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Abstract: Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid malignancy in
adults. Although significant progress has been made in recent years to treat DLBCL patients, 30%–40%
of the patients eventually relapse or are refractory to first line treatment, calling for better therapeutic
strategies for DLBCL. Long non-coding RNAs (lncRNAs) have emerged as a highly diverse group
of non-protein coding transcripts with intriguing molecular functions in human disease, including
cancer. Here, we review the current understanding of lncRNAs in the pathogenesis and progression
of DLBCL to provide an overview of the field. As the current knowledge of lncRNAs in DLBCL is
still in its infancy, we provide molecular signatures of lncRNAs in DLBCL cell lines to assist further
lncRNA research in DLBCL.
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1. Introduction

Recent data implies that at least 80% of the human genome is transcribed, produc-
ing about 20,000 messenger RNAs (mRNAs), over 2300 microRNAs (miRNAs), a set of
structural RNAs (such as ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), and small
nuclear RNAs (snRNAs)), and at least 50,000 long noncoding RNAs (lncRNAs) [1–3]. LncR-
NAs comprise a diverse group of non-protein coding transcripts that are longer than 200
nucleotides in length, lack an open reading frame, and regulate gene expression at many
levels by affecting transcription, cellular localization, mRNA stability, translation, and other
post-transcriptional events [4–7]. As a result, lncRNAs regulate a broad range of biological
processes, including aging, cell growth and differentiation, hematopoiesis, and immune
response [8–11]. Accordingly, numerous studies have reported highly diverse roles for
lncRNAs in cancer [12–14], including development and maintenance of resistance to anti-
cancer therapy [15–18]. Most prominent examples involve well-characterized lncRNAs,
such as CDKN2B antisense RNA 1 (CDKN2B-AS1, also known as ANRIL) [19], growth ar-
rest specific 5 (GAS5) [20,21], H19 imprinted maternally expressed transcript (H19) [22,23],
HOX transcript antisense RNA (HOTAIR) [24,25], metastasis associated lung adenocar-
cinoma transcript 1 (MALAT1) [26,27], and X inactive specific transcript (XIST) [28,29].
However, the functions of lncRNAs in the pathogenesis of B-cell lymphomas are still poorly
understood.

Lymphomas are a collective term used for malignancies of the lymph system, and they
are divided into Hodgkin’s lymphomas (10% of lymphomas) and non-Hodgkin lym-
phomas (NHL), which account for ca. 90% of all lymphomas [30–32]. NHLs comprise
a diverse group of lymphoid cancers with approx. 85%–90% of NHL cases originating
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from B cells, while the remaining NHLs derive from T cells or NK cells [33,34]. Diffuse
large B-cell lymphoma (DLBCL) is the most common form of NHL, accounting for up
to 40% of all lymphomas, with an incidence rate of approximately five to six cases per
100,000 Americans per year [35]. The 5-year survival rate ranges from 50%–80%, depending
on risk profile, and the first-line treatment is the R-CHOP regimen (Rituximab plus Cy-
clophosphamide, Hydroxydaunorubicin, Oncovin, Prednisone combination therapy) [36].
Rituximab, a chimeric anti-CD20 monoclonal antibody [37] was added to the standard
CHOP chemotherapy regimen in 2003, which improved the two-year progression-free
survival from 51% to 61% and the overall survival rate from 52% to 78% [38,39]. Neverthe-
less, 30%–40% of the patients eventually relapse or are refractory to R-CHOP, experiencing
poor two-year outcomes with overall survival rates of only 20%–40% [40,41], which calls
for improved molecular understanding of the disease and new therapeutic strategies for
the treatment of DLBCL. To this end, lncRNAs might be a key to further understand
the diagnostic and prognostic measures for DLBCL to promote better treatment options
for DLBCL patients. In this article, we summarize the current status of lncRNAs in DL-
BCL and provide a survey for lncRNAs in DLBCL cell lines to assist further research into
the biological functions of lncRNAs in the pathogenesis of DLBCL.

