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Abstract Optimistic fair exchange (OFE) is a kind of protocols to solve the problem

of fair exchange between two parties. Most of the previous work on this topic are prov-

ably secure in the random oracle model. In this work we propose a new construction

of OFE from another cryptographic primitive, called time capsule signature. The con-

struction is efficient, and brings almost no overhead other than the primitive itself. The

security of our new construction is based on that of the underlying primitive without

relying on the random oracle heuristic. Applying our generic construction to the time

capsule signature scheme recently proposed by Libert and Quisquater, we obtain a new

concrete and efficient OFE construction secure based on Computational Diffie-Hellman

assumption in the standard model.

Keywords optimistic fair exchange; time capsule signature; standard model; CDH

assumption

1 Introduction

One of the major challenges in e-commerce is the establishment of pay-per-use ap-

plications for digital services, which are services that can be entirely rendered via an
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electronic network. Examples include the transfer of digital money, the delivery of video

or audio data and provision of telephone and Internet access. A common characteristic

of these types of services is that they normally cannot be revoked, i.e. once the service

has been granted, then the service provider has no mechanism to force the recipient

to return it. Therefore, the exchange of two digital services must occur simultane-

ously to ensure fairness for both parties. Unfortunately, real simultaneousness cannot

be achieved in general since digital services cannot be granted simultaneously. This is

due to the fact that any form of data transmitted requires some transmission time.

The exchange of digital signatures constitutes an important part of any e-commerce

transaction via the Internet, where participants do not trust each other. When the

signatures are on a common piece of text, this is often referred to as a contract signing

protocol.

Optimistic fair exchange (OFE), introduced by Asokan, Schunter and Waidner [1],

is a kind of protocols to solve the problems in fairly exchanging items between two

parties, say Alice and Bob. In such a protocol, there is an arbitrator who is semi-

trusted by Alice and Bob and involves only if one party attempts to cheat the other

or crashes. Let’s consider the following scenario, in which Alice wants to purchase a

software from Bob’s online shop. Alice first partially authenticates a message saying

that she allows Bob to obtain the money from her bank account. After checking the

validity of Alice’s partial signature, Bob delivers the software to her. Later, if Alice is

honest, she will send her full signature to Bob, with which Bob can collect the money

from the bank. If Alice is dishonest and refuses to send back her full signature, Bob

will turn to the arbitrator for help. He shows to the arbitrator the evidence of fulfilling

his obligation, who will then resolve Alice’s partial signature into a full one, and send

it to Bob. With the full signature, Bob then can complete the transaction and obtain

the money from Alice’s bank account.

Since the introduction, OFE has attracted many researchers’ attention, such as [2,

3,11,28,15,23,27,34,33,4,31,17,14,22] and so on. Most of these works focus on single-

user setting, in which there are only one signer and one verifier, as well as an arbitrator.

This setting is stand-alone and does not reflect the real world very well. A more prac-

tical setting is the multi-user setting [14], in which there are multiple signers and

verifiers, as well as an arbitrator. Each party could collude with other parties in or-

der to cheat their counterparts. It is proved that security in single-user setting does

not imply security in multi-user setting [14]. Until now there are only a couple of OFE

schemes provably secure in multi-user setting, e.g. [14,22], and some of them are secure

in the random oracle model [6] only. It is well known that security in this model is not

preserved when random oracles are replaced with real-life hash functions [12].

1.1 Our Contributions

In this work we propose a new approach to constructing schemes of optimistic fair ex-

change of digital signatures. We show that optimistic fair exchange schemes in multi-

user setting can be generically constructed from time capsule signatures, a crypto-

graphic primitive introduced by Dodis and Yum in 2005 [16]. The resulting OFE scheme

is as efficient as the underlying time capsule signature scheme. Combining recent work

on time capsule signature in the standard model due to Libert and Quisquater [24], we

then get an optimistic fair exchange scheme which is secure based on Computational

Diffie-Hellman (CDH) assumption without random oracles in the multi-user setting.
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Table 1 below shows a brief comparison of our scheme with some existing results on

OFE in the multi-user setting, in terms of signature sizes, underlying assumptions and

the need of random oracle model. From the comparison we can see that our scheme is

the only one secure in the standard model, i.e. without random oracles, and without

assuming a common reference string. The security of our scheme is based on a very

standard number-theoretic assumption, e.g. Computational Diffie-Hellman assumption.

In Sec. 7 we will give a more detailed comparison.

Table 1 A brief comparison with some existing results in the multi-user setting

[14] [22] Inst 1 [22] Inst 2 [22] Inst 3 Ours
PSig 3t+ 2Zq + 1Z∗

n 2G 1G+ 1Zn′ 2G+ 2Zp 3G
Sig 2t+ 1Zq + 1Z∗

n 8G 12G+ 5Zn′ 5G+ 5Zp 6G
Assump RSA + DL CDH SDH + SGD Poly-SDH CDH
Model ROM CRS CRS CRS STD

Notes.

– In the concrete scheme proposed in [14], n is an RSA modulus, p is a prime larger than n,
q is a prime such that q|p− 1, and t is an integer such that 2t < q.

– Inst 1 in [22] instantiates the conventional signature with Waters signature [32] and the
ring signature scheme with Schacham-Waters scheme [30].
Inst 2 in [22] instantiates the conventional signature with Boneh-Boyen signature [8] and
the ring signature scheme with Chandran-Groth-Sahai scheme [13].
Inst 3 in [22] instantiates both the conventional signature and the ring signature with
Boyen’s mesh signature [10].
In both Inst 1 and Inst 2, the group G is a bilinear group of composite order n′ = p′q′,
instead of prime order.

