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Abstract

Markov chain Monte Carlo (MCMC) is an important computational technique for
generating samples from non-standard probability distributions. A major challenge
in the design of practical MCMC samplers is to achieve efficient convergence and
mixing properties. One way to accelerate convergence and mixing is to adapt the
proposal distribution in light of previously sampled points, thus increasing the prob-
ability of acceptance. In this paper, we propose two new adaptive MCMC algorithms
based on the Independent Metropolis-Hastings algorithm. In the first, we adjust
the proposal to minimize an estimate of the cross-entropy between the target and
proposal distributions, using the experience of pre-runs. This approach provides a
general technique for deriving natural adaptive formulae. The second approach uses
multiple parallel chains, and involves updating chains individually, then updating
a proposal density by fitting a Bayesian model to the population. An important
feature of this approach is that adapting the proposal does not change the limiting
distributions of the chains. Consequently, the adaptive phase of the sampler can be
continued indefinitely. We include results of numerical experiments indicating that
the new algorithms compete well with traditional Metropolis-Hastings algorithms.
We also demonstrate the method for a realistic problem arising in Comparative
Genomics.
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1 Introduction

Markov chain Monte Carlo is an enabling computational technique that pro-
vides a means of generating samples from an arbitrary statistical distribu-
tion. The need for such sampling is common in Bayesian analyses, usually
for the purpose of estimating the value of an integral containing a posterior
distribution. However, the need to sample from a distribution also arises in
non-Bayesian contexts.

The first MCMC sampler was invented by Metropolis et al. [22]. It was sub-
sequently generalized by Hastings and this important generalization is known
as the Metropolis-Hastings algorithm [16]. The sampler begins with an arbi-
trary value x0 and generates a Markov chain in the following manner. Using
an arbitrary transition function Q(x, y) (which takes the form of a density in
a continuous space or a transition matrix in a discrete space), the algorithm
alternates between a) proposing a new element drawn from the proposal dis-
tribution Q(x, ·), where x is the current element, and b) either accepting the
new element or repeating the current element, with the probability of accep-
tance given by the acceptance ratio α(x, y). Under weak conditions on Q, the
chain converges asymptotically to the target distribution f that one wishes to
sample. When a sampler is implemented on a computer with finite precision,
convergence to within that precision occurs in a finite time period. This period
is known as burn-in.

The art of designing an efficient Metropolis-Hastings algorithm lies chiefly in
choosing an appropriate proposal distribution. The length of the burn-in pe-
riod, and the speed at which the chain mixes after burn-in, depend critically on
the proposal. Convergence and mixing will be slow if the proposed transitions
are mostly between nearby states in state space. However, a preponderance of
distant transitions may also slow the chain if it results in a lower acceptance
ratio, as is likely if distant transitions are proposed indiscriminantly. Thus
the proposal should ideally be chosen in such a way as to allow both distant
transitions and a high acceptance ratio. One way to achieve this is to adapt
the proposal distribution in light of sampled elements.

There is an extensive literature on adaptive MCMC algorithms. One approach
to adapting the proposal distribution is to use pre-runs and tune the proposal
based on the experience of the pre-runs, as suggested in [8,13]. Another ap-
proach uses multiple chains (e.g., [11,4,28]) and updates the proposal for itera-
tion t+1 based on the current ‘population’ (that is, the set of current elements
across all chains) at iteration t. A number of interesting ideas regarding this
latter approach have recently been introduced. Warners [29] has used a kernel
estimation of the target distribution to design the proposal distribution. The
method in [4] is based on running an increasing number of chains. Tierney
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and Mira [28] have used a delayed rejection approach.

Some adaptive MCMC algorithms use either the whole or the recent history
of the chain and only a single chain for adaptation. These are either based
on regeneration or slowing down the adaptation as sampling proceeds (see
[3,7,12,14,15,17,23,24,26]).

A regeneration idea is proposed by Mykland, Tierney and Yu [23]. Gilks,
Roberts and Sahu [12] have shown that the transition kernel used in an MCMC
algorithm can be updated without damaging the ergodicity at regeneration
times. The self-regenerative algorithm by Sahu and Zhigljavsky [26] is based
on constructing an auxiliary chain and picking elements of this chain a suitable
number of times.

