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Abstract: This paper presents recent contributions to the Marie Skłodowska-Curie Innovative Training
Network titled INFRASTAR (Innovation and Networking for Fatigue and Reliability Analysis of
Structures-Training for Assessment of Risk) in the field of reliability approaches for decision-making
for wind turbines and bridges . Stochastic modeling of uncertainties for fatigue strength parameters
is an important step as a basis for reliability analyses. In this paper, the Maximum Likelihood Method
(MLM) is used for fitting the statistical parameters in a regression model for the fatigue strength
of reinforcement bars. Furthermore, application of the Bootstrapping method is investigated. The
results indicate that the latter methodology does not work well in the considered case study because
of run-out tests within the test data. Moreover, the use of the Bayesian inference with the Markov
Chain Monto Carlo approach is studied. These results indicate that a reduction in the statistical
uncertainty can be obtained, and thus, better parameter estimates are obtained. The results are
used for stochastic modelling in reliability assessment of a case study with a composite bridge. The
reduction in statistical uncertainty shows high impact on the fatigue reliability in a case study on the
Swiss viaduct Crêt De l’Anneau.

Keywords: Bayesian inference; bootstrap method; Maximum Likelihood Method; reinforced-concrete;
uncertainty; fatigue-resistance

1. Introduction

This paper presents statistical analyses performed on fatigue data obtained from [1], where
laboratory fatigue tests were performed on reinforcement bars (rebars).

General methods and techniques utilized for risk and reliability assessment of civil engineering
structures are presented [2–18].

Statistical analyses of the data are an essential step for the stochastic modeling of the material fatigue
uncertainties, which can next be used as a basis for a probabilistic modeling and reliability analysis [19]
of structures with reinforced concrete components, such as wind turbines and bridges [20,21]. Usually,
foundations for onshore wind turbines are constructed by the use of reinforced concrete, which is also
used in many bridges. Therefore, the development of stochastic models for the fatigue limit state and
estimation of the resulting reliability can be considered as a contribution to reliability assessment of
these types of structures, with respect to fatigue failure and also as the basis for the development of
optimal strategies for the maintenance of wind turbines and bridges. [22].

Several methodologies can be used to estimate the statistical parameters. For instance: Maximum
Likelihood Method (MLM), moment method, least square method, and Bayesian statistics. In the
literature, there are some recommendations indicating which of these methods could be more suitable.
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At the same time, there is no unique answer to this question, especially for a fatigue case study on
rebars. On the reliability assessment, choosing a specific method has a direct influence. In the reliability
assessment, there is a need to have stochastic modeling for the material-resistance as well as for the
loads. In this paper, the material-resistance model is presented in detail, and at the end, using a generic
stochastic model for the fatigue load reliability results of a composite bridge are presented.

The MLM is chosen in this study as it gives an estimate of the statistical uncertainties [23].
MLM is considered for fitting the statistical parameters [2] in a regression model for fatigue strength.
Typically, the statistical analyses are based on a limited number of data, for which MLM can provide
estimates of the uncertainties associated with each of these parameters and the correlation between the
parameters [24]. This paper also presents the use of the Bootstrap method, which generates synthetic
data based on the available measurements from the experiment.

Further, Bayesian statistics is considered taking subjective/prior information into account. This is
done with application of Bayesian inference with a Markov Chain Monte Carlo implementation [25–27].
Bayesian updating is an appropriate tool to update the structural performance function for fatigue
by applying the information from the structural health monitoring and the prior information about
different fatigue parameters. The aim is to compare the results of different methodologies and to
provide information in order to select an appropriate method.

To study the effect of uncertainty of fatigue resistance model on the fatigue reliability of a structure,
a case study of Swiss viaduct Crêt De l’Anneau is presented. For this structure, long term strain
monitoring data on critical reinforcement is available.

2. Materials and Methods

2.1. Test Data

Test data on the fatigue strength test for steel reinforcement from the lab tests were done at
Aalborg University by Hansen and Heshe [1]. It is utilized for the statistical analysis to determine
typical fatigue strength uncertainties (see Table 1, where 1 indicated run-out/no failure and 0 indicates
failure). The lab tests are performed with steel reinforcement bars with 16 mm of diameter and yields
strengths of 570 MPa. The S-N curve for this data is presented in Figure 1. Run-outs are depicted in
orange and failures in gray.