– In our scheme, group G is of prime order p and GT is the target group of the bilinear
pairing.

Legends:

CDH: Computational Diffie-Hellman Assumption DL: Discrete Logarithm Assumption
SDH: Strong Diffie-Hellman Assumption SGD: Subgroup Decision Assumption
Poly-SDH: Poly Strong Diffie-Hellman Assumption CRS: Common Reference String Model
ROM: Random Oracle Model STD: Standard Model

1.2 Related Works

(Optimistic Fair Exchange). Since the introduction, OFE has attracted many researchers’

attention, such as [2,3,11,28,15,23,27,34,33,4,31,17,14,22] and so on. To name a few,

Asokan et al. studied the fair exchange of digital signatures in [2]. Park et al. proposed

an OFE scheme following the sequential two-party multisignature paradigm [28], which

was later broken by Dodis et al. [15]. Dodis et al. also proposed a repaired scheme, in

which each user registers a key with the arbitrator. Micali used a chosen-ciphertext se-

cure public key encryption scheme with recoverable randomness to build another OFE

scheme [27], which was cryptanalyzed by Bao et al. [4].

Since most of signature schemes in the literature are provably secure in the random

oracle model [6], in which all parties have oracle access to a truly random function,

most of schemes of OFE of signatures have provable security in this model as well.

However, such a model is only heuristic. Provable security of schemes in this model
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doesn’t guarantee anything about the security when the random oracles are replaced

with real-life hash functions [12].

Prior to Dodis et al.’s work [14], almost all previous works on OFE considered the

single-user setting only, in which there are only one signer and one verifier (along with

an arbitrator). They considered a more practical setting, called the multi-user setting,

in which there are many signers and many verifiers (along with an arbitrator), so that a

dishonest party can collude with some other parties in an attempt of cheating another

party [14]. Although security of public key encryption and that of digital signature

in the single-user setting are preserved in the multi-user setting [5,18], Dodis et al.

showed that this is not necessarily true for optimistic fair exchange. They gave a

counterexample that is secure in the former setting but insecure in the latter setting.

A dishonest verifier succeeds in converting the signer’s partial signature into a full one

by colluding with the verifier in another transaction of exchange.

In a more recent work [22] Huang et al. further improved Dodis et al.’s result by

considering a more relaxed public key model called chosen-key model [26], in which

the adversary is allowed to choose public keys arbitrarily without requiring to show its

knowledge of the corresponding private keys. They showed that there is a gap between

security of OFE in the chosen-key model and that in the certified-key model considered

in [14] and previous works, in which the adversary has to prove its knowledge of the

secret key before using a public key. They further proposed a generic construction

of OFE in the chosen-key model without random oracles, which is based on a ring

signature [29] and a standard signature [19].

A natural approach to constructing OFE is to use the arbitrator’s public key to

encrypt the signer’s signature and then provide a non-interactive proof to show that

the ciphertext indeed contains a valid signature of the signer. This is the well-known

paradigm of constructing OFE from verifiably encrypted signature (VES) [9]. In general

we can always obtain such a scheme using NP-reduction. But efficiency is the issue

preventing the resulting scheme from practical use. It is trivial to come up with a

concrete and efficient instantiation of this paradigm secure in the standard model. To

the best of our knowledge, the only known VES scheme secure without random oracles

is due to Lu et al [25], which is based on Waters signature scheme [32]. However,

their scheme is merely proved to be secure in the single-user setting (and under the

certified-key model).

(Time Capsule Signature). In FC 2005, Dodis and Yum [16] proposed the notion of

time capsule signature. In a time capsule signature scheme, there is a semi-trusted

time server, which honestly publishes the corresponding secret information at each

time event t. Alice produces a ‘premature’ signature σ′ on a message m, which is

claimed to become ‘mature’ at time event t, and sends it to Bob, which verifies the

validity of σ′. At time t, the time server publishes the secret information with respect

to t, which can be used by anybody to convert σ′ into a matured signature of Alice.

Besides, Alice can also pre-hatch her signature σ′ before the claimed time t.

Recently Hu et al. [20] proposed an efficient time capsule signature scheme based

on Waters signature [32], which in turn is based on Computational Diffie-Hellman

(CDH) assumption. Their scheme is proved to be secure without random oracles. How-

ever, pre-hatched signatures are distinguishable from the hatched signatures, thus not

satisfying the ambiguity (see Sec. 3.2 for definition). Libert and Quisquater [24] later

proposed another time capsule signature scheme secure without random oracles, which
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is based on Waters signature [32] as well. Different from [20], their scheme satisfies the

ambiguity.

1.3 Paper Organization

We review the definitions and security models of optimistic fair exchange and time

capsule signature in Sec. 2 and Sec. 3, respectively. Our generic construction of OFE

is then proposed in Sec. 4. The security of it is analyzed in Sec. 5. In Sec. 6 we give a

concrete instantiation of our construction, which is then compared with some existing

OFE schemes secure in the multi-user setting in Sec. 7. The paper is concluded in

Sec. 8.