Haario, Saksman and Tamminen [14] have proposed an adaptive version of
the random walk Metropolis algorithm where the covariance matrix of the
proposal kernel is sequentially updated. To solve high-dimensional problems,
Haario, Saksman and Tamminen [15] have introduced an adaptive MCMC al-
gorithm in which the adaptation is performed componentwise. The algorithm
uses Gaussian proposal distributions whose variances depend on time. Atchade
and Rosenthal [3] have considered adaptive MCMC algorithms that generate
stochastic processes based on sequences of transition kernels, where each tran-
sition kernel is allowed to depend on the history of the process. Gasemyr [7]
has presented an adaptive, non-Markovian version of the Metropolis-Hastings
algorithm with a fixed parametric class of proposal distributions, where the
parameters of the proposal distribution are updated periodically on the basis
of the recent history of the chain. Holden [17] has proved convergence of re-
generative chains using part of the history and adaptive chains using the full
history. Pasarica and Gelman [24] have developed an adaptive algorithm that
uses the information accumulated by a single path and adapts the choice of
the parametric kernel in the direction of the local maximum of the objective
function (the expected squared jumped distance) using multiple importance
sampling techniques.

We consider the Independent Metropolis-Hastings Algorithm to sample from
a target density function f(x). This algorithm can be written as follows:

Given the current state xt:

(1) Generate Y ∼ g(y).
(2) Generate U ∼ U(0, 1) and deliver

xt+1 =






Y, if U 6 α(xt, Y )

xt, otherwise,
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where

α(x, y) = min{̺(x, y), 1},
with

̺(x, y) =
f(y)g(x)

f(x)g(y)
.

When the proposal g is equal to f , the acceptance ratio is one and the corre-
lation between adjacent elements of the chain is zero. Thus it is desirable to
choose the proposal distribution g as closely as possible to the target f . One
possibility is to sample from conditional distributions of f , a technique known
as Gibbs sampling. However, this technique can be computationally inefficient
for some problems. In an adaptive framework, a natural strategy is to adjust
a trial proposal g0 to obtain a new proposal g that is ‘closer’ to f .

In this paper, we propose two new adaptive MCMC algorithms, which we
call Adaptive Independence Samplers (AIS). The first approach, which can be
considered to belong to the category of MCMC algorithms that use pre-runs,
is as follows. We generate a sample from a target density via some proposal
density using the Independent Metropolis-Hastings Algorithm and then use
these data to update the proposal in a similar manner to that used in the cross-
entropy (CE) method [25]. We call this method the Cross-Entropy Adaptive
Independence Sampler (CEAIS). We suggest the choice of a mixture density
as a proposal. Using CEAIS, convenient update formulae for the parameters
of the mixture density are obtained. The significance of using a mixture as a
proposal is that a multi-modal target distribution can be approximated more
closely, thus increasing the acceptance ratio. As our results demonstrate, this
is an efficient tool to fit the proposal to the target density. A new idea is to
choose a proposal density such that the Kullback-Leibler distance between the
proposal density and the target density is minimal. While the use of pre-runs
and mixture proposals is not new, the use of cross-entropy in this context is
novel.

The second, Bayesian, approach is based on multiple chains, in which we up-
date observations one by one. We periodically update a proposal density using
the set of current observations across all chains. We refer to this method as
the Bayesian Adaptive Independence Sampler (BAIS). Again the idea of using
parallel chains to obtain information for the purpose of adapting the proposal
is not new, but our Bayesian approach is novel. The technique of constructing
this algorithm is based on the methodology of the Generalized Markov Sam-
pler [18]. We prove that the target distribution is the limiting distribution of
the corresponding process. A critical point in constructing adaptive MCMC
algorithms is that adaptation may break the Markovian property so that er-
godicity cannot be guaranteed, or may change the limiting distribution of the
process. However, an important property of the Bayesian method described
here is that it retains the Markovian property and the target distribution as
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its limiting distribution.

The paper is structured as follows. In Sections 2 and 3, we develop the two new
algorithms CEAIS and BAIS, respectively. Section 2 includes a description of
a variant of CEAIS that is based on the EM algorithm. In Section 4, we
explain two measures of the efficiency of an MCMC algorithm that we use in
Section 5 to compare CEAIS and BAIS to each other and to two non-adaptive
Metropolis-Hastings samplers. Section 5 presents the results of three numerical
experiments used to evaluate the new samplers. This section also includes an
application of BAIS to a problem that arises in Comparative Genomics -
specifically, fitting a mixture of beta distributions to a data set obtained by a
sliding window analysis of conservation. Our conclusions are in Section 6.

