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Abstract: In a recent published work we proposed a technique to recover 
the absolute phase maps of two fringe patterns with different spatial 
frequencies. It is demonstrated that a number of selected frequency pairs 
can be used for the proposed approach, but the published work did not 
provide a guideline for frequency selection. In addition, the performance of 
the proposed technique in terms of its anti-noise capability is not addressed. 
In this paper, the rules for selecting the two frequencies are presented based 
on theoretical analysis of the proposed technique. Also, when the two 
frequencies are given, the anti-noise capability of technique is formulated 
and evaluated. These theoretical conclusions are verified by experimental 
results. 

©2012 Optical Society of America 

OCIS codes: (120.5050) Phase measurement; (100.2650) Fringe analysis; (100.5088) Phase 
unwrapping. 
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1. Introduction 

Fringe projection profilometry (FPP) is one of the most promising approaches for non-contact 
3D shape measurement. A challenging task associated with existing phase measurement 
techniques in FPP is phase unwrapping operation, which aims to recover the absolute phase 

maps from the wrapped phase maps falling in ( , )−π π . Although various phase unwrapping 

methods have been proposed, such as spatial [1], temporal [2,3] and period coding [4], 
recovery of absolute phase maps is still a challenging task when the wrapped phase maps 
contain noise, sharp changes or discontinuities [2]. 

To achieve reliable and accurate phase unwrapping for FPP, a variety of temporal phase 
unwrapping approaches have been proposed following work of Huntley and Saldner [2]. The 
general idea behind the temporal method is the use of multiple fringe patterns that are 
projected onto the project, yielding a sequence of wrapped phase maps as a function of time t. 

These phase maps can be considered as a 3D phase map ( , , )m n tφ , denoting the wrapped 

phase value at pixel ( , )m n  at the tth phase map (t = 0, 1, 2, …, s). Phase unwrapping can be 

carried out along any path in the 3D space in order to avoid noise or boundaries and thus 
achieving correct recovery of the absolute phase map. While the method proposed in [2] is 
demonstrated to be effective for accurate phase unwrapping, it also suffers from the drawback 
of requiring many intermediate phase patterns (e.g., 7 sets of fringe patterns were employed 
in [2]), which is obviously not suitable for fast or real-time measurement. In order to increase 
the efficiency, Zhao, et al. [3] proposed to use two image patterns, one of which has a very 
low spatial frequency in contrast to the other. In particular, the low spatial frequency pattern 
only has a single fringe. Such a pattern has its absolute phase value falling within the range 

( , )π π− , and hence it can be used as a reference to calculate the fringe number of the other 

fringe pattern, thus yielding its absolute phase map. Li, et al. [5,6] also employ the phase map 
of single fringe pattern as reference to unwrap high spatial frequency fringe patterns, and it is 
shown that the spatial frequency of the pattern to be unwrapped is determined by the level of 
noise. Following the same method in [5], Liu, et al. [7] project a single fringe pattern and a 
high frequency pattern in one shot to accelerate the speed of 3D measurement. Although these 
approaches work well in principle, the gap between two spatial frequencies should be 
restricted within a range based on the noise level or steps in the low frequency phase maps. 
This is because under the same lighting conditions, fringe patterns with lower frequency are 
more vulnerable to the influence of noise or interferences [3,6,8], and use of noisy low-
frequency pattern as the reference will lead to mistakes for unwrapping the high-frequency 
phase maps. Therefore, the techniques proposed in [3,5,6] may not work well when the phase 
maps are noisy or discontinuous, and multiple intermediate image patterns are still required in 
order to reduce the frequency gaps among adjacent patterns. This problem is studied again by 

Saldner and Huntley [9,10], showing that to unwrap a phase map of frequency f, 
2

log 1f +  

sets of fringe patterns are required. A similar result is also reached by Zhang [8,11], 
indicating that the spatial frequency can be increased by a factor of 2 between two adjacent 
patterns. Taking a typical FPP arrangement as an example where the image pattern has 16 
fringes, 5 image patterns are still required with these approaches. Towers, et al. [12] propose 
an optimal frequency selection method to increase the unambiguous range of the 
measurement, showing that at least three frequencies were needed for a defined reliability in 
fringe number calculation. Therefore, existing temporal phase unwrapping techniques still 
require the use of multiple image patterns, and reduction of the number of image pattern 
while keeping anti-noise capability is still a challenging problem. 
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A set of technologies, which are similar by name to the above and referred to as two (or 
multiple wavelength) interferometry, are also proposed in the area of traditional 
interferometry, where use of multiple light sources with different wavelengths have shown to 
yield significant advantages for distance measurement [13,14]. When a monochromic light 