2 Definitions and Security Model

Let k ∈ N be a security parameter. If x is a binary string, |x| denotes the length of x; if

S is a set, |S| denotes the cardinality of S. For any binary strings x and y, x‖y denotes

the concatenation of x and y. By x ← S we denote the operation that process S is

performed and the output is x if S is an algorithm, or that x is randomly and uniformly

selected from S if it is a distribution. By x := (a, b, c) we denote the simple assignment

operation. By ‘PPT’ we mean that an algorithm runs in probabilistic polynomial-time.

A function f is said to be negligible in k, if for every positive polynomial poly(·) and

for all sufficiently large k, we have that f(k) < 1/poly(k).

2.1 Definitions in the Multi-User Setting

Our definition for non-interactive optimistic fair exchange (OFE) follows the one in

the multi-user setting given in [14].

Definition 1 A non-interactive optimistic fair exchange (OFE) involves two users (a

signer and a verifier) and an arbitrator, and is formalized using the following PPT

algorithms:

SetupTTP. On input 1k, it generates a secret arbitration key ASK and a public partial

verification key APK.

SetupUser. On input 1k and (optionally) APK, it outputs a secret/public key pair

(SK,PK). For a user Ui, we use (SKUi
, PKUi

) to denote the user’s key pair.

Sig/Ver. Similar to the signing and verification algorithms of an ordinary digital sig-

nature scheme, Sig(m, SKUi
, APK) outputs a signature σUi

, while Ver(m,σUi
,

PKUi
, APK) outputs 1 for acceptance or 1 for rejection, where message m is cho-

sen by user Ui from the message spaceM defined under PKUi
.

PSig/PVer. They are partial signing and verification algorithms, respectively, where

PSig together with Res (defined below) should be functionally equivalent to Sig.

PSig(m,SKUi
, APK) outputs a partial signature ξUi

, while PVer(m, ξUi
, PKUi

,

APK) outputs 1 for acceptance or 0 for rejection.

Res. This is the resolution algorithm. Res(m, ξUi
, ASK,PKUi

) outputs a signature

σUi
, or ⊥ indicating the failure of resolving a partial signature.
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In a typical OFE protocol run, the signer Ui first generates the partial signature

ξUi
using PSig and sends it to the verifier. The verifier then checks the partial signature

using PVer and fulfills his obligation if PVer outputs 1. After which, the signer sends

the full signature σUi
to complete the transaction. If no problem occurs, the arbitrator

does not participate in the protocol. However, if the signer refuses to send σUi
at

the end, the verifier will send ξUi
as well as a proof of fulfilling his obligation to the

arbitrator. The arbitrator will generate σUi
using Res and sends it to the verifier if the

proof sounds. Similar to previous definitions (e.g. [15,14]), the definition does not deal

with the application-specific question of how the verifier proves to the arbitrator that

he has fulfilled his obligation to the signer. However, unlike previous definitions, we do

not assume the authenticity of public keys.

Remark 1 (An Optional Input of SetupUser). In the definition above, APK is an

optional input of SetupUser. This allows the arbitrator and the users to share some

common system parameters without getting involved in any interactive registration

phase. The advantage is that the setup-free feature [35,36] can be ensured while having

common system parameters shared across the entire system without having a dedicated

system parameter generation algorithm defined. For schemes where the users and the

arbitrator do not share any system parameter, APK can simply be removed from the

input of SetupUser.

2.2 Security Models

The correctness requires that for all security parameters k ∈ N, (ASK,APK) ←
SetupTTP(1k), (SKUi

, PKUi
)← SetupUser(1k, APK), let ξUi

← PSig(m,SKUi
, APK),

each of the following equations holds with probability 1:

PVer(m, ξUi
, PKUi

, APK) = 1,

Ver(m, Sig(m,SKUi
, APK), PKUi

, APK) = 1, and

Ver(m,Res(m, ξUi
, ASK,PKUi

), PKUi
, APK) = 1.

The ambiguity property requires that the distribution of full signatures generated by

the signer should be (computationally) indistinguishable from that of full signatures

resolved by the arbitrator on input valid partial signatures. Formally, denote by

Σ0
def
= {Sig(m,SKUi

, APK)}m∈{0,1}∗

and

Σ1
def
= {Res(m,PSig(m,SKUi

, APK), ASK,PKUi
)}m∈{0,1}∗ .

We also denote by Σ0(m) (resp. Σ1(m)) the subspace of Σ0 (resp. Σ1) defined by m ∈
{0, 1}∗. For any probabilistic polynomial-time algorithm D, the following probability

should be negligibly close to 1/2:

Pr[m← {0, 1}∗, b← {0, 1}, σ ← Σb(m), b′ ← D(PKUi
, APK,m, σ) : b′ = b].

Ambiguity is useful in applications of OFE, in which the signer does not want to

let others know whether a signature is resolved by the arbitrator. For example, Alice

and Bob execute an OFE protocol to sign a contract online, but due to the internet

fault, Alice fails to return her full signature in time. Thus, Bob asks the arbitrator to
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resolve her signature. If the scheme is not extraction ambiguous, outsiders may think

Alice is cheating, and this reduces the credit of Alice.

Readers may note that the definition of ambiguity above does not discuss if the

adversary has any oracle access. In fact, similar to ring signature, we may specify various

levels of ambiguity for OFE as well. They may include basic ambiguity, ambiguity with

respect to adversarially-chosen keys, and ambiguity against attribution attacks/full key

exposure. Readers may refer to [7] for their definitions in the context of ring signature.