2 CEAIS

One possible way to find an efficient proposal is to generate a sample X1, . . . , XN

from the target f via some trial proposal g0 (using the Independence Sam-
pler) and then fit a new distribution g to these data. It may seem superfluous
to update g0 to g in this manner, given that X1, . . . , XN have already been
generated. However, there are a number of reasons why it is advantageous to
do so. Firstly, if a large sample is required, it may be possible to generate
this sample much more efficiently by first using a small pre-run to obtain a
proposal g close to the target f . Secondly, and more importantly, it is not
necessary to wait for burn-in to obtain the sample X1, . . . , XN . Even if this
sample is not strictly drawn from f (and it will not be if it is obtained during
burn-in) it may nevertheless be possible to obtain a new proposal g closer to
f . Moreover, this process can be iterated, with the possibility of accelerated
convergence. Convergence of the chain to the target distribution f is still as-
sured provided that one stops updating the proposal after some number of
iterations. Although the number of times the proposal should be updated, the
number of samples to use for each update, and whether and how to subsam-
ple for the purpose of fitting the new proposal are important implementation
details, we focus here on a new method of generating update formulae for the
proposal.

Let g0, g be proposal densities, and f be the target density. In practice, f
can be a rather complicated function with multiple modes. We shall therefore
assume that g0 and g are mixture densities:

g(x) = g(x | θ) =
k∑

c=1

wc hc(x, ηc),
k∑

c=1

wc = 1, wc > 0,

where θ = (w, η) is a parameter vector, which includes the weights w =
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(w1, . . . , wk) and the vector η = (η1, . . . , ηk) containing all the parameters of
the densities hc(x, ηc), c = 1, . . . , k.

We propose choosing a density g such that the distance between g and the
target density f is minimal. A particular convenient distance between two
densities is the Kullback-Leibler Cross-entropy distance [19], or more concisely
cross-entropy (CE). The distance is defined as:

D(f, g) =
∫

f(x) ln

(
f(x)

g(x)

)

dx.

Minimizing the distance is, in our case, equivalent to solving the maximization
problem

max
θ

∫
f(x) ln

k∑

c=1

wc hc(x, ηc) dx.

As in the CE method [25], we can estimate the optimal solution θ∗ as the
solution of the program

max
θ

1

N

N∑

n=1

f(Xn) ln
k∑

c=1

wc hc(Xn, ηc),

where a sample X1, . . . , XN is generated from f via g0 (using the Independence
Sampler).

The variable Xn can be obtained as a component of the pair (Xn, Cn) by first
choosing Cn with probability wCn

and then generating an observation from
hCn

. We are interested in inference for Xn, so Cn may be considered a nuisance
parameter [9]. Using Lagrange multipliers and the fact that

∑
c wc = 1, the

solution to the constrained maximisation problem is:

ŵc =
1

N

N∑

n=1

I{Cn=c}.

For the Gaussian case, this means that hc is a normal density with parameters
(µc, Σc), we have

µ̂c =

∑N
n=1 I{Cn=c}Xn
∑N

n=1 I{Cn=c}

,

and

Σ̂c =

∑N
n=1 I{Cn=c}(Xn − µ̂c)(Xn − µ̂c)

T

∑N
n=1 I{Cn=c}

.

An alternative approach is to estimate θ using the well-known EM method
(see, e.g., [5,21]). It can be shown that

ŵc =
1

N

N∑

n=1

qo(c |Xn),
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where

qo(c |Xn) =
wc h(Xn, ηo

c)

g0(Xn)
, c = 1, . . . , k.

For the Gaussian case this leads to the formulas

µ̂c =

∑N
n=1 qo(c |Xn)Xn
∑N

n=1 qo(c |Xn)
,

and

Σ̂c =

∑N
n=1 qo(c |Xn)(Xn − µ̂c)(Xn − µ̂c)

T

∑N
n=1 qo(c |Xn)

.

When these latter updating formulae are used, we refer to the resulting sampler
as the Expectation-Maximization Adaptive Independence Sampler (EMAIS).

To choose the number of mixture components k we can use information criteria
such as Akaike’s information criterion (AIC) [1], the Bayesian information
criterion (BIC) [27], or the Deviance information criterion (DIC) [9]. These
are popular scoring functions used to rank competing models on the basis of
a compromise between goodness of fit and model complexity. The simplest of
these is the AIC, which can be written for a mixture model with k components
as follows:

AICk :=−2 ln(maximum likelihood) + 2(number of parameters)

= −2 ln

(
N∏

n=1

g(Xn, θ
∗∗)

)

+ 2

(

k +
k∑

c=1

pc

)

,

where pc is the number of parameters of the density hc and θ∗∗ is the value
of the parameter that maximizes the likelihood of X1, . . . , XN , considered as
data. As an approximation to θ∗∗, one may use the value θ∗ obtained via either
the Cross-Entropy or the EM method. One prefers the k-mixture model that
has the lowest value of the AIC.