with wavelength λ  is used, the measurement of a optical path difference (OPD) is suffered 

from ambiguity of module λ , making λ  to be the so-called unambiguous OPD range (UR) 

for the measurement. The idea behind multiple wavelength interferometry technology is that 
by using multiple laser beams with different wavelengths in an interferometer, the resulting 
interferometric pattern is equivalent to the result of using a single laser beam in the same 
interferometer with a much longer wavelength, implying a significant increase in UR. If the 

laser beams of different wavelength 
1

λ  and 
2

λ  are used in two wavelength interferometry 

(TWI), an interferometric patterns can be formed with the equivalent wavelength of 

1 2 1 2
/

eq
λ λ λ λ λ= − , where 

eq
λ  can be made much larger than 

1
λ  and 

2
λ . With the 

development of digital cameras and computers, the two wavelength interferometry is 
considerably improved by the introduction of the phase shifting algorithm [15,16]. Houairi, et 
al. [17] present an analytical algorithm, showing that the actual UR could be much larger than 
the equivalent wavelength depending on the wavelengths and different sources of error. 

In summary of the above, we have seen two classes of research effort. On one hand, 
temporal phase unwrapping techniques aim to recover the absolute phase map of fringe 
patters used for FPP. Due to the existence of noise, multiple intermediate fringe patterns must 
be used. On the other hand, the approaches of multiple wavelength interferometry aim to 
increase of the UR for distance measurement; they employ an equivalent fringe pattern from 
the use of multiple laser sources with different wavelengths in the same interferometer setup. 
The spatial wavelength of the equivalent pattern can be made larger than the individual laser 
sources, hence leading to increase of the UR for distance measurement. However, it is not 
guaranteed that the spatial wavelength of the equivalent pattern cover the whole image (that 
is, the equivalent interferometric pattern contains only a single fringe), and hence they are not 
yet able to solve the problem of absolute phase map recovery in FPP. 

In order to remedy the phase unwrapping problem in FPP described above, the authors of 
this paper developed a novel approach to recover the absolute phase maps of two image 
patterns with selected frequencies [18]. Examples were presented to show that both of the two 
frequencies can be high enough for the applications of FPP. However, a number of issues are 
still outstanding associated with the proposed technique in [18], namely, the basic rules to 
select the frequencies and anti-noise capability of the proposed technique, that is, the phase 
error bound that ensures the correct the recovered absolute phase recovery. This paper aims to 
address these two important issues with the aim to provide a complete solution for the 
implementation of the proposed technique in [18]. 

This paper is organized as follows. In Section 2 we firstly present a brief review of the 
technique in [18], and then analyze the principle for frequency selection. In Section 3, the 
phase error bound is given. In Section 4, experiments are presented to validate the principle 
on frequency selection and the phase error bound. Section 5 concludes the paper. 

2. Selection of the two frequencies 

2.1 The technique proposed in [18] 

With the approach proposed in [18], two fringe patterns with normalized spatial frequencies 

1
f  and 

2
f  respectively are projected onto the surface of an object, where 

1
f  and 

2
f  are 

positive integer numbers representing the total number of fringes on the respective patterns. 

Let us assume that 
1 2

f f<  and that the intensity of two fringe patterns varies in sinusoidal 

manner in x -direction. We have [18]: 
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1 1 1

2 2 2

( ) 2 ( ) ( )

( ) 2 ( ) ( )

x m x x

x m x x

π φ
π φ

Φ = +

Φ = +

 (1) 

 
2 1 1 2
( ) ( ) ( )m x f m x f x− = Ψ  (2) 

where [ ]2 1 1 2
( ) ( ) ( ) / 2x f x f xΨ = −ϕ ϕ π , [1, ]x T⊂  which is the pixel index in the horizontal 

direction and T is the total number of pixels. 
1
( )xΦ  and 

2
( )xΦ  are the absolute phase maps 

to be recovered, 
1
( )xφ  and 

2
( )xφ  are the wrapped phase maps associated with the two fringe 

patterns with frequencies 
1

f  and 
2

f  respectively. As 
1
( ) ( , )xφ π π⊂ −  and 

2
( ) ( , )x ⊂ −φ π π , 

1 1 1
( ) ( , )x f fπ πΦ ⊂ −  and 

2 2 2
( ) ( , )x f fΦ ⊂ − π π , the task of phase unwrapping is to determine 

the two integers 
1
( )m x  and 

2
( )m x , 

1 1 1
( ) 2 ,..., 1,0,1,..., 2m x f f= − −        and 

2 2 2
( ) 2 ,..., 1,0,1,..., 2m x f f= − −       , where x    denotes the operation to take the largest 

integer which is not bigger than x . 