The ambiguity definition above follows that given in [15,14] with the sole purpose of

making the construction of OFE non-trivial. For stronger notions, say basic ambiguity,

we may require that no probabilistic polynomial-time adversary can distinguish full

signatures generated by the signer from those resolved by the arbitrator with non-

negligible advantage, even if the adversary can access partial signature oracle and

resolution oracle.

The security of optimistic fair exchange consists of three aspects: security against

signers, security against verifiers, and security against the arbitrator. The definitions

of them in the multi-user setting are given as follows.

Security Against Signers. Intuitively, we require that no PPT adversary A should

be able to produce a partial signature with non-negligible probability, which looks

good to verifiers but cannot be resolved to a full signature by the honest arbitrator.

This ensures the fairness for verifiers, that is, if the signer has committed to a

message, the verifier will always be able to get the full commitment of the signer.

Formally, we consider the following experiment:

SetupTTP(1k)→ (ASK,APK)

(m, ξ, PK∗)← AORes(APK)

σ ← Res(m, ξ,ASK,PK∗)
Success of A := [PVer(m, ξ, PK∗, APK) = 1 ∧ Ver(m,σ, PK∗, APK) = 0]

where oracle ORes takes as input a valid partial signature ξ of user Ui on message m,

i.e. (m, ξ, PKUi
), and outputs a full signature σ on m under PKUi

. The advantage

of A in the experiment AdvA(k) is defined to be A’s success probability.

Security Against Verifiers. This security notion requires that any PPT verifier B

should not be able to transform a partial signature into a full signature with non-

negligible probability if no help has been obtained from the signer or the arbitra-

tor. This requirement has some similarity to the notion of opacity for verifiably

encrypted signature [9]. Formally, we consider the following experiment:

SetupTTP(1k)→ (ASK,APK)

SetupUser(1k)→ (SK,PK)

(m,σ)← BOPSig,ORes(PK,APK)

Success of B := [Ver(m,σ, PK,APK) = 1 ∧ (m, ·, PK) �∈ Query(B,ORes)]

where oracle ORes is described in the previous experiment, the partial signing oracle

OPSig takes as input a message m and returns a valid partial signature ξ on m under

PK, and Query(B,ORes) is the set of valid queries B issued to the resolution oracle

ORes. The advantage of B in the experiment AdvB(k) is defined to be B’s success

probability.
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Security Against the Arbitrator. Intuitively, this security notion requires that any

PPT arbitrator C should not be able to generate with non-negligible probability a

full signature without explicitly asking the signer for generating one. This ensures

the fairness for signers, that is, no one can frame the actual signer on a message

with a forgery. Formally, we consider the following experiment:

SetupTTP
∗
(1k)→ (ASK∗, APK)

SetupUser(1k)→ (SK,PK)

(m,σ)← COPSig(ASK∗, APK,PK)

Success of C := [Ver(m,σ, PK,APK) = 1 ∧ (m, ·) �∈ Query(C,OPSig)]

where SetupTTP
∗
denotes the run of SetupTTP by a dishonest arbitrator (run by

C), the partial signing oracle OPSig is described in the previous experiment, ASK∗

is C’s state information, and Query(C,OPSig) is the set of queries C issued to the

partial signing oracle OPSig. The advantage of C in this experiment AdvC(k) is

defined to be C’s success probability.

Definition 2 A non-interactive optimistic fair exchange scheme is said to be secure

in the multi-user setting if there is no PPT adversary that wins any of the experiments

above with non-negligible advantage.

Since we are considering certified-key model in this work, in all the aforementioned

experiments the adversary has to prove its knowledge of secret key for each public

key it chooses and uses. Usually, we give the adversary access to an extra oracle, Okr,

which takes as input a key pair (PK,SK) and (stores SK and) returns PK if the

pair is well-formed, i.e. (PK,SK) is a possible output of the key generation algorithm,

and ⊥ otherwise. If we consider chosen-key model, the adversary does not have such a

restriction during the attack.

2.3 On the Multi-Arbitrator Setting

One may also notice that in the experiment for formalizing Security Against the Arbi-

trator, the adversary C has two phases. In the first phase, C merely generates APK

without having access to OPSig. In the second phase, C is to generate a forgery while

allowing access to OPSig with respect to APK. The purpose of having this two-phase

arrangement is to make sure that the model is under the single-arbitrator setting. Al-

though all the security requirements of optimistic fair exchange schemes are studied

under the multi-user setting in this paper, to be consistent with previous work [15,

14], we restrict ourselves to focus on the formalization of a system which allows only

one arbitrator. On the other side, if we combine the two phases in the experiment for

Security Against the Arbitrator into one, that is, the second and the third statements

are combined and replaced as follows,

(APK,m, σ)← COPSig(PK)

and modify OPSig by taking an additional input, which is a public partial verification

key APK′, then we are able to consider the multi-arbitrator setting for this secu-

rity notion (by also changing the restriction such that we only require (m, ·, APK)

/∈ Query(C,OPSig)).



9

2.4 On the Validity of a Partial Signature

In optimistic fair exchange, a partial signature shows that Alice (the signer) is willing

to exchange items with Bob (the verifier). For example, in the schemes proposed in

[14,22], the signer’s partial signature is its signature on the message generated using a

standard signature scheme. Due to its public verifiability (e.g. using PVer algorithm),

Bob can show to anyone else Alice’s will by releasing the partial signature it received

from Alice, and possibly obtain benefit from other parties. Huang et al. addressed this

issue, and proposed the notion of ambiguous optimistic fair exchange [21], in which

it is required that partial signatures of Alice are indistinguishable from those of Bob.