3 BAIS

In this section we describe the second of our adaptive independence samplers,
which involves running multiple parallel chains with a common proposal distri-
bution. The proposal is updated by fitting a Bayesian model to the population
of current elements across all chains. Updating the proposal is shown to have
no effect on the limiting distribution of each chain, and thus can be continued
indefinitely, unlike the update procedure used in CEAIS or EMAIS.

Let f be the target pdf and let g(x|θ) be a proposal distribution, defined up to
a parameter θ, which is to be updated. Let θ0, θ1, ... be the parameters for the
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sequence of proposals. Suppose we have N parallel chains {X1,j, j = 1, 2, . . .},
. . . , {XN,j, j = 1, 2, . . .}, which we refer to as the sampling chains. Using
the set of current elements (X1,j, . . . , XN,j), we update θj at each step of the
algorithm. That is, after updating each of the N chains, we update the proposal
itself. Thus in effect we cycle through updates for N +1 chains, since θ0, θ1, . . .
may also be regarded as values of an underlying Markov chain, which we refer
to as the parameter chain.

In order to describe the algorithm more precisely and to prove that the lim-
iting distribution of each of the N sampling chains is the target distribution,
we shall use the framework of the Generalized Markov Sampler [18]. Briefly,
the Generalized Markov Sampler involves iterating two steps, known as the
Q-step and the R-step. In the Q-step, a ‘move type’ is selected in accordance
with a transition kernel Q((m, z), (m′, z)) defined on a space M×Z obtained
by augmenting a set of move types M to the target space Z. In the R-step,
a transition of type m′ is performed in accordance with a transition func-
tion R((m′, z), (m′′, z′)), the general formulation of which is described in [18].
In what follows, we particularize the description of the Generalized Markov
Sampler for the problem at hand.

Let X denote the target space, that is, the space on which the target distri-
bution f is defined. Let Θ denote the space of parameters for the proposal
distribution. We may regard the N + 1 parallel chains as a single chain de-
fined on a space Z := Θ × XN . As far as the Generalized Markov Sampler is
concerned, the ‘target space’ is Z. However, this ambiguity should cause no
confusion, as now that we have introduced this notation we shall no longer
use the term ‘target space’.

The Q-step is used to propose either a new element y ∈ X or a new para-
meter θ ∈ Θ. The R-step is used to accept or reject it in accordance with
an acceptance probability. More formally, the Q-step describes a transition
((i, u), z) → ((i′, u′), z), where i, i′ ∈ {0, 1, 2, . . . , N}, u, u′ ∈ X ∪ Θ, i′ = i + 1
or i′ = 0, i = N , z = (θ, x1, x2, . . . , xN),

Q
(
((i, u), z), ((i′, u′), z)

)
=






g(u′ | θ), u′ ∈ X , i′ = i + 1,

i ∈ {0, 1, . . . , N − 1},

h(u′ | x1, x2, . . . , xN ), u′ ∈ Θ, i′ = 0, i = N,

0, otherwise.

The distribution h(u′ | x1, x2, . . . , xN ) is the posterior probability of the para-
meter vector u′ ∈ Θ, treating x1, x2, . . . , xN as data. We consider the special
case X = ℜd for some positive integer d. Then we may use a multivariate
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normal distribution as our proposal:

g(x | θ) = N(x |µ, Σ) ∝ |Σ|−1/2 exp
{
−1

2
(x − µ)T Σ−1(x − µ)

}
.

Using a non-informative prior, as in [9], we obtain the posterior distribution:

h(θ | x1, . . . , xN ) = h(µ, Σ | x1, . . . , xN ) = N(µ | x̄, Σ/N) · Inv-WN−1(Σ |S),

S =
N∑

n=1

(xn − x̄)(xn − x̄)T , x̄ =
1

N

N∑

n=1

xn.

To obtain parameters µ and Σ, we first draw Σ from an Inverse-Wishart
distribution Inv-WN−1(Σ |S), then we draw µ from a Normal distribution
N(µ | x̄, Σ/N). For further details, see [9].

The R-step of the method depends on the stationary distribution of the tran-
sition function Q. We claim that this is:

q((i′, u′), z) =






1

N + 1
g(u′ | θ), u′ ∈ X , i′ ∈ {1, . . . , N},

1

N + 1
h(u′ | x1, x2, . . . , xN ), u′ ∈ Θ, i′ = 0.