Figure 1. S-N curve for rebar data [1].
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Table 1. Data [1].

Data Number (Index) Number of Cycles to Failure Stress Range [MPa] Run-Out

1 7,875,829 337 1
2 4,485,923 335 1
3 9,182,542 391 1
4 3,981,071 385 1
5 347,328 396 0
6 589,346 403 0
7 441,005 405 0
8 371,852 408 0
9 341,454 408 0
10 238,658 405 0
11 255,509 408 0
12 255,509 420 0
13 273,550 430 0
14 215,443 430 0
15 411,921 439 0
16 398,107 419 0
17 411,921 424 0
18 255,509 467 0
19 184,784 488 0
20 161,215 488 0
21 161,215 494 0
22 131,376 503 0
23 114,619 505 0
24 129,154 506 0
25 158,489 507 0
26 140652 536 0
27 105,250 536 0
28 80,113 561 0
29 53,201 572 0
30 48,026 572 0
31 50,547 572 0

2.2. Statistical Analysis of Fatigue Data of Steel Reinforcing Bars

For steel reinforcement bars used in concrete S-N, curves are recommended by various international
codes (such as Model code 2010, Model code 1990, DNV OS C 502, EN 1992-1) [28–31] and are generally
written as:

ni = K ∆s−m
i , (1)

or
log(ni) = log(K) −m log(∆si), (2)

where ni is the number of cycles to failure with stress range ∆si in test number, i. K and m are fatigue
parameters to be fitted by MLM here using test data [31].

To account for uncertainties in fatigue life, Equation (2) can be rewritten [22]:

log(ni) = log(K) −m log(∆si) + ε, (3)

where ε represents the uncertainty of the fatigue life model and is modelled by a stochastic variable
with mean value equal to zero and standard deviation, σε. ε is often assumed to have a Normal
distributed [31].

The Likelihood function to be used to estimate the optimal values of the parameters K, m, and σε
from test data is written [22]:

L(K, m, σε) =
∏nF

i=1
P[log(K) −m log(∆si) + ε = log(ni)]×

∏nF+nR

i=nF+1
P[log(K)−m log(∆si) + ε > log(ni)]. (4)
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Here, ni is the number of stress cycles to failure or to run-out with stress range ∆si in test number i.
nF is the number of tests where failure occurs, and nR is the number of tests where failure did not occur
after ni stress cycles (run-outs). The total number of tests is n = nF + nR. K, m, and σε are obtained from
the optimization problem maxK,m,σεL(K, m, σε), which can be solved using a non-linear optimization
algorithm [31].

Run-outs contain information which from a statistical point of view has to be included in the
statistical modelling in order to be consistent with all tests performed. This paper describes how
run-outs can be included using the MLM. The number of cycles where the tests are stopped are often
chosen in order to limit the costs and time used for the test campaign.

The terms in Equation (4) can be obtained from Equation (5) [22]:

P[log(K) −mlog(∆si) + ε = log(ni)] =
1

√
2πσε

exp
(
−

1
2

(
log(K)−mlog(∆si)−log(ni)

σε

)2
)
,

P[log(K) −mlog(∆si) + ε > log(ni)] = Φ
(

log(K)−mlog(∆si)−log(ni)
σε

)
.

(5)

The parameters K, m, and σε are generally determined using a limited number of data.
Consequently, the estimates are subject to statistical/parameter uncertainty. Since the parameters are
estimated by the MLM, they become asymptotically (number of data should be >25–30). Normal
distributed stochastic variables with expected values equal to the maximum-likelihood estimator and
a covariance matrix equal to [32]:

CK,m,σε = [−HK,m,σε ]
−1 =


σ2

K ρK,mσKσm ρK,σεσKσσε
ρK,mσKσm σ2

m ρm,σεσmσσε
ρK,σεσKσσε ρm,σεσmσσε σ2

σε

. (6)

HK,m,σε is the Hessian matrix with second-order derivatives of the log-likelihood function. σK, σm,
and σσε denote the standard deviations of K, m, and σε, respectively, and e.g., ρK,m is the correlation
coefficient between K and m.