In the proposed technique in [18], we introduced an intermediate variable 
0
( )xΦ , 

denoting the absolute phase map when 
0

1f = . 
0
( )xΦ  varies from −π  to π  monotonically 

with respect to x . 
1
( )xΦ  and 

2
( )xΦ  are related to 

0
( )xΦ  as follows: 

 
1 1 0 2 2 0
( ) ( ) , ( ) ( )x f x x f xΦ = Φ Φ = Φ  (3) 

The relations between 
0
( )xΦ  and 

1
( )m x , 

2
( )m x  are displayed in Eq. (4)-(5). 

 

1 1 1 1 0

1 0 1

1 1 0 1

1 0 1

1 1 0 1 1 1

/ 2 [ ( mod 2 1)] / ( )

... ...

1 / ( ) 3 /

( ) 0 / ( ) /

1 3 / ( ) /

... ...

/ 2 ( ) [ ( mod 2 1)] /

f f f f x

f x f

m x f x f

f x f

f x f f f

− + ≤ Φ <   


 ≤ Φ <


= − < Φ <
 − − < Φ ≤ −


− − < Φ ≤ − − +  

π π

π π
π π
π π

π π

 (4a) 

 

2 2 2 2 0

2 0 2

2 2 0 2

2 0 2

2 0 2 2 2

/ 2 [ ( mod 2 1)] / ( )

... ...

1 / ( ) 3 /

( ) 0 / ( ) /

1 3 / ( ) /

... ...

/ 2 ( ) [ ( mod 2 1)] /

f f f f x

f x f

m x f x f

f x f

f x f f f

π π

π π
π π
π π

π π

 − + ≤ Φ <  


 ≤ Φ <


= − < Φ <
 − − < Φ ≤ −

− − < Φ ≤ − − +  

 (4b) 

Equation (4a) and (4b) give all the possible combinations of (
1
( )m x ,

2
( )m x ) when x 

varies from 1 to T. With selection of 
1

f  and
2

f , 
2 1 1 2
( ) ( )m x f m x f−  will be integer which will 

enable us to have a unique map relationship between ( )xΨ  and a pair (
1
( )m x ,

2
( )m x ) [18]. 

Therefore, for a given x, we will have the value of ( )xΨ , and then the two absolute phases 

can be recovered by Eq. (1), where (
1
( )m x ,

2
( )m x ) can be determined by minimizing the 

following with respect to all the possible pair of (
1
( )m x ,

2
( )m x ) as defined by Eq. (4a) and 

(4b): 
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 { }
1 2

2 1 1 2
( ), ( )

( ) ( ) ( )
m x m x

Min m x f m x f x− −Φ  (5) 

The operational principle of the proposed technique can also be explained graphically 

using an example where 
1

5f =  and 
2

8f = . Figure 1 shows the relationship among three 

absolute phase maps 
0
( )xΦ , 

1
( )xΦ  and 

2
( )xΦ . Figure 2 show how 

1
( )xφ  and 

2
( )xφ  varies 

over x, and Fig. 3 show how ( )xΨ  changes with x. It is seem that ( )xΨ  only takes integer 

values, and it switches its value when either of 
1
( )xφ  and 

2
( )xφ  experiences a sudden change 

due to the phase wrapping. It is seen that as long as all the steps in ( )xΨ  exhibits different 

height, (
1
( )m x ,

2
( )m x ) can be determined and hence 

1
( )xΦ  and 

2
( )xΦ  can be recovered. 

 

Fig. 1. Absolute phases on reference pattern image. 

 

Fig. 2. Corresponding relationship between wrapped phase maps and 
( ).xΨ
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2.2 Principle of frequency pair selection 

The validity of the approach proposed in [18] relies on the existence of unique mapping from 

2 1 1 2
[ ( ) ( )] / 2f x f x−φ φ π  to a pair of 

1
( )m x and

2
( )m x . That is, 

1
f  and 

2
f  must be selected so 

that such a unique mapping relationship is held. 