The proof follows.

Theorem 1 The distribution q((i′, u′), z) is stationary with respect to Q.

Proof. It is easily shown that

N∑

i=0

Q
(
((i, u), z), ((i′, u′), z)

)
= (N+1)q((i′, u′), z), i′ ∈ {0, 1, . . . , N}, u′ ∈ X∪Θ,

since all but one term in the summation is zero. Also, note that Q
(
((i, u), z), ((i′, u′), z)

)

does not depend on u. Then
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∫
q((i, u), z)Q

(
((i, u), z), ((i′, u′), z)

)
d(i, u)

=
∫

1

N + 1
h(u | z)Q

(
((0, u), z), ((i′, u′), z)

)
du

+
N∑

i=1

∫ 1

N + 1
g(u | z)Q

(
((i, u), z), ((i′, u′), z)

)
du

=
1

N + 1
Q
(
((0, u), z), ((i′, u′), z)

) ∫
h(u | z) du

+
1

N + 1

N∑

i=1

Q
(
((i, u), z), ((i′, u′), z)

) ∫
g(u | z) du

=
1

N + 1

N∑

i=0

Q
(
((i, u), z), ((i′, u′), z)

)

= q((i′, u′), z).

The R-step involves a transition function ((i′, u′), z) → ((i′, u′′), z′) such that
all coordinates of z′ are the same as those of z except for possibly the i′-
th coordinate (remembering that co-ordinate numbering starts from zero).
Recalling that z = (θ, x1, . . . , xN), this transition function takes the form:

R
(
((i′, u′), z), ((i′, u′′), z′)

)
=






αi′(xi, u
′), z′ = (θ, x1, . . . , u

′, . . . , xN ),

u′ ∈ X , i′ ∈ {1, . . . , N},
u′′ = xi,

1 − αi′(xi, u
′), z′ = z, u′ ∈ X ,

i′ ∈ {1, . . . , N}, u′′ = u′,

1, z′ = (u′, x1, . . . , xN),

u′ ∈ Θ, i′ = 0,

0, otherwise,

where

αi′(xi, u
′) = min {̺i′(xi′ , u

′), 1} ,

̺i′(xi′ , u
′) =

f(u′)h(θ | x1, . . . , u
′, . . . , xN)g(xi′ | θ)

f(xi′)h(θ | x1, . . . , xi′ , . . . , xN)g(u′ | θ) .

Note these terms are defined only where u′ ∈ X and i′ ∈ {1, 2, . . . , N}. For
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details of the construction of this transition function, see [18].

Thus, the algorithm consists of the following steps performed iteratively:

Algorithm

Given (x1, . . . , xN ), i, and θ = (µ, Σ) :

(1) Put

i′ =






i + 1, if i ∈ {0, 1, . . . , N − 1}
0, if i = N.

Generate Y ∼ N(y |µ, Σ) if i′ ∈ {1, 2, . . . , N}. Generate Y ∼ N(µ | x̄, Σ/N)·
Inv-WN−1(Σ |S) if i′ = 0.

(2) If i′ ∈ {1, 2, . . . , N}, generate U ∼ U(0, 1) and deliver

xi′ =






Y, if U 6 αi′(xi′ , Y )

xi′ , otherwise,

where
αi′(xi′, y) = min{̺i′(xi′ , y), 1},

with

̺i′(xi′ , y)=
f(y) · N(µ | x̄y, Σ/N) · Inv-WN−1(Σ |Sy) · N(xi′ |µ, Σ)

f(xi′) · N(µ | x̄, Σ/N) · Inv-WN−1(Σ |S) · N(y |µ, Σ)
,

S =
N∑

n=1

(xn − x̄)(xn − x̄)T , x̄ =
1

N

N∑

n=1

xn,

SY = (x1 − x̄Y )(x1 − x̄Y )T + · · · + (xi′−1 − x̄Y )(xi′−1 − x̄Y )T

+ (Y − x̄Y )(Y − x̄Y )T + (xi′+1 − x̄Y )(xi′+1 − x̄Y )T + . . .

+ (xN − x̄Y )(xN − x̄Y )T ,

x̄Y =
1

N
(x1 + · · ·+ xi′−1 + Y + xi′+1 + · · ·+ xN ).

If i′ = 0, put (µ, Σ) = Y .