2.3. Bootstrap Method

The Bootstrap method developed by Efron [33] may be used for smaller samples and is quite
flexible concerning the assumptions made. The Bootstrap method applies the actual distribution of the
measurement errors, which are then propagated using an appropriate Monte Carlo scheme. That is,
the Bootstrap method can be used to estimate the statistical (parameter) uncertainty.

Fatigue tests take very long time as it can take millions of cycles before the failure of one specimen,
and changing the frequency of load application could lead to erroneous results. The Bootstrap method
can be used to generate more synthetic data, which can then be used to estimate the parameter
uncertainties as an alternative to the use of MLM described above.

Residuals are estimated by subtracting the calculated number of cycles to failure from the observed
number of cycles in logarithmic scale. These residuals are plotted in Figure 2a, considering the case
when run-outs are not included. This histogram indicates that an assumption of residuals as white
noise is satisfactory and it is uniformly distributed with a mean value equal to zero. In this case, the
Bootstrap method can be used, but in applications where run-outs are part of the data, the Bootstrap
method cannot be used directly, as seen in Figure 2b.

If we plot the residuals along with their index (data number), they are random without considering
run-outs, which is a basic requirement for using the Bootstrap method, as seen in Figure 3a. Random in
this context means that residuals should not follow a pattern [34]. Whereas in Figure 3b with run-outs,
residuals are following a pattern, so this requirement to apply the Bootstrap method is not fulfilled here.
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Figure 2. Histogram for Residuals: (a) without Run-outs; (b) with Run-outs.

Figure 3. Residuals Pattern: (a) without Run-outs; (b) with Run-outs.

Therefore, it can be concluded that Bootstrapping can be used for estimating parameter uncertainty
only in the case of no run-outs.

2.4. Bayesian Inference with Markov Chain Monte Carlo Implementation

Bays’ rule provides the mathematical basis to update beliefs (prior information) about a variable,
θ, given observations, y. By Bays’ rule, the posterior probability of θ given observations, p(θ

∣∣∣y) is
obtained as follows [35,36]:

p(θ
∣∣∣y) = p(θ)p(y

∣∣∣θ)
p(y)

, (7)

Future predictions for y ∗ given observations y is obtained from the predictive distribution

p(y∗
∣∣∣y) = ∫

p(y∗
∣∣∣θ)p(θ∣∣∣y)dθ, (8)

Thus, future predictions are modeled using the updated probability density function p(θ
∣∣∣y) similar

to making a prediction for y ∗ using a single value of θ in the classical statistical sense. Equation (8)
can be estimated using Monte Carlo simulation strategies such as the Markov-Chain Monte-Carlo
algorithm [36].

By definition, a Markov chain simulation is a sequence of random variables θ1, θ2, θ3, . . . for
which for any k, the distribution of θ k depends only on the most recent one θk−1. In practice, several
independent sequences of Markov chain simulations are created. The Metropolis algorithm is used
to obtain the transition distribution function [31]. It is an adaption of a random walk that uses an
acceptance/rejection rule to converge to the specified target distribution. The step-by-step procedure is
as follows [27]:
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1. Select initial parameter vector
2. Iterate as follows for k = 1, 2, 3, . . .

a. Create a new trial position θ∗ = θk−1 + ∆θ, where ∆θ is randomly sampled from the
jumping distribution q(∆θ).

b. Create the Metropolis ratio.

r =
π
(
(θ∗

∣∣∣y))
π
(
(θk−1

∣∣∣y)) , (9)

3. Accept a new sample if:

θk =

{
θ∗ with probability min(r, 1)
θk−1 otherwise

, (10)

Note that this requires the jumping distribution to be symmetric: q
(
θ∗,θk−1

)
= q

(
θk−1,θ∗

)
. If the

jumping distribution is not symmetric, then the Metropolis-Hasting algorithm [37] can be used where
both sides jumping distributions are part of the ratio.