2. General Functions of lncRNAs

LncRNAs exert their functions by binding to other macromolecules: DNA, RNA, or
proteins. At the level of transcription, a lncRNA can form a scaffold for the epigenetic or
transcription factor complex to assist its activation or repression of specific set of genes.
The best investigated example is the binding between histone H3 lysine 27 methyltrans-
ferase, polycomb repressive complex 2 (PRC2) (i.e., the functional enzymatic component,
enhancer of zeste homolog 2 (EZH2)) and lncRNAs such as HOTAIR [42], taurine up-
regulated 1 (TUG1) [43], and XIST [44]. However, recent studies suggest that EZH2 binds
many RNAs promiscuously, including lncRNAs [45–50]. Besides being transcriptional
regulators, some lncRNAs can bind other RNAs to exert post-transcriptional regulation.
For example, lncRNAs have been suggested to function as competitive endogenous RNAs
(ceRNAs) to sequester miRNAs thereby influencing the amount of proteins being produced
from the target mRNAs. Such lncRNAs are more commonly known as miRNA sponges,
which include the H19 lncRNA sponging miR-675 [51], the hepatocellular carcinoma up-
regulated long non-coding RNA (HULC) binding to miR-372 [52], and the ZNFX1 antisense
RNA 1 (ZFAS1) sequestering miR-150 [53]. As for the translational control, lncRNAs can
bind to RNA-binding proteins, which regulate mRNA translation. For example, in murine
cardiomyocytes, the paternally imprinted lncRNA gene, antisense of IGF2R non-protein
coding RNA (Airn, also known as Air), binds to the RNA-binding protein insulin like
growth factor 2 mRNA binding protein 2 (Igf2bp2) to regulate the translational efficiency of
hundreds of mRNAs to control the homeostasis of cardiomyocytes. In addition, lncRNA se-
quences themselves may be important for genomic imprinting, an epigenetic phenomenon
through which genes are expressed in a parent-of-origin dependent manner, as in the case
of the paternal imprinting lncRNA Airn [54] and the maternal imprinting lncRNA H19 [55]).
Genomic lncRNA sequences may also contain important regulatory sequences, such as en-
hancers, as in the case of Hand2, opposite strand 1 (Hand2os1, also known as Upperhand [56])
and Hand2 downstream lncRNA (Hdnr, also known as Handsdown [57])].

Because of the broad definition of lncRNAs as non-protein-coding transcripts longer
than 200 nucleotides in length, pseudogenes, which arise from the duplication of DNA se-
quences or retrotransposition and integration into the genome [58], are currently considered
as a new category of lncRNAs [59]. Furthermore, circular RNAs (circRNAs) have emerged
as an abundant class of covalently closed non-coding RNA molecules in eukaryotes that
arise from backsplicing of protein-coding and non-coding exons and/or introns [60–62].
Due to the lack of free 5′ and 3′ ends, circRNAs are more resistant to exonuclease-mediated
degradation compared to linear RNAs (e.g., mRNAs). Because of their stability, circRNAs
accumulate in the blood, saliva, and urine, which have made them attractive candidates
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for biomarker discovery [63,64]. Finally, some lncRNAs have been shown to encode small
peptides, named micropeptides. The examples of micropeptides are myomixer, myoblast
fusion factor (MYMX) [65], and myoregulin (MRLN) [66] which regulate muscle formation
and activity, respectively. Taken together, lncRNAs comprise a heterogeneous class of
non-protein coding transcripts with highly diverse roles in biological processes. However,
additional functional studies are required to establish the functions of lncRNAs in human
diseases, such as cancer.