4 A measure of efficiency

Assume for the time being that x is one-dimensional. We shall consider a mea-
sure of efficiency (see, e.g., [10,20]) that is based on the asymptotic variance
of the sample mean,

x̄ =
1

m

m∑

i=1

x(i),
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where x(1), . . . , x(m) are samples drawn via a MCMC sampler. Then,

Var(x̄) m = σ2
targ

(

1 + 2
m−1∑

i=1

(
1 − i

m

)
̺i

)

≈σ2
targ

(

1 + 2
∞∑

i=1

̺i

)

=: 2 σ2
targ tint,

where σ2
targ is the variance of the target density, ̺i is the autocorrelation of

the Markov chain at lag i, and tint is the integrated autocorrelation time. To
estimate tint we propose the following two approaches.

First,

tint =
1

2
+

∞∑

i=1

̺i ≈
1

2
+

K∑

i=1

̺i =: t
(1)
int ,

where K = min{i : ̺i > 0, ̺i+1 6 0}. In fact, this means that we sum up
positive ̺i until their values become close to 0. More details on a choice of
length K can be found in [6].

Second, it can often be assumed that ̺i decays approximately exponentially
(see, e.g., [20]). It follows that,

|̺i| ∼ exp
{
− i

texp

}
,

where texp is the exponential autocorrelation time. In particular, put

texp =
1

− ln |̺1|
.

When texp is large enough, it follows that

tint ≈
∞∑

i=0

exp
{
− i

texp

}
− 1

2
=

1

1 − exp{−1/texp}
− 1

2
≈ texp =: t

(2)
int .

We may use tint as a measure of efficiency of a MCMC algorithm. One prefers
the algorithm that has the lowest value of tint.

5 Numerical results

Example 1 We consider the following target (see [4]):

f(x) = 0.25 ϕ(x,−6, 2) + 0.7 ϕ(x, 0, 1) + 0.05 ϕ(x, 15, 0.1),

12



where

ϕ(x, µ, σ2) =
1√
2πσ

exp

{

−(x − µ)2

2σ2

}

.

Suppose

g(x) =
3∑

c=1

wc ϕ(x, µc, σ
2
c ),

3∑

c=1

wc = 1.

Put

g0(x) =
1

3
ϕ(x,−10, 4) +

1

3
ϕ(x, 0, 4) +

1

3
ϕ(x, 10, 4).

Using CEAIS with N = 100, we have obtained:

gCE(x) = 0.195 ϕ(x,−6.309, 0.870)+ 0.775 ϕ(x,−0.313, 2.144)

+ 0.030 ϕ(x, 15.179, 0.194).

Using EMAIS with N = 100, we have:

gEM(x) = 0.210 ϕ(x,−6.341, 1.188)+ 0.780 ϕ(x,−0.372, 2.899)

+ 0.010 ϕ(x, 15.032, 1.153).

Table 1 displays the measure of efficiency for these algorithms.

Table 1
Comparison of CEAIS and EMAIS

Proposal g0 gCE gEM

t
(1)
int 4.5576 1.2656 2.5536

t
(2)
int 3.8234 1.0215 1.3235
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0
 g
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Fig. 1. The plots of the target density f(x) and the proposal densities g0(x), gCE(x),
gEM(x)
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Figure 1 shows the plots of the target density f(x) and the proposal densities
g0(x), gCE(x), gEM(x).

In this example, the proposal adopted by CEAIS is somewhat closer to the
target than that adopted by EMAIS. This explains why the efficiency of
CEAIS substantially improves on the efficiency of EMAIS with respect to
both measures of efficiency in Table 1. It may be generally true that CEAIS
performs better than EMAIS, because the CE method maximizes the likeli-
hood, whereas the EM method maximizes the expected likelihood.

Example 2 Consider the unimodal target density proportional to

exp{−x2
1 − x2

2 − x4
1x

4
2}.

Let us consider the following algorithms: BAIS, the Independent Metropolis-
Hastings Algorithm (IMH) with the normal proposal density

g(x1, x2 | δ2) =
1

2πδ2
exp

{
−x2

1 + x2
2

2δ2

}
,

and the Random Walk Metropolis-Hastings (RWMH) based on the same nor-
mal distribution (that is, the Metropolis algorithm with a normal proposal
centred on the current element of the chain and having the same covariance
matrix). In order to evaluate the measures of efficiency, we shall consider the
first component x1, as suggested in [10]. Figure 2 shows the autocorrelations
̺i, where i = 0, 1, . . . , 200 is the lag, for 300 iterations and a burn-in period of
100, sample size N = 50, and δ2 = 2. Note that the autocorrelations first fall
below zero at lags of 7, 9 and 16 for the algorithms BAIS, IMH and RWMH
respectively. We thus set the value K in our first measure of efficiency t