Since the posterior distribution can be calculated by Equation (7), where p(y) is a normalizing
constant, it also follows that the posterior density function can be written as:

p(θ
∣∣∣y) ∝ p(θ)p(y

∣∣∣θ), (11)

i.e., the posterior distribution is proportional to the product of the prior and the likelihood functions.
If it is assumed that the prior distribution is the multivariate Normal distribution, then the

Likelihood function becomes:

p
(
y
∣∣∣θ, σ2

)
=

1

σ
√

2π
exp

(
−

1
2σ2 SS(θ)

)
, (12)

where,
SS(θ) =

∑n

i
(y− f (S,θ))2, (13)

The Metropolis ratio becomes:

r =
p
(
θ∗

∣∣∣y, σ2
)

p(θk−1
∣∣∣y, σ2)

= exp
(
−

1
2σ2

(
SS(θ∗) − SS

(
θk−1

)))
, (14)

The scale reduction factor R indicates a potential scale reduction for the considered distribution
when the number of samples goes to infinity (see [38] for theory and more detailed descriptions). The
sampling is said to converge if R is close to one. Therefore, the number of simulations should be chosen
such that R becomes as close to one as possible, and thereby, the Monte Carlo sampling error close
to zero.

The parameters fitted in the SN-curve in Equation (1) are K and m. The correlation between
them is illustrated in Figure 4. Here, the Markov Chain Monte Carlo algorithm is used. Furthermore,
the Metropolis algorithm is applied for obtaining the transition distribution. Based on Reference [36],
the scale reduction factor R is also calculated to 1.0007.
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Figure 4. Correlation between k and m

3. Results of Uncertainty Modelling

Table 2 shows a comparison between the results obtained by the methods presented above. This
includes results obtained for the statistical parameters by MLM accounting for run-outs. Furthermore,
a characteristic, 5% quantile is estimated using the MLM estimates resulting in log k = 18.77, which is
larger than the characteristic value equal to 17.054 specified in the Eurocodes (see [38,39], and Table 2).

Table 2. Results.

Parameter Mean by
MLM

Mean by
Bayesian
Approach

Standard
Deviation
by MLM

Standard
Deviation

by Bayesian
Approach

Distribution Remark

ε 0 0 — — Normal Error term

σε 0.39 0.21 0.06 0.04 Normal Standard deviation of error
term

log k 18.77 18.72 0.07 0.05 Normal Location parameter in Wöhler
curve

m Fixed to 5 5.03 — 0.02 Fixed/Deterministic Slope of Wöhler curve

ρlog k,σε 0.06 0.03 Deterministic
Correlation coefficient

between location and standard
deviation of error

The Markov Chain Monte Carlo simulation results in Figure 5a show that log k is mostly in the
interval 18–19, and in Figure 5b, m is close to 5, which is in agreement with the fixed value used for
MLM. It should be noted that m is assumed fixed in the reliability section. The Posterior marginal
density function is also shown in Figure 6.

Figure 5. Markov Chain Simulation for: (a) k; (b) m.
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Figure 6. Posterior marginal density functions: (a) k; (b) m.

4. Case Study: Crêt De l’Anneau Viaduct

To illustrate the effect of change of model uncertainty of logk, i.e., σε on the fatigue reliability of
a structure, a case study of a composite (reinforced concrete deck and steel box girders) viaduct in
Switzerland is chosen as seen in Figure 7.

Figure 7. A view of Crêt De l’Anneau.

The identified fatigue critical location of this composite bridge is the reinforced concrete slab,
as shown in [40] p.41. The fatigue behavior of the reinforced concrete deck slab is mainly governed
by transverse bending between two girders. It contributes also to local longitudinal bending under
vehicle rolling wheel loads, thus it is double bending behavior. The MCS department at EPFL has
installed electrical strain gauges on reinforcement bars at critical location. This monitored strain data
is used as action effects to perform fatigue reliability analysis of the viaduct, a reliability framework
presented in [41] is used for the purpose.

4.1. Limit State Equation

A limit state equation for fatigue failure of critical reinforcement in the viaduct is formulated based
on the Palmgren-Miner rule [42,43] assuming linear damage accumulation, Equation (15), and [41,44].

g(t) = ∆ −
∑ j

i=1

Xnnit
10ε·k

(XWRD∆si)
m = 0, (15)

where

t indicates time 0 < t < TL in years,
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TL is the service life time of the structure,
RD is modelling the ratio of design parameters, here the section modulus of the deck slab,
∆si is the stress range for the ith load bin.