In order to achieve the above, let us firstly look at the relationship between 
0
( )xΦ  and 

( )1 2
( ), ( )m x m x . From Eq. (4), the range of 

0
( )xΦ  can be divided into 

1 1
2 2 1N f= +    

intervals, and the values of 
0
( )xΦ  on interval boundaries are

1 1
(2 1) /n f+ π  where 

1 1 1
2 2f n f− < <       . On each of the intervals 

1
( )m x  takes a different value. Similarly, Eq. 

(5) shows that the range of 
0
( )xΦ  can also be divided into 

2 2
2 2 1N f= +    intervals, the 

values of 
0
( )xΦ  on interval boundaries are 

2 2
(2 1) /n f+ π  where 

2 2 2
2 2f n f− < <       . 

On each of the intervals 
2
( )m x  takes a different value. 

When 
1

f and 
2

f  are coprime, it is easy to show that 
1 1 2 2

(2 1) / (2 1) /n f n fπ π+ ≠ +  (
1

f  

and 
2

f  will not be coprime otherwise). Hence we can say that the interval boundaries of the 

two types of intervals will not coincide. These two types of boundaries together can divide the 

range of 
0
( )xΦ  into N  intervals: 

 
1 2 1 2

1 2 2 2 2 1N N N f f= + − = + +        (6) 

Each of the intervals must correspond to an unique pair ( )1 2
( ), ( )m x m x . As 

0
( )xΦ  varies 

from π−  to π  monotonically, these intervals on 
0
( )xΦ  will correspond to the same number 

of intervals on x , denoted by 
1 2
, ,...,

N
Ω Ω Ω . Obviously, each of 

1 2
, ,...,

N
Ω Ω Ω  will also 

correspond to a unique pair ( )1 2
( ), ( )m x m x . In summary of the above, we have the following: 

Statement 1: If 
1

f  and 
2

f  are selected to be coprime, both of the two phase maps can be 

divided into strips based on the intervals [ ]1 2
, ,...,

N
x ⊂ Ω Ω Ω  . Each of the strips on the phase 

maps corresponds to a unique pair ( )1 2
( ), ( )m x m x , which can be used to recover the absolute 

phases. 

The above statement shows when 
1

f  and 
2

f  to be coprime, there exists a unique solution 

for the phase unwrapping problem. In order to show that the proposed approach in [18] is 
sufficient to work out the solution, we should also have the following: 

Statement 2: When 
1

f and
2

f  is coprime, for any two different intervals 
a p

x ⊂ Ω , 

b q
x ⊂ Ω  and p q≠ ,we must have two corresponding pairs of ( )1 2

( ), ( )m x m x based on 

Statement 1, which also meet the following: 

 2 1 1 2 2 1 1 2
2 1 1 2 2 1 1 2

( ) ( ) ( ) ( )
or ( ) ( ) ( ) ( )

2 2

a a b b
a a b b

f x f x f x f x
m x f m x f m x f m x f

− −
≠ − ≠ −

φ φ φ φ
π π

   

In other words, there exists a unique mapping from ( )1 2
( ), ( )m x m x to 2 1 1 2( ) ( )

2

f x f x−φ φ
π

 (that 

is, 
2 1 1 2
( ) ( )m x f m x f− ) . 

We prove the Statement 2 by reductio ad absurdam. There are three possible scenarios 

making the two pairs of ( )1 2
( ), ( )m x m x  different: (a) 

1 1
( ) ( )

a b
m x m x≠  and 

2 2
( ) ( )

a b
m x m x≠ , 

(b) 
1 1
( ) ( )

a b
m x m x≠  and 

2 2
( ) ( )

a b
m x m x= , and (c) 

1 1
( ) ( )

a b
m x m x=  and 

2 2
( ) ( )

a b
m x m x≠ . 
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Without loss of generality let us discuss the first case where 
1 1
( ) ( )

a b
m x m x≠  and 

2 2
( ) ( )

a b
m x m x≠ . Assume that the following is valid: 

 
2 1 1 2 2 1 1 2
( ) ( ) ( ) ( )

a a b b
m x f m x f m x f m x f− = −  (7) 

Equation (7) can be rewritten as: 

 1 1 1

2 2 2

( ) ( )

( ) ( )

a b

a b

m x m x f

m x m x f

−
=

−
 (8) 

As
1

f and
2

f  are coprime, Eq. (8) must be equivalent to the following: 

 
1 1 1 2 2 2
( ) ( ) and ( ) ( )

a b a b
m x m x kf m x m x kf− = − =   (9) 

where k is an integer and 0k ≠ . 