However, this is out of the scope of our work, as we focus on traditional type of

optimistic fair exchange.

3 Time Capsule Signatures

3.1 Definition

Time capsule signature, introduced by Dodis and Yum in [16], is a kind of digit signa-

ture schemes which allows a signature to bear a (future) time t so that the signature

will only become valid at time t or later, after a semi-trusted third party, called time

server, releases time-dependent information. Besides, the real signer of a time capsule

signature has the privilege to make a time capsule signature valid before time t.

Definition 3 ([16]) A time capsule signature scheme is specified by an 8-tuple of

PPT algorithms (SetupTS, SetupUser, TSig, TVer, TRelease, Hatch,PreHatch, Ver) such

that:

SetupTS. This setup algorithm is run by the Time Server. It takes a security parameter

1k and returns a private/public time release key pair (TSK, TPK).

SetupUser. This setup algorithm is run by each user. It takes as input 1k and returns

the user’s private/public key pair (SK,PK).

TSig. The time capsule signature generation algorithm TSig takes as input (m,SK,

TPK, t) where t ∈ T is a specific time event from which the signature becomes

valid, and outputs a time capsule signature ξt.

TVer. The time capsule signature verification algorithm TVer takes (m, ξt, PK, TPK, t)

and returns 1 for acceptance or 0 for rejection.

TRelease. This time release algorithm TRelease takes as input (t, TSK). At the begin-

ning of each time event t, the time server publishes zt ← TRelease(t, TSK).

Hatch. This algorithm is run by any party and is used to open a valid time capsule

signature which became mature. It takes as input (m, ξt, PK, TPK, zt) and returns

a hatch signature σt.

PreHatch. This algorithm is run by the signer and used to open a valid time capsule

signature which is not mature yet. It takes as input (m, ξt, SK, TPK, t) and returns

the pre-hatched signature σt.

Ver. This algorithm is used to verify a hatched or pre-hatched signature. Ver takes as

input (m,σt, PK, TPK, t) and returns 1 for acceptance or 0 for rejection.

The time server runs SetupTS to generate its key pair, and each user runs SetupUser

to generate a user key pair. Any user can run TSig to produce a time capsule signature
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to be valid at some time period t, and can later make its signature mature before t by

running PreHatch. At each time period t, the time servers runs TRelease to release some

secret information related to t with which any user can make a time capsule signature

mature and verify its validity.

3.2 Security Models

The correctness requirement states that for any m ∈ {0, 1}∗ and t ∈ T , let ξt ←
TSig(m,SK, TPK, t) and zt ← TRelease(t, TSK), each of the following equations holds

with probability 1:

TVer(m, ξt, PK, TPK, t) = 1,

Ver(m,Hatch(m, ξt, PK, TPK, zt), PK, TPK, t) = 1, and

Ver(m,PreHatch(m, ξt, SK, TPK, t), PK, TPK, t) = 1.

The ambiguity property requires that the “hatched signature” σ̃t is (computationally)

indistinguishable from the “pre-hatched signature” σt, even if the distinguisher knows

TSK.

The security of time capsule signatures consists of three aspects: security against

the signer Alice, security against the verifier Bob and security against time server. In

the following, we denote by OTSig the oracle simulating the algorithm TSig, which takes

(m, t) as input and returns Alice’s time capsule signature ξt, by OTR the time release

oracle, which takes t as input and returns the secret time information zt, and by OPreH

the oracle simulating algorithm PreHatch, which takes (m, t, ξt) as input and returns

Alices’ pre-hatch signature σ.

Security Against Alice. We require that any PPT adversary A could succeed with

at most negligible probability in the following experiment:

SetupTS(1k)→ (TSK, TPK)

(m, t, ξt, PK)← AOTR(TPK)

zt ← TRelease(t, TSK)

σt ← Hatch(m, ξt, PK, TPK, zt)

Success of A := [TVer(m, ξt, PK, TPK, t) = 1 ∧ Ver(m,σt, PK, TPK, t) = 0]

Security Against Bob. We require that any PPT adversary B could succeed with

at most negligible probability in the following experiment:

SetupTS(1k)→ (TSK, TPK)

SetupUser(1k)→ (SK,PK)

(m, t, σt)← BOTSig,OTR,OPreH(PK, TPK)

Success of B := [Ver(m,σt, PK, TPK, t) = 1 ∧ t �∈ Query(B,OTR)∧
(m, t, ·) �∈ Query(B,OPreH)]

where Query(B,OTR) is the set of queries B issued to the time release oracle OTR,

and Query(B,OPreH) is the set of valid queries B issued to the pre-hatch oracle

OPreH, i.e., (m, t, ξt) such that TVer(m, ξt, PK, TPK, t) = 1.
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Security Against Time Server. We require that any PPT adversary C could suc-

ceed with at most negligible probability in the following experiment:

SetupTS
∗
(1k)→ (TSK∗, TPK)

SetupUser(1k)→ (SK,PK)

(m, t, σt)← COTSig,OPreH(PK, TPK, TSK∗)
Success of C := [Ver(m,σt, PK, TPK, t) = 1 ∧ (m, ·) �∈ Query(C,OTSig)]

where SetupTS
∗
denotes the run of SetupTS with a dishonest time server (run by

C), TSK∗ is C’s state after this run, and Query(C,OTSig) is the set of queries C

issued to the time capsule signature generation oracle OTSig with the restriction

that (m, t′) �∈ Query(C,OTSig) for all t
′ ∈ T .