(1)
int to

KBAIS = 6, KIMH = 8 and KRWMH = 15 respectively. To investigate how t
(1)
int

varies with the choice of K, we plotted Figure 3, which shows the curves of

t
(1)
int(k) =

1

2
+

k∑

i=1

̺i

as a function of k for the three algorithms. Note that KBAIS, KIMH and KRWMH

correspond to the maxima of the respective curves, which subsequently tend
to zero as k increases. The fact that this measure of efficiency is so sensitive
to the choice of K makes it seem unappealing, nevertheless it seems clear that
choosing K in the above manner results in a sum over terms in which propor-
tional error is minimized. Figure 4 shows the curves of t

(1)
int , t

(2)
int depending on

sample size N . Clearly, it is not necessary to use large values of N .

Table 2 displays the measure of efficiency for the three algorithms. Observe
that both measures of efficiency are much lower for BAIS than for either IMH
or RWMH with the fixed variances shown. To investigate the optimal value of

14



δ2 for these algorithms, we plotted Figure 5, showing how the values t
(1)
int , t

(2)
int

depend on δ2 under N = 50. We see that IMH has an efficiency comparable
to BAIS if we know the value of δ2 that minimizes some measure of efficiency.
At the same time BAIS usually shows better results if we know nothing about
the optimal values of parameters of the proposal distribution.
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Fig. 2. Curves of autocorrelations
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Table 2
Comparison of MCMC algorithms

IMH RWMH
Algorithm BAIS

δ2 = 2 δ2 = 4 δ2 = 2 δ2 = 4

t
(1)
int 0.8166 1.8632 3.4111 3.5337 4.5746

t
(2)
int 0.6926 1.7650 3.4784 3.5582 4.9604

Since the measures of efficiency for BAIS are less than for IMH and for RWMH,
it appears that BAIS is preferable to either of these samplers for this distribu-
tion. We speculate that this will generally be true for unimodal distributions.
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Example 3 Consider the bimodal target density proportional to

exp{−(x2
1x

2
2 + x2

1 + x2
2 − 8x1 − 8x2)/2}.

 x
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Fig. 6. The contour plot of the bimodal target density

Figure 6 shows the contour plot of the target density.

Let us consider the following algorithms: BAIS, IMH with the normal proposal
density

g(x1, x2 | δ2) =
1

2πδ2
exp

{
−x2

1 + x2
2

2δ2

}
,

RWMH based on the same normal distribution, and CEAIS with the following
proposal density

g(x1, x2) =
2∑

c=1

wc ϕ(x1, x2, µc, Σc), w1 + w2 = 1,

where ϕ(x1, x2, µc, Σc) is a bivariate normal density. Using pre-runs and CEAIS
we get estimators of the parameters:

w1 = 0.5621, w2 = 0.4379, µ1 =




0.4541

3.2189



 , µ2 =




3.3046

0.4943



 ,

Σ1 =




0.3937 −0.6118

−0.6118 1.7682



 , Σ2 =




2.0205 −0.7315

−0.7315 0.4631



 .

As before, we only consider the first component x1. Figure 7 shows the curves
of autocorrelations ̺i, for lags i = 0, 1, . . . , 200, with sample size N = 50. We
ran the algorithms for 300 iterations, using 100 as a burn-in period.
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Table 3 displays the measures of efficiency for these algorithms. We see that
the measures of efficiency for CEAIS are less than for the other algorithms,
and that BAIS also performs well in comparison to the other methods.

Table 3
Comparison of MCMC algorithms

IMH RWMH
Algorithm BAIS

δ2 = 2 δ2 = 4 δ2 = 2 δ2 = 4
CEAIS

t
(1)
int 3.8039 15.8197 12.1685 13.2056 12.5742 1.3776

t
(2)
int 3.4903 13.0056 13.2340 14.2064 15.3989 1.2259
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Fig. 7. Curves of autocorrelations

This example illustrates that if the target density has more than one mode,
CEAIS with a proposal mixture-model (which parameters were estimated by
using pre-runs) is more efficient than other algorithms with a unimodal pro-
posal density. It also illustrates that BAIS can perform quite efficiently for a
bimodal distribution, even with a unimodal proposal.

