigation was performed into the performance

of the audio classifier using each different audio feature

representation to determine which one would be used in the

final classifier. In our experiments, the classifier is tested on

a withheld testing dataset and predicts from three possible

terrains: grass, gravel and asphalt. After averaging over mul-

tiple experiments, the accuracies for the spectrogram, mel-

frequency spectrogram and gammatonegram were 98.5%,

98.8%, 99.4% respectively (using a clip length of 0.5 s).

As the best performing feature representation, the gamma-

tonegram was used to train the final audio terrain classifier.

Additionally, investigations into the audio clip length used

to generate the gammatonegrams showed that the longer the

clip length, the more accurate the terrain classifier. Whilst an

intuitive result, this means a compromise between accuracy

and system frequency is necessary. We chose a clip length of

0.5 s by balancing classification accuracy and other system

frequencies (such as GPS update rate at 1Hz) to result in a

classification frequency of 2Hz.

Lastly, the final audio terrain classifier was tested on a

dataset where the robot dynamically traversed gravel and

grass for 22min. Approximate hand-labels were generated

by cross-referencing the predicted terrain at each of the 1320

GPS measurements with satellite imagery. Here, the audio

terrain classifier performed the task with an accuracy of

98.4%.

B. Effective Supervision of Radar-only Segmentation

Firstly, a U-Net is trained on the training set shown in Fig-

ure 2(a) as stage one in the curriculum detailed in Section III.



Trained on the simple task of segmenting 64×64 crops out

of a 512×512 scan, the network effectively learns not only to

reproduce the labelling but also to segment paths unlabelled

in our datasets (see Figure 2(b)).

To generate the labels for the previously unlabelled sec-

tions of scans, the radar scan is divided into a small sub-scans

which are sequentially segmented by the trained network. To

suppress spurious predictions, we randomly rotate each scan

a small number of times and combine the predictions on

each. Figure 2 shows an example of both the initial labelling

and the generated labelling after stage 1.

Stage two of the curriculum involves fine-tuning the

network with the newly generated dataset. We then test

the network on datasets collected in two unseen locations

with the radar in both long and short range configurations.

Figure 4 shows both typical segmentations and some radar

specific failure cases.

In both short and long range segmentations, the system

is able to reliably detect driveable routes with a 360◦ field

of view and up to hundreds of metres away. In Figures 4(d)

and 4(g), we observe that paths approximately 100m away

and occluded by trees are accurately segmented in a way

that would not be possible using any other sensor modality.

Figure 4(a) shows the network segmenting around pedestri-

ans and Figure 4(d) shows a consistent path detection behind

occluding trees.

Figures 4(i), 4(n) and 4(p) show examples where occluded

sections of the scan are misclassified as paths. This prob-

lem may be ameliorated by enforcing temporal consistency.

In Figure 4(k), the vertical disjoint in the radar scan is

misidentified as driveable path. This artefact arises due to the

motion of the radar during scan formation, and can be fixed

by motion correction. Finally, the network understandably

doesn’t predict through large occlusions, however could be

achieved by fitting cubic curves between path segments as

in [29].

The network correctly classified 98.8% of pixels with an

achieved IoU score of 39.8% when evaluated on 25 hand-

labelled unseen examples from the testing set. Compared

with an IoU of 54.1% achieved with cameras in [24] and

considering radar’s robustness to weather and illumination

shows the feasibility of our method for all-weather scene

understanding.

During inference, our U-Net runs at 330Hz and uses less

than 1GB of GPU memory when processing 256×256 scans.

We take this to be indicative that a CPU implementation may

be feasible for closed-loop autonomy.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a system that identifies permissible

driving routes using scanning radar alone. With a specific

focus on the methodology, the system is trained using an

audio-leveraged automatic labelling procedure, followed by

a curriculum designed to promote generalisation from sparse

labelling. Qualitative results show that the network is capable

of generalising effectively to the unseen testing set and

to unlabelled areas of the training set. Quantitative results

demonstrate the feasibility of our methodology for learning

robust scene understanding from radar.

In the future, we plan to retrain and test the system on

the all-weather platform described in [30], as part of closed-

loop autonomy. Specifically, domains for deployment of this

platform will be chosen to further explore the generalisibility

of the presented system to other grassy environments as well

as other driveable surfaces (e.g. asphalt). The proposed sys-

tem will also be applied in off-road intelligent transportation

contexts [31].
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