3. LncRNAs in DLBCL

Due to the increased interest to study lncRNAs in recent years, researchers have also
identified a number of differentially expressed lncRNAs in DLBCL patients compared to
healthy donors or in DLBCL cell lines [67–70]. For example, the p53-activated lncRNA,
promoter of CDKN1A antisense DNA damage activated RNA (PANDA), was reported to
inactivate the MAPK/ERK signaling pathway to suppress cell growth by a G0/G1 cell cycle
arrest [68] (Figure 1A). By comparison, the firre intergenic repeating RNA element (FIRRE)
lncRNA was shown to function as an oncogene by activating Wnt/β-catenin signaling
pathway via promoting nuclear translocation of β-catenin [71] (Figure 1B). Other lncRNAs,
acting as post-transcriptional regulators, include the DBH antisense RNA 1 (DBH-AS1)
binding to the RNA-binding protein, BUD13 homolog (BUD13), controlling the translation
of fibronectin 1 (FN1) to positively regulate the proliferation, migration, and invasion
of DLBCL cells [72] (Figure 1C). Another example is the EZH2-mediated lncRNA, FAS
antisense RNA 1 (FAS-AS1), which binds to the RNA-binding protein, RNA binding motif
protein 5 (RBM5), to control alternative splicing of Fas cell surface death receptor (FAS)
mRNA [73]. Yet, other lncRNAs were shown to directly control protein modifications to
influence tumor growth, as in the case of TUG1, which reduces protein levels of the MET
proto-oncogene, receptor tyrosine kinase (MET) by promoting its ubiquitination [74].

Figure 1. Representative long non-coding RNAs (lncRNAs) in diffuse large B-cell lymphoma (DL-
BCL). (A) The p53-activated PANDA inhibits cell growth through inactivation of the MAPK/ERK
pathway. (B) The MYC-activated FIRRE activates the Wnt/β-catenin signaling pathway to facilitate
DLBCL cell growth. (C) The lncRNA DBH-AS1 controls the translation of fibronectin 1 (FN1) through
binding to the RNA-binding protein, BUD13. (D) Many lncRNAs have been suggested to function
as miRNA sponges to sequester miR-195.

Among various functions of lncRNAs, there is an increasing trend to investigate lncR-
NAs as miRNA sponges by viewing lncRNAs as an extra layer of the post-transcriptional
regulatory machinery to fine-tune miRNA-mediated control of protein abundance. For
example, the nuclear paraspeckle assembly transcript 1 (NEAT1) was shown to bind miR-
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34b-5p to affect the proliferation of DLBCL cell lines by targeting the GLI family zinc finger
1 (GLI1) [75]. Two lncRNAs have been implicated in the proliferation of DLBCL cells,
the paternally expressed 10 (PEG10) sponging miR-101-3p, which targets kinesin family
member 2A (KIF2A) [76], and SMAD5 antisense RNA 1 (SMAD5-AS1) that binds miR-
135b-5bp to regulate the translation of the APC regulator of the WNT signaling pathway
(APC) [77].

Small nucleolar RNAs (snoRNAs) are a class of small RNA molecules that assist
in chemical modifications of other regulatory RNAs (e.g., rRNAs and tRNAs) [78,79].
Similar to miRNAs, snoRNAs are processed from much longer host genes, which are
categorized as lncRNAs. In DLBCL, three snoRNA host genes have been proposed to
function as miRNA sponges: small nucleolar RNA host gene 12 (SNHG12) sequesters miR-
195 to control the cell growth, migration, and invasion of DLBCL cells in vitro [80]; small
nucleolar RNA host gene 14 (SNHG14) sponges miR-5590-3p to upregulate Zinc finger E-box
binding homeobox 1 (ZEB1); and small nucleolar RNA host gene 16 (SNHG16) sequesters
miR-497-5p, to derepress the Pim-1 proto-oncogene, serine/threonine kinase (PIM1).