4 Our Optimistic Fair Exchange Scheme

In this section, we will show another way of constructing OFE schemes secure in the

multi-user setting and certified-key model. Let TCS = (SetupTS, SetupUser,TSig,TVer,

TRelease, Hatch, PreHatch,Ver) be a time capsule signature scheme. In the following,

we show how to use TCS to build an optimistic fair exchange scheme OFE′ secure in

the multi-user setting and the certified-key model.

Let k be the security parameter. Suppose that H : {0, 1}∗ → T is a collision-free

hash function, where T is the space of time events. Without loss of generality, we assume

that the size of T is super-polynomial in k. This is to ensure the collision-freeness of

H.

SetupTTP. The arbitrator runs TCS.SetupTS(1k) to generate a key pair (TSK, TPK),

and sets (ASK,APK) := (TSK, TPK).

SetupUser. Each user Ui generates a public/private key pair by computing (SKUi
,

PKUi
)← TCS.SetupUser(1k).

Sig. On input a message m, the signer Ui generates a time event t 1 by computing

t← H(m,PKUi
).

It then computes the full signature as

σ ← TCS.PreHatch(m, ξ, SKUi
, APK, t),

where ξ ← TCS.TSig(m, SKUi
, APK, t).

Ver. On input a message m and a signature σ purportedly produced by Ui, the verifier

computes t← H(m,PKUi
) and returns

TCS.Ver(m,σ, PKUi
, APK, t).

1 The reason of computing t rather than randomly selecting t is to ensure that in the
generation of each signature, the time event is distinct if the message or the signer is different,
which is important in the proof of security against verifiers. To be shown later, as in the proof
of Lemma 2.
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PSig. On input a message m, the signer Ui computes

t← H(m,PKUi
), ξ ← TCS.TSig(m,SKUi

, APK, t).

It returns ξ.

PVer. On input a message m and a partial signature ξ purportedly produced by Ui,

the verifier computes

t← H(m,PKUi
), b← TCS.TVer(m, ξ, PKUi

, APK, t),

and returns the bit b.

Res. On input a message m and a partial signature ξ of user Ui, the arbitrator first

checks if ξ is a valid signature on m with respect to PKUi
. If not, it rejects the

input by outputting ⊥; otherwise, it computes

t← H(m,PKUi
), zt ← TCS.TRelease(t, ASK),

and

σ ← TCS.Hatch(m, ξ, PKUi
, APK, zt).

The arbitrator returns σ.

This construction is setup-free. The stand-alone property depends on that of the

underlying time capsule signature. The correctness of OFE′ is obvious and the ambi-

guity property simply follows that of TCS.

Remark 2 (On the Space T of Time Events) As of our best knowledge, all the time

capsule signature schemes in the literature [16,20,24]2 put no restriction/limitation on

the range of possible time events. In fact, the time event t in these schemes can take

any values from {0, 1}∗, since a mechanism analogous to identity-based cryptography is

used in their constructions, and t behaves as an identity. Therefore, it is reasonable for

us to assume that the size of T is at least super-polynomial in the security parameter,

or large enough for guaranteeing the collision-resistance of H. Besides, if the time event

t can take any arbitrary value (i.e., {0, 1}∗), then we can simply remove H in our

construction above for reducing the basic assumption for building OFE′. That is, we

directly use m‖PKUi
instead of the hashed value of it as the ‘time event’ t.

5 Security Analysis

For the security of the above construction of OFE, we have the following theorem. Note

that since the security of time capsule signatures is defined in a compatible and very

similar way to that of OFE in [14], in the following, we only show the security of OFE′

in the certified-key model.

Theorem 1 If there exist secure time capsule signature schemes and collision-free hash

functions, there exist secure optimistic fair exchange schemes in the multi-user setting

and the certified-key model.

2 We note that schemes in [20] are not ambiguous. That is, the pre-hatched signatures are
distinguishable from hatched signatures.
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The theorem follows Lemma 1 (security against signers, Lemma 2 (security against

verifiers) and Lemma 3 (security against the arbitrator).

Lemma 1 The optimistic fair exchange scheme OFE′ above is secure against signers.

Proof Suppose that A is a PPT adversary that breaks the security against signers of

OFE′ with non-negligible advantage εA. We construct a PPT algorithm Ā which breaks

the security against the signer of TCS.

Given the time server public key TPK and a time release oracle OTR which sim-

ulates the TCS.TRelease algorithm, Ā randomly selects a hash function H : {0, 1}∗ →
T , and runs A on input (TPK,H). During the execution, A has access to oracle

ORes. To answer A’s query (m, ξ, PKUi
), Ā first checks the validity of ξ by running

OFE′.PVer(m, ξ, PKUi
, APK). If invalid, Ā returns ⊥. Otherwise, it issues a query to

its oracle OTR on input t← H(m,PKUi
), which returns the corresponding zt. Ā then

computes σ ← TCS.Hatch(m, ξ, PKUi
, TPK, zt) and returns σ back to A. Note that

the above simulation of ORes is perfect.