Considering the ranges of 
1
( )m x  and 

2
( )m x  given above, we have 

1 1
1
( )

2 2
a

f f
m x

   − ≤ ≤      
, 1 1

1( )
2 2

b

f f
m x

   
− ≤ ≤      

, 2 2
2
( )

2 2
a

f f
m x

   − ≤ ≤      
 and 

2 2
2 ( )

2 2
b

f f
m x

   
− ≤ ≤      

, so: 

 1 1 2 2
1 1 2 2

2 ( ) ( ) 2 and 2 ( ) ( ) 2
2 2 2 2

a b a b

f f f f
m x m x m x m x

       − ≤ − ≤ − ≤ − ≤              
   (10) 

Comparing Eq. (9) with Eq. (10), it is obvious that 1k = ± . Hence we have 

 
1 1 1 2 2 2
( ) ( ) , ( ) ( )

a b a b
m x m x f m x m x f− = ± − = ±  (11) 

Looking at Eq. (10) again, when Eq. (11) is held, we must have: 

 1 1 2 2and
2 2 2 2

f f f f   
= =      

   (12) 

Equation (12) implies that 
1

f and
2

f  are both even numbers, which is contradict to the fact 

that 
1

f  and 
2

f  are coprime. Hence Eq. (7) will not be true for the case (a) 
1 1
( ) ( )

a b
m x m x≠  

and 
2 2
( ) ( )

a b
m x m x≠ , thus we have the following and also Statement 2: 

 
2 1 1 2 2 1 1 2
( ) ( ) ( ) ( )

a a b b
m x f m x f m x f m x f− ≠ −  (13) 

For the case (b) 
1 1
( ) ( )

a b
m x m x≠  and 

2 2
( ) ( )

a b
m x m x= , and (c) 

1 1
( ) ( )

a b
m x m x=  and 

2 2
( ) ( )

a b
m x m x≠ , it is obvious that Eq. (13) will be held. 

Combining Statements 1 and 2, we are able to propose the following for selection of the 

two frequencies 
1

f and
2

f  for the technique proposed in [18]: 

Statement 3: If 
1

f and
2

f are coprime, there existing a unique mapping from ( )xΨ (that is, 

2 1 1 2
[ ( ) ( )] / 2f x f x−φ φ π ) to 

1 2
( ( ), ( ))m x m x , which will enable us to determine 

1 2
( ( ), ( ))m x m x  

in order to recover the two absolute phases using the technique proposed in [18]. 

3. Phase error bound 

In the proposed technique [18], after calculating 
2 1 1 2

[ ( ) ( )] 2f x f x−φ φ π , we need to round the 

calculated 
2 1 1 2
( ) ( )m x f m x f−  to the closest integer, then using Eq. (5) to find the 

corresponding 
1
( )m x and 

2
( )m x . However, when 

1
( )xφ  and 

2
( )xφ  is corrupted by unwanted 
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noises or distortion,
2 1 1 2

[ ( ) ( )] 2f x f xφ φ π−  may be rounded to a wrong value of 

2 1 1 2
( ) ( )m x f m x f− , resulting in errors in the recovered absolute phase maps. In this section 

we will study the performance of the proposed technique in [16] in terms of its anti-error 
capability. 

The anti-error capability of the proposed technique depends on the gaps between any two 

possible values of 
2 1 1 2

[ ( ) ( )] 2f x f xφ φ π− . The larger the gap, the more unlikely the error will 

occur due to the rounding operation. Hence we need to find out the smallest gap between two 

values of 
2 1 1 2

[ ( ) ( )] 2f x f x−φ φ π , and we should also work out the relationship between the 

phase error in (
1
( )xφ ,

2
( )xφ ) and the smallest gap, which will yield the anti-noise capability 

of the technique in [16]. 

The smallest gap can be determined by the range of 
2 1 1 2

[ ( ) ( )] 2f x f xφ φ π−  and the 

number of gaps. As indicated by Eq. (2), we can evaluate 
2 1 1 2
( ) ( )m x f m x f−  to work out the 

range of 
2 1 1 2

[ ( ) ( )] 2f x f xφ φ π− . In order to figure out the range of 
2 1 1 2
( ) ( )m x f m x f− , we 

need to know all the possible pairs of 
1
( )m x  and 

2
( )m x . 