Since a single miRNA can modulate hundreds of mRNAs, it is not surprising that one
miRNA can potentially be sequestered by several lncRNAs. MiR-195, which is a member
of the miR-15/107 family, is a known tumor suppressor, whose dysregulation is linked
to human diseases, including Alzheimer’s disease, cardiac hypertrophy, and many can-
cers [81,82]. As mentioned above [80], miR-195 is sequestered by SNHG12. In DLBCL,
another lncRNA, MALAT1, was shown to regulate expression of the CD274 molecule
(PD-L1) via miR-195 [83]. If the search is extended to outside of DLBCL, more than two
dozen lncRNAs are suggested to sponge miR-195, including AFAP1 antisense RNA 1
(AFAP1-AS1) [84], AGAP2 antisense RNA 1 (AGAP2-AS1) [85], cytoskeleton regulator RNA
(CYTOR) [86], maternally expressed 3 (MEG3) [87], NEAT1 [88], OIP5 antisense RNA 1
(OIP5-AS1) [89], urothelial cancer associated 1 (UCA1) [90,91], and XIST [92] to name a few
(Figure 1D). Thus, it is clear that the studying of lncRNAs as miRNA sponges is far more
complex than one would hope for, which suggests that it would be very challenging to use
lncRNAs as miRNA sponges for therapeutic purposes.

4. Differential Expression of lncRNAs in Rituximab Sensitive and Resistant DLBCL
Cell Lines

Understanding the role of lncRNAs in rituximab-resistant DLBCL phenotype could
potentially guide the development of improved DLBCL therapies, thereby increase the sur-
vival rate of DLBCL patients, and cut the treatment costs. As evident from the current
findings of lncRNAs in DLBCL, the number of lncRNAs identified and characterized is
still limited. To provide further insights into the role of lncRNAs in DLBCL, we analyzed
the transcription profiles of DLBCL cell lines, which are either sensitive or resistant to
rituximab, by RNA-sequencing (Figure 2A). These line cells are from different individuals
and were not treated with rituximab to uncover the intrinsic transcriptomic differences
that underlie drug resistance. We uncovered 195 up- and 428 down-regulated genes in
rituximab-resistant DLCBL cell lines compared to sensitive cell lines (Figure 2B), sug-
gesting that there are large gene expression differences inherent to rituximab resistance.
When Gene Ontology (GO) analysis for differentially expressed genes (both up- and down-
regulated genes combined) was performed, several key signaling pathways known to
be involved in tumor development were enriched (Figure 2C); most notably the GTPase
signaling pathway [93,94] (Figure 2D), confirming the intrinsic differences in DLBCL cell
lines compared.
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Figure 2. RNA-seq analysis of three rituximab-resistant and three rituximab-sensitive DLBCL cell lines. (A) Sample
information for the DLBCL cell lines used in this study [95,96]. (B) Volcano plot of RNA-seq data. With the threshold values
of 2-fold and p < 0.05, there are 195 up- and 428 down-regulated genes in rituximab-resistant compared to rituximab-sensitive
DLCBL cell lines (n = 3 biologically independent samples). (C) Gene ontology (GO) of differentially expressed genes (both
up- and down-regulated genes combined). (D) Hierarchical clustering of differentially expressed genes involved in GTPase
signaling pathway.

Of the 458 differentially expressed genes, 123 are classified as lncRNAs by the latest
annotation provided by the Ensembl database (GRCh38 version 100), comprising 54 up-
and 69-down regulated lncRNAs (Supplementary Table S1). To initiate the dissection of
the molecular signatures of the differentially expressed lncRNAs, additional bioinformatic
analyses were performed. First, the promoter regions of the differentially expressed
lncRNAs were examined for potential binding sites of transcription factors to uncover
gene regulatory networks of lncRNA expression. Among the 350 transcription factors with
potential binding sites in the promoter regions, 10 transcription factors were differentially
expressed in rituximab-resistant compared to rituximab-sensitive DLCBL cell lines (p < 0.05)
(Figure 3A; Supplementary Table S2). Among the differentially expressed transcription
factors, the homeodomain transcription factor Meis homeobox 1 (MEIS1) is predicted to
bind most sites in the highest number of promoter regions of the differentially expressed
lncRNAs. Although MEIS1 is down-regulated in rituximab-resistant DLCBL cell lines,
a recent study reported that the MYC proto-oncogene, bHLH transcription factor (MYC)-
dependent down-regulation of MEIS1 is linked to the tumor development and progression
via elevated homeobox B13 (HOXB13) expression and androgen receptor (AR) activity in
prostate cancers [97], suggesting that the resistance to rituximab may be linked to the down-
regulation of MEIS1, which, in turn, could regulate the expression of downstream lncRNAs.
Furthermore, the Kruppel like factor 5 (KLF5) is the only up-regulated transcription factor
in rituximab-resistant DLCBL cell lines. Interestingly, a previous report found KLF5 to
be upregulated in human breast cancer cells treated with the HER2/epidermal growth
factor receptor inhibitor, lapatinib [98]. Together with its family member KLF4, KLF5 was
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shown to induce expression of the anti-apoptotic factor, MCL1 (a BCL2 family member), to
coordinate the gene regulatory program in resistance to lapatinib. Thus, further studies
are warranted to uncover the importance of KLF5 in DLCBL in relation to regulation of
lncRNA expression and rituximab resistance.