Finally, A outputs (m, ξ, PK). Without loss of generality, we assume that A wins

the game. This happens with probability εA. (If A fails, Ā also fails and halts.) Thus we

get that OFE′.PVer(m, ξ, PK, TPK) = 1 and OFE′.Ver(m,σ, PK, TPK) = 0, where

σ ← OFE′.Res(m, ξ,ASK,PK). This indicates that TCS.TVer(m, ξ, PK, TPK, t) = 1

and TCS. Ver(m,σ, PK, TPK, t) = 0, where t ← H(m,PK). Hence, we let Ā output

(m, t, ξ, PK), and Ā wins its game with probability εA. 	


Remark 3 Note that in the proof, after receiving the output (m, ξ, PK) of A, Ā can

actually compute σ by generating the time event t as described above, issuing a query

to oracle OTR to get zt, and then running σt ← TCS.Hatch( m, ξt, PKA, TPK, zt).

If t was ever issued by Ā to OTR during the simulation, Ā can simply retrieve the

corresponding zt from its memory instead of issuing a new query. Therefore, Ā can

check the validity of A’s output and decides to output (m, t, ξ, PKA) or to abort.

Lemma 2 The optimistic fair exchange scheme OFE′ above is secure against verifiers.

Proof Suppose that B is a PPT adversary which breaks the security against verifiers of

OFE′ with non-negligible advantage εB , we construct a PPT algorithm B̄ which breaks

the security against the verifier of TCS.

Given the time server public key TPK, the signer’s public key PK, and oracles

OTSig simulating algorithm TCS.TSig, OTR simulating algorithm TCS.TRelease and

OPreH simulating algorithm TCS.PreHatch, B̄ randomly selects a hash function H :

{0, 1}∗ → T , and runs B on input (TPK,PK,H). To simulate oracles OPSig and ORes

for B, B̄ uses OTSig and OTR respectively, as follows.

– When B issues a query to OPSig on input m, B̄ generates time event t← H(m,PK),

and issues a query to its oracle OTSig on input (m, t), which returns the signer’s

signature ξt. B̄ then returns ξ to B.

– When B issues a valid query to ORes on input (m, ξ, PKUi
), B̄ generates time

event t ← H(m,PKUi
), and issues a query to OTR on input t which returns the

corresponding zt. B̄ then returns σ ← TCS.Hatch(m, ξ, PKUi
, TPK, zt).

It is readily seen that the above simulation is perfect. Finally, B outputs (m,σ).

Without loss of generality, we assume that B wins the game. Thus we have that

OFE′.Ver(m,σ, PK, TPK) = 1 and (m, ·, PK) �∈ Query(B,ORes). Since the hash func-

tion H is collision-free, it holds with only negligible probability that t← H(m,PK) is
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the same as one of the previous time events generated by B̄ during the simulation of

ORes and OPSig. Otherwise, B and B̄ together form an algorithm breaking the collision-

freeness property of H. It is well understood that if t appeared before, B̄ fails and halts.

So we have that B̄ did not issue a query to OTR on input t. Also note that during the

whole execution, B̄ never issued a query to OPreH. Therefore, we can let B̄ output

(m, t, σ) and B̄ succeeds in its game with probability εB̄ so |εB − εB̄ | is negligible in

k. The difference is due to the negligible probability that a collision of H occurs. 	


Lemma 3 The optimistic fair exchange scheme OFE′ above is secure against the ar-

bitrator.

Proof Suppose that C is a PPT adversary which breaks the security against the ar-

bitrator of OFE′ with non-negligible advantage εC , we construct a PPT algorithm C̄

which breaks the security against the time server of TCS.

Given the time server private/public key pair (TSK∗, TPK), the public key PK

of the signer Alice, and oracles OTSig simulating algorithm TCS.TSig, and OPreH sim-

ulating algorithm TCS.PreHatch, C̄ randomly selects a hash function H : {0, 1}∗ → T ,
and runs C on input (TSK∗, PK, TPK,H). To simulate the oracle OPSig for C, C̄

generates the time event t as described in the OFE′.PSig algorithm, and then issues

a query to OTSig on input (m, t), which returns Alice’s time capsule signature ξ. C̄

returns ξ to C. It’s easy to see that the simulation is perfect.

Finally, C outputs (m,σ). Again, we simply assume C wins its game. This hap-

pens with probability εC . Thus we have that OFE′.Ver(m,σ, PK, TPK) = 1 and

m �∈ Query(C,OPSig). It indicates that C̄ didn’t issue a query to its oracle OTSig on

input (m, t′) for any t′. Also note that during the simulation, B̄ never issued a query

to its oracle OPreH. Therefore, we can let C̄ output (m, t, σ) where t← H(m,PK), and

B̄ succeeds in its game with probability εC . 	


6 An Instantiation without Random Oracles

Recently, Libert and Quisquater [24] proposed an efficient time capsule signature

scheme proven secure in the standard model based on Waters signature [32], which

in turn is based on Computational Diffie-Hellman (CDH) assumption. By instantiat-

ing our generic construction above using their time capsule signature scheme, the final

scheme will also enjoy the security without random oracles. In this particular scheme,

we even do not need to introduce another collision-resistant hash function either. This

is because the collision-free hash function H : {0, 1}∗ → {0, 1}n has already been

employed in Libert-Quisquater time capsule signature scheme. We can simply use H

to map m‖PKUi
into the time event space {0, 1}n, which is exactly the case in their

implementation.

Let G,GT be two cyclic and multiplicative groups of prime order p, and g be a

random generator of G. Let ê : G×G → GT be a bilinear pairing. Let H : {0, 1}∗ →
{0, 1}n be a collision-resistant hash function. The concrete OFE scheme works as below.