As shown by Eq. (4) and Eq. (5), for a particular value of 
1
( )m x , 

0
( )xΦ spans over a 

range of 
1

2 fπ , and similarly for a particular value of 
2
( )m x , 

0
( )xΦ  cover a range of 

2
2 fπ . When

1 2
f f< , the 

0
( )xΦ  associated with a particular 

1
( )m x  will span two or more 

intervals of 
0
( )xΦ  with respect to different 

2
( )m x values. Also for a given 

1
( )m x (

1
( ) 1m x ≥ ), the largest value of 

2 1 1 2
( ) ( )m x f m x f−  corresponds to the case when 

2
( )m x  takes the largest possible value. 

For a given 
1
( )m x , 

0
( )xΦ  falls in 

1 1 1 1 1 1
[2 ( ) ,2 ( ) )m x f f m x f f− +π π π π . Within the 

same range of 
0
( )xΦ , the largest possible 

2
( )m x  can be obtained as follows: 

 0 max 2 0max 2

2max

2 2

( ) / ( ) /
( ) 1

2 / 2 /

x f x f
m x

f f

π π
π π

 Φ − Φ −
= ≤ + 

 
 (14) 

where 
0max 1 1 1

( ) 2 ( )x m x f fΦ = +π π , is the upper bound of 
0
( )xΦ  for the given 

1
( )m x . 

Based on the above, the largest 
2 1 1 2
( ) ( )m x f m x f−  for the given 

1
( )m x  is bounded by: 

 
2 1 1 2 2 max 1 1 2
( ) ( ) ( ) ( )m x f m x f m x f m x f− ≤ −  (15) 

According to Eq. (14), we have: 

 0max 2 1 2
2max 1 1 2 1 1 2

2

( ) /
( ) ( ) ( ) ( )

2 / 2

x f f f
m x f m x f f m x f

f

Φ − +
− ≤ − =

π
π

 (16) 

So we have the upper bound of 
2 1 1 2
( ) ( )m x f m x f− for a given 

1
( )m x as follows: 

 1 2

2 1 1 2( ) ( )
2

f f
m x f m x f

+
− ≤  (17) 

Similarly, we can obtain the minimal value of 
2
( )m x  for a given 

1
( )m x  as follows: 

 0min 2 0min 2
2min

2 2

( ) / ( ) /
( )

2 / 2 /

x f x f
m x

f f

 Φ − Φ −
= ≥ 

 

π π
π π

 (18) 

where 
0min 1 1 1

( ) 2 ( )x m x f fπ πΦ = − , which is the lower bound of 
0
( )xΦ  for the given 

1
( )m x . Based on above, the smallest 

2 1 1 2
( ) ( )m x f m x f−  for the given 

1
( )m x  is: 
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2 1 1 2 1 2min 2 1
( ) ( ) ( ) ( )m x f m x f f m x f m x− ≥ −  (19) 

According to Eq. (18), we have: 

 0 min 2 1 2

1 2min 2 1 1 1 2

2

( ) /
( ) ( ) ( ) ( )

2 / 2

x f f f
f m x f m x f m x f

f

π
π

Φ − +
− ≥ − = −  (20) 

So we have the lower bound of 
2 1 1 2
( ) ( )m x f m x f− for a given 

1
( )m x as follows: 

 1 2
2 1 1 2( ) ( )

2

f f
m x f m x f

+
− ≥ −  (21) 

Combining Eq. (17) and Eq. (21) we have: 

 1 2 1 2

2 1 2 1( ) ( )
2 2

f f f f
m x f f m x

+ +
− ≤ − ≤  (22) 

From Eq. (2) and Eq. (22) we have: 

 1 2 2 1 1 2 1 2( ) ( )

2 2 2

f f f x f x f f+ − +
− ≤ ≤

φ φ
π

 (23) 

The number of value gaps is determined by the number of different values in 

2 1 1 2
[ ( ) ( )] 2f x f xφ φ π− . By Eq. (6) and Statement 3, when 

1
f and 

2
f  are coprime, the number 

of values in 
2 1 1 2

[ ( ) ( )] 2f x f x−φ φ π is: 

 
1 2

2 2 2 2 1N f f= + +        

So the number of value gaps is: 

 
1 2

1 2 2 2 2N f f− = +        (24) 

From Eq. (23) and Eq. (24), the average value gap of 
2 1 1 2

[ ( ) ( )] 2f x f xφ φ π−  is obtained 

as follows: 

 1 2

1 2

2
2 2 2 2

f f
G

f f

+
= <

+      
 (25) 

Since the values of 
2 1 1 2

[ ( ) ( )] 2f x f xφ φ π−  are integers, the minimal value gap between the 

values of 
2 1 1 2

[ ( ) ( )] 2f x f x−φ φ π  is 1. 