Figure 3. Molecular characteristics of differentially expressed lncRNAs in rituximab-resistant DLBCL cell lines compared
to rituximab-sensitive cell lines. (A) Enrichment of transcription factor binding in the promoter regions of differentially
expressed lncRNAs. The following 10 transcription factors with the highest number of binding sites in these promoter
regions are shown in the image along with the log-transformed fold change (logFC) values in rituximab-resistant compared
to rituximab-sensitive DLCBL cell lines: cut like homeobox 2 (CUX2); forkhead box N3 (FOXN3); HIC ZBTB transcriptional
repressor 1 (HIC1); Kruppel like factor 5 (KLF5); myocyte enhancer factor 2C (MEF2C); Meis homeobox 1 (MEIS1);
POU class 5 homeobox 1 (POU5F1); REL proto-oncogene, NF-kB subunit (REL); SRY-box transcription factor 5 (SOX5);
and transcription factor 7 like 2 (TCF7L2). To allow for the visual inspection, 39 of 123 differentially expressed lncRNAs
are shown along with the logFC values in rituximab-resistant compared to -sensitive DLCBL cell lines. (B) Protein-protein
interactions (PPIs) of RNA-binding proteins (RBPs) predicted to bind CHROMR. PPIs are based on the information provided
by the STRING database [99] visualized through NetworkAnalyst [100].
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Besides lncRNAs functioning as miRNA sponges, increasing evidence suggests that
many lncRNAs sequester RNA-binding proteins (RBPs) to influence mRNA degradation
and stability. Such lncRNAs are collectively called RBP sponges [101]. Interestingly, the up-
regulated lncRNAs in rituximab-resistant DLCBL cell lines harbor many putative RBP
binding sites within their sequences (Supplementary Table S3). In particular, the cholesterol-
induced regulator of metabolism RNA (CHROMR, also known as CHROME and PRKRA-
AS1) has the fourth highest number of RBP binding sites among all up-regulated lncRNAs
examined (Supplementary Table S3). A previous study showed that CHROMR expression
is increased in the plasma and atherosclerotic plaques of individuals with coronary artery
disease [102]. Mechanistically, CHROMR either sequesters or degrades a set of miRNAs
(i.e., miR-27b, miR-33a, miR-33b, and miR-128) to repress the expression of genes mediat-
ing cholesterol transport in human hepatocytes and macrophages [102]. As cholesterol
metabolism has been reported to drive tumor growth and invasion [103], it would be
of high interest to study the intertwined link between cholesterol metabolism and DL-
CBL [104]. Given that many RBPs are involved in cholesterol metabolism and CHROMR is
3.4-fold up-regulated in rituximab-resistant DLCBL cell lines [103], in addition to being
miRNA sponge, CHROMR could function as an RBP sponge to modulate the translation of
genes mediating cholesterol transport (Figure 3B).