All other terms in the limit state equation are explained in Table 3.

Table 3. Stochastic model for Wöhler curve.

Parameter Distribution Mean Standard Deviation Remark

∆ Lognormal 1 0.30 Model uncertainty related to PM Rule 1

Xw Lognormal 1 0.05 Uncertainty in strain measurements
Xn Lognormal 1 0.01 Uncertainty in number of vehicles

logk Normal 18.77 0.07 Location parameter in Wöhler curve
m Fixed 5 — Slope of Wöhler curve fixed to 5 2

ε Normal 0 σε Error term taken from Table 2

σε Normal 0.39/0.21 3 0.06/0.004 3 Standard deviation of error term taken
from Table 2

ρlogk,σε Deterministic 0.06/0.003 3 —
Correlation coefficient between location
and standard deviation of error taken

from Table 2
1 model uncertainty obtained by fitting lognormal distribution to test data in [45]; 2 slope of Wöhler curve fixed to 5
as log k and m are highly correlated with correlation coefficient equal to 0.9997; 3 two values are used for analysis
first one from MLM approach, while the second one is from Bayesian approach.

4.2. Reliability Analysis

The First Order Reliability Method (FORM) is used for reliability analysis [2,46]. An open-source
MATLAB-based toolbox, namely the FERUM (Finite Element Reliability Using MATLAB), is used for
performing all FORM calculations [47]. The cumulative (accumulated) probability of failure in time
interval [0, t] is obtained by Equation (16):

PF(t) = P(g(t) ≤ 0), (16)

The probability of failure is estimated by FORM [47]. The corresponding reliability index β(t) is
obtained by Equation (17):

β(t) = −φ−1(PF(t)), (17)

where, φ() is standardized normal distribution function.
The annual probability of failure is obtained by:

∆PF(t) = PF(t) − PF(t− ∆t), t > 1year, (18)

where ∆t = one year. The corresponding annual reliability index is denoted ∆β.

4.3. Reliability Results

The cumulative reliability index along the service life of the structure is presented in Figure 8
for the case where uncertainty in vehicle number Xn is 1% and CoV for log K is as 0.39 (MLM) and
0.2 (Bayesian).

Corresponding annual reliability index at 120 years is presented in Table 4.

Table 4. Annual reliability index as function of CoV of log k

CoV of logk Annual Reliability Index at 120 Years

0.39 (MLM) 3.90
0.20 (Bayesian) 4.25
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Figure 8. Reliability index as function of time.

The actual stress in slab of viaduct is very low, thus exhibiting a very high fatigue reliability.
Current results are shown for the case of scaled stresses. Even after the scaling of the stresses annual
reliability index is within acceptable levels, which is more than 3.7 (for the case of very high consequence
and low efficiency of intervention, [48]). Furthermore, it can be seen from the results that CoV for logK
has a very high influence on reliability index. Thus, estimating the CoV with great accuracy is very
important in order to estimate the safety of the structures reasonably.

5. Conclusions

In this paper, for stochastic modeling of uncertainties for fatigue strength parameter, MLM as a
common methodology is utilized to fit the statistical parameters in a regression model based on available
test data. The Bootstrapping method is used to generate synthetic data. Example investigations in
this paper indicate that Bootstrapping cannot be used if run-out data are to be accounted for. Thus,
further steps are not proceeded to estimate statistical parameters. It should be mentioned that if the
Bootstrapping method was fulfilled the requirement (random pattern), another methodology such as
least square method or even Bootstrapping could be used for parameter estimation in the next step.
Subsequently, the use of Bayesian inference with the Markov Chain Monto Carlo approach is studied.

Reliability analysis of a selected detail in the Cret De l’Anneau Viaduct is used to illustrate and
compare different stochastic models obtained by the statistical methods. The results obtained by MLM
is used in reliability analyses and is assumed as a prior for Bayesian. The results show difference in
the reliability indices, indicating the importance of accurate estimation of the model uncertainty of
the SN-curve. The results emphasize the choice of statistical method as it influences the reliability
analyses. In this case study, Bayesian provided better statistical uncertainty, hence better fatigue
reliability assessment.
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