If an error in 
2 1 1 2

[ ( ) ( )] / 2f x f xφ φ π−  exceeds 0.5, an error will occur when rounding 

2 1 1 2
[ ( ) ( )] / 2f x f x−φ φ π  into an integer. In other words, error in 

2 1 1 2
[ ( ) ( )] / 2f x f xφ φ π−  must 

not exceed 0.5 if we want to round 
2 1 1 2

[ ( ) ( )] / 2f x f x−φ φ π  into a correct integer. Assuming 

phase errors in the wrapped phase maps 
1
( )xφ and

2
( )xφ  are 

1
( )xφ∆ and 

2
( )x∆φ  respectively, 

we have: 

 2 1 1 2
( ) ( )

0.5
2

f x f xφ φ
π

∆ − ∆
<  (26) 

Let
max 1 2

max( ( ) , ( ) )x x∆ = ∆ ∆φ φ φ , from Eq. (26) we can find the upper bound of the 

allowable phase error: 

 max

1 2

0
f f

π
φ≤ ∆ <

+
 (27) 
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The above gives the upper bound of 
max

( )x∆φ  with which the absolute phase maps can be 

correctly recovered. In other words, if 
max

( )xφ∆  is given, we should select the two 

frequencies to meeting the following: 

 1 2

max

f f+ <
∆
π
φ

 (28) 

If maximal phase error 
max

( )xφ∆  is larger than 
1 2f f+
π

, mistakes will occur in 

determining the correct (
1
( )m x , 

2
( )m x ). The phase error 

1
( )xφ∆  and 

2
( )x∆φ  are mainly 

resulted from the noise (uncertainty) and non-linear distortion of the fringe pattern projection 
and capture system. According to the theoretical analysis and experiment results given in 
[19,20], phase error can be reduced by increasing the number of steps of PSP. Hence in 

practice we can make 1

1 2

0 ( )x
f f

π
φ≤ ∆ <

+
 and 2

1 2

0 ( )x
f f

≤ ∆ <
+
π

φ in order to determine 

(
1
( )m x , 

2
( )m x ) correctly using the approach in [18]. 

4. Experiment 

In order to validate the proposed rules for frequency selection, experiments have been carried 

out on absolute phase maps recovery for two frequencies 
1

8f =  and
2

15f = . The camera in 

the experiment is DuncanTech MS3100 high resolution 3CCD camera, the projector is 

Hitachi CP-X260 Multimedia LCD Projector. Fringe patterns with
1

8f =  and 
2

15f =  are 

projected onto a plaster hand model as the object, and the deformed fringe patterns are shown 
in Fig. 3 (a) and 3(b). The vertical (y-direction) resolution of pattern image is 1392, the 
horizontal (x-direction) is 1038. 
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Fig. 3. Experiment results when 1
8f =

and 2
15f =

. (a) and (b) are the deformed fringe 
patterns; (c) and (d) are the wrapped phase maps obtained by six-step PSP; (e) and (f) are the 
recovered absolute phase maps of (c) and (d); (g) and (h) are the wrapped phase maps obtained 
by three-step PSP; (i) and (j) are the recovered phase of (g) and (h); (k) and (l) are the three 
dimensional reconstruction results obtained from (e) and (f) respectively. 

We firstly used the six-step Phase Shifting Profilometry (PSP) to obtain the wrapped 
phase maps, which are depicted in Fig. 3 (c) and 3(d). By measuring Fig. 3 (c) and 3(d) we 

found that
max

∆φ  is about 100π  in this experiment. Since 
1

f  and 
2

f  are 

coprime,
1 2

23 100f f+ = < , the requirements of Statement 3 and Eq. (27) are met and hence 

the absolute phase maps can be recovered from the wrapped ones, as shown by Fig. 3(e) and 
3(f). Also, the results for three dimensional reconstruction in Fig. 3(k) and 3(l) also 
demonstrate that the proposed algorithm is able to recover the absolute phase maps. 

Then we obtained another set of wrapped phase maps in Fig. 3(g) and 3(h). As we did not 
apply any correction and calibration, the wrapped phase maps are corrupted by nonlinear 

distortion with 
max

φ∆  being about 10π . In this case, 
1 2

23 10f f+ = > , according to Eq. 