5. Materials and Methods
5.1. Cell Culture and Treatment

In this study, the following six human DLBCL-derived cell lines were used: NU-DHL-1,
HT, MC-116, SU-DHL-4 (DSMZ, German Collection of Microorganisms and Cell Cultures);
OCI-Ly8, and SU-DHL-8 (provided by Dr. Jose A. Martinez-Climent, Molecular Oncology
Laboratory, University of Navarra, Pamplona, Spain). The cell lines were cultured under
standard conditions at 37 ◦C in a humidified atmosphere of 95% air and 5% CO2 with RPMI-
1640 medium containing 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin
(P/S) for no longer than 20 passages. All cell lines were authenticated by DNA barcoding,
as previously described [95,96].

5.2. RNA Isolation and RNA-seq Assay

Total RNA was extracted using a modified protocol combining TRIzol Reagent (Invit-
rogen, Paisley, UK) and mirVana miRNA Isolation Kit (Ambion/ThermoFisher Scientific,
Grand Island, NY, USA), as previously described [105]. The RNA quality and concentration
of each sample were determined by Agilent 2100 Bioanalyzer analysis (Agilent Technolo-
gies, Santa Clara, CA, USA) and NanoDrop ND-1000 spectrophotometer (ThermoFisher
Scientific), respectively. The total RNA of each sample was sent to AROS Applied Biotech-
nology AS (Aarhus, Denmark) for poly-A selected, pair-end RNA-seq via Illumina HiSeq
2000 platform. The generated and analyzed data were deposited in the Gene Expression
Omnibus (accession ID: GSE159852)

5.3. Data Analysis

For RNA-seq data analysis, fastp [106] was used to trim the first seven base pairs,
detect paired-end adapters, and analyze overrepresented sequences. After quality con-
trol, the trimmed reads were aligned against GRCh38 genome build (version 100 from
the Ensembl database) using the Spliced Transcripts Alignment to a Reference (STAR) soft-
ware [107]. Differential expression analysis was performed using edgeR [108]. The Trimmed
Mean of M-values (TMM) method was used to normalize the data to obtain counts per
million reads mapped (CPM) values.

A volcano plot was generated using Zenodo [109]. To draw heat maps and run
hierarchical clustering, MultiExperiment Viewer (MeV) [110] was used. The bindings of
transcription factors were predicted via CiiiDER [111] with its default settings, including
the analysis at −1500 bases upstream to +500 bases downstream of the transcription
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start site (TSS) of each lncRNA. The putative bindings of RBPs were downloaded from
the oRNAment database [112]. The network of RBPs was drawn via NetworkAnalyst [100].

6. Concluding Remarks

This review summarizes recent findings of lncRNAs in DLBCL. Although several stud-
ies of lncRNAs in DLBCL have been published [67–70,113,114], the number of functionally
studied lncRNAs is still limited, which precludes the defined diagnostic and prognostic
importance of lncRNAs in DLBCL patients. To this end, we provide molecular signatures
of lncRNAs in rituximab-resistant and -sensitive DLCBL cell lines, respectively. A study
published in 2017 identifies 17 lncRNAs that can discriminate between two major molecu-
lar subtypes of DLBCL, activated B-cell-like (ABC) and germinal center B-cell-like (GCB),
with high specificity, which the authors termed these seventeen lncRNAs as SubSigLnc-17.
However, in our RNA-seq data, SubSigLnc-17 were not differentially expressed, which
promoted us to further analyze the differentially expressed lncRNAs in our RNA-seq
data [115]. We report on initial bioinformatic analyses of the differentially expressed lncR-
NAs; however, further biological validation and functional studies are required to uncover
the biological roles of the identified lncRNAs in DLCBL.

Supplementary Materials: The following are available online at https://www.mdpi.com/2311-5
53X/7/1/1/s1, Supplementary Table S1: List of differentially expressed lncRNAs in rituximab-
resistant compared to -sensitive DLCBL cell lines (n = 3 biologically independent samples with
the threshold values of 2-fold and p < 0.05). Supplementary Table S2: List of differentially expressed
transcription factors and their binding to the promoter regions of differentially expressed lncRNAs.
Supplementary Table S3: List of expressed RBPs and their binding to the up-regulated lncRNAs.
Each number indicates the number of binding sites predicted to bound by each RBP shown.
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