SetupTTP. The arbitrator chooses g2 ∈ G and α ∈ Zp, and computes g1 = gα and

V = ê(g1, g2). It then chooses a random vector v = (v′, v1, · · · , vn) ∈ G
n+1 defining

a function Fv : {0, 1}n → G such that for any t ∈ {0, 1}n, Fv(t) = v′
∏n

j=1 v
tj
j .

The private key of the arbitrator is ASK = gα2 and the public key is APK =

{n, g1, g2,v, V }.
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SetupUser. The signer selects β ∈ Zp, h ∈ G and a random (n + 1)-vector u =

(u′, u1, · · · , un) ∈ G
n+1 defining a function Fu : {0, 1}n → G such that for any

m ∈ {0, 1}n, Fu(m) = u′
∏n

j=1 u
mj

j . Its private key is SK = hβ , and public key is

PK = {h, ĥ,u, U}, where ĥ = gβ and U = ê(h, ĥ).

PSig. Given a message m, the signer Ui chooses j1, j2 ← Zp and computes c = gj12 gj2

and t← H(m,PKUi
). It then picks r, s← Zp, computes d1 = csg

−j2/j1
1 Fv(t)

r, sets

d2 = gr and d3 = gsg
−1/j1
1 . The signer also computes M ← H(m‖c‖t) ∈ {0, 1}n

and

(ξ1, ξ2) = (hβFu(M)r̂, gr̂)

for a randomly chosen r̂ ← Zp. It outputs the partial signature ξ = (ξ1, ξ2, c), and

stores (d1, d2, d3).

PVer. Given (m, ξ = (ξ1, ξ2, c)) purportedly produced by Ui, the verifier computes

t← H(m,PKUi
) and M ← H(m‖c‖t), and checks if c ∈ G and

ê(ξ1, g) = U · ê(Fu(M), ξ2).

It outputs 1 if both hold, and 0 otherwise.

Sig. To fully sign a message m, the signer Ui sets t ← H(m,PKUi
) and computes

(ξ1, ξ2, c) and (d1, d2, d3) as in the partial signing algorithm. It outputs the full

signature σ = (ξ1, ξ2, c, d1, d2, d3).

Ver. Given (m,σ = (ξ1, ξ2, c, d1, d2, d3) purportedly produced by Ui, the verifier com-

putes t← H(m,PKUi
) and M ← H(m‖c‖t). It outputs 1 if

ê(d1, g) = V · ê(Fv(t), d2) · ê(c, d3),
ê(ξ1, g) = U · ê(Fu(M), ξ2),

and 0 otherwise.

Res. To resolve Ui’s partial signature ξ = (ξ1, ξ2, c) on message m, the arbitrators

returns ⊥ if ξ is not valid. Otherwise, it picks random r̃, s ← Zp and computes

t← H(m,PKUi
) and

(d̃1, d̃2, d̃3) = (gα2 Fv(t)
r̃cs, gr̃, gs).

It outputs σ = (ξ1, ξ2, c, d̃1, d̃2, d̃3).

Libert et al. proved in [24] that their time capsule signature scheme is ambiguous

and secure based on CDH assumption under the model given in Sec. 3.2. Combining

their result and Theorem 1, we obtain the following corollary immediately.

Corollary 1 The OFE scheme above is secure without random oracles provided that

the hash function H is collision-resistant and CDH assumption holds.

7 Comparison

Table 2 shows the comparison of our scheme with some existing results on OFE in terms

of key size, signature size, length of common reference string, underlying assumptions

and the need of random oracle model. As we consider multi-user setting in this work,

we select those schemes proved to be secure in the multi-user setting for comparison

in Table 2.
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From the comparison, we can see that our scheme outperforms others in terms

of signature size. Besides, the security of our scheme relies on the weakest number-

theoretic assumption and is proved in the standard model, while the security of other

schemes are based on stronger assumptions, and are proved in either random oracle

model or common reference model. However, our scheme is based on Waters signature,

and thus inherits its drawback. That is, our scheme suffers from long public keys as

well.

Table 2 A detailed comparison with some existing results in the multi-user setting

[14] [22] Inst 1 [22] Inst 2 [22] Inst 3 Ours
Apk |n|+ 1Zn 1G 1G 3G (k + 3)G+ 1GT

Pk 1Zp (k + 3)G 3G 3G (k + 3)G+ 1GT

PSig 3t+ 2Zq + 1Z∗
n 2G 1G+ 1Zn′ 2G+ 2Zp 3G

Sig 2t+ 1Zq + 1Z∗
n 8G 12G+ 5Zn′ 5G+ 5Zp 6G

Crs - (k + 4)G 2G 4G -
Assump RSA + DL CDH SDH + SGD Poly-SDH CDH
Model ROM CRS CRS CRS STD

Notes.

– k is the security parameter.
– A ‘-’ in the row of ’Crs’ means that the scheme does not impose a common reference string,

except standard system parameters, e.g. group description and generator.
– Please refer to Table 1 (page 3) for the legends and notes there about the comparison.

8 Conclusion

In this paper we observed that due to the very similar nature with optimistic fair ex-

change, it is straightforward to build an optimistic fair exchange scheme in the multi-

user setting and the certified-key model from a time capsule signature scheme secure

in the certified-key model in conjunction with a collision-resistant hash function. Com-

bining recent work on time capsule signatures in the standard model and our generic

transformation, we come up with an efficient optimistic fair exchange scheme secure

without random oracles.
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