(27), error will occur in absolute phase maps recovery, which is confirmed by Fig. 3(g) and 
3(j). 
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The above can be further confirmed looking at the recovered absolute phases on a section 
for y = 800. The results are shown in Fig. 4 which clearly demonstrates that absolute phases 
can be recovered from the wrapped ones obtained by six-step PSP, and that errors occur for 
the recovery of the phase maps obtained from three-step PSP. 

 

Fig. 4. Recovered absolute phases on section y = 800, the section across the palm model. (a) 
and (b) are the recovered absolute phases on section y = 800 for Fig. 3(e) and 3(f) by six-step 
PSP; (c) and (d) are the recovered phases on section y = 800 for Fig. 3(i) and 3(j) by three-step 
PSP. 

We also carried out experiments to validate the effectiveness of our proposed rules for the 
object surface with steps. The object is a plane with a step of 72mm high. Fringe patterns 

with
1

8f =  and 
2

15f =  are projected onto the object and the deformed fringe patterns are 

shown in Fig. 4(a) and 4(b). The resolution of image pattern is the same as Fig. 3, and the 
horizontal length of the image is 315mm. The distance between the camera and reference 
plane is 1200mm, the distance between the camera and projector is 300mm. 

We found that the average phase jumping on section x = 240 is 5.75, so the average step 
height is obtained as 72.28mm. The average phase different on section x = 120 is 5.76, and so 
the average step height is 71.96mm. This result shows that our proposed technique can also 
determine the absolute phase maps when the objects are with steps. 

 

Fig. 5. Experiment on the plane with step. (a) and (b) are deformed fringe patterns; (c) and (d) 
are the wrapped phase maps by six-step PSP (white part are areas covered by object shadows); 
(e) and (f) are the absolute phase maps recovered by (c) and (d). 

In order to compare with the existing two-frequency temporal phase unwrapping 
algorithms, we also implemented the phase unwrapping technique in Eq. (37) in [6]. Under 
the same experimental conditions, one of the fringe patterns has the unit frequency (i.e., only 
one fringe on the pattern), and the other has the spatial frequency 15. These two fringe 
patterns are projected onto the same plaster hand model, and the phase maps are obtained by 
six-step PSP algorithm. The experiment results are depicted in Fig. 6 and Fig. 7 gives the 
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absolute phase map on section y = 800 of the Fig. 6(e). Comparing the recovered phase map 
in Fig. 6 (e) with Fig. 3(e) and 3(f), it is clear that errors are observed in Fig. 6 (e) and Fig. 7. 
By looking at Fig. 6 (a), we find that the maximal phase error of phase map on unit frequency 

is about /15π , which is bigger than /16π , the threshold set Eq. (27) for correct absolute 

phase recovery. Note that such a large phase error is reasonable as the lower the frequency, 
the higher the phase noise [3,8], and such a large phase error in the wrapped unit frequency 
phase map has led to miscounting of the fringe orders and errors in absolute phase recovery. 
Looking into the results in Fig. 3 again, use of frequencies 8 and 15 enjoys the maximal phase 

error 100π , and hence meets the requirement of Eq. (29), thus enabling correct phase 

recovery by means of the proposed technique in [18]. 

 

Fig. 6. Experiment by the existing algorithm. (a) and (b) are deformed fringe patterns of 

1
1f =  and 

2
15f = ; (c) and (d) are the wrapped phase maps of 

1
1f =  and 

2
15f =  by six-

step PSP; (e) is the absolute phase maps recovered by (c) and (d) based on the existing 
algorithm. (f) is the three dimensional reconstruction cloud. 

 

Fig. 7. Recovered absolute phase on section y = 800 of 
2

15f =  based on existing algorithm in 

[6]. 
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5. Conclusion 

We presented a guideline to select the frequencies of the two fringe patterns using the 
proposed technique in [18]. It is shown that when the two frequencies are coprime, the 
technique in [18] can be employed to recover the absolute phase maps. The anti-error ability 
of the proposed technique in [18] has also been investigated. We have shown that when the 

two frequencies 
1

f  and 
2

f  are given, the maximal allowable phase error is 
1 2

/ ( )f fπ +  for 

accurate phase map recovery. In other words, if we know the maximal phase error 
max

∆φ , 
1

f  

and 
2

f  should be selected in such a way that 1 2

max

f f
π
φ

+ <
∆

. These guidelines have been 

confirmed by experiments. With the guidelines presented in this paper, we are able to select 
the two frequencies and implement the proposed technique in [18] for various applications. 
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