Example 4 In this example, we apply BAIS to an important problem that
arises in Comparative Genomics. Our intent is to demonstrate the applicabil-
ity of the method to problems of genuine significance. Specifically, the problem
is to estimate the proportion of a given genome that is conserved in two lin-
eages. One way in which this problem is approached is to first align the two
genomes and then perform a “sliding window” analysis — a form of Loess
analysis. The alignment is divided into contiguous segments of a fixed width
or “window length” and the proportion of matches is determined for each win-
dow. Each window thus produces a single data point in the interval [0,1]. The
proportion of the genome that is conserved can then be estimated by fitting a
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mixture model to these data points and estimating the mixture proportion of
the most slowly evolving component. This approach has been used to estimate
the proportion of the human genome that is conserved in mice to be about 5%
[30]. Here we fit a three component model to data obtained by aligning the
two fruit fly species Drosophila melanogaster and Drosophila simulans, using
200 as the window length.

Let y = (y1, . . . , yM) ∈ [0, 1]M be given data. Denote θ = (π1, π2, α1, β1,
α2, β2, α3, β3), π1 > 0, π2 > 0, π1 + π2 6 1, αi > 0, βi > 0, i = 1, 2, 3. Put

h(x | θ) = π1B(x |α1, β1) + π2B(x |α2, β2) + (1 − π1 − π2)B(x |α3, β3),

where B(· |α, β) is a Beta density. Suppose that (π1, π2) is uniformly distrib-
uted, and parameters αi > 0, βi > 0, i = 1, 2, 3, are exponentially distributed.
Then the target

f(θ | y) ∝
M∏

m=1

h(ym | θ) exp{−α1 − β1 − α2 − β2 − α3 − β3}.

Using BAIS we consider an 8-dimensional normal proposal distribution. We
start with

µ = (0.33, 0.33, 100, 100, 100, 100, 100, 100)T,

Σ = (0.33, 0.33, 50, 50, 50, 50, 50, 50) · I8,

where I8 is the 8 × 8 identity matrix. In fact, the limiting distribution is
independent of the initial values of µ and Σ, and they should not greatly
affect the samplers efficiency. We ran the algorithm for 7000 iterations, using
N = 50 chains. We have obtained the final value

θ̂ = (0.4307, 0.0081, 2.5950, 30.2073, 28.7872, 43.4301, 2.5360, 71.0390).

Figure 8 shows the three components of the mixture, normalized to π1, π2, and
π3 = 1−π1 −π2 respectively. Figure 9 shows the frequency histogram and the
density h(x | θ̂). Figure 10 plots the log-likelihood values for 7000 iterations of
the algorithm, showing rapid convergence to an optimal value.
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Fig. 8. The three components of the mixture, normalized to π1, π2, and π3 respec-
tively. Note that one of the groups has a mixture proportion of only 0.0081 and is
only barely visible in the figure.
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20



0 1000 2000 3000 4000 5000 6000 7000
−16

−14

−12

−10

−8

−6

−4

−2

0

2
x 10

6

iteration

lo
g−

lik
el

ih
oo

d

Fig. 10. The curve of log-likelihood

For the purpose of this example, we assume that the conserved fraction of the
genome corresponds to the most slowly evolving component of the mixture
model. The mixture proportion of this component is 0.5612. Thus approxi-
mately 56% of the aligned portion of the D. melanogaster genome is conserved.
This figure is concordant with an imprecise estimate obtained by Andolfatto
[2] via an entirely different approach. It is somewhat less than, but still com-
parable to, a currently unpublished estimate obtained by author Keith using
a much more difficult and computationally intensive segmentation method.

6 Conclusion

In this paper we have introduced two new adaptive MCMC methods called
Adaptive Independence Samplers. The examples reported in the paper show
that the samplers can be superior to classical Metropolis-Hastings algorithms
such as the Independent Metropolis-Hastings algorithm and the Random Walk
Metropolis-Hastings Algorithm in terms of efficiency and convergence proper-
ties. The new methods are easy to implement.

In the first approach (CEAIS), where we use pre-runs, the adaptation takes
place only in an initial phase and afterwards the proposal density is fixed.
Therefore the convergence is ensured by the basic theory. One advantage of
this approach is the convenient way in which update formulae can be obtained
for the adaptive phase. Another advantage of this approach is that it lends
itself easily to the use of a mixture model proposal density. Unsurprisingly,
we found that the AIS with a mixture model proposal is more effecient than
unimodal proposals in the case of a multimodal target density.
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In the second, Bayesian, approach (BAIS) we have proved, using the General-
ized Markov Sampler, that the target distribution is the limiting distribution
of the corresponding process. This is an important feature, as it means that
the adaptive phase can be continued indefinitely, and the user does not have
to decide at what point to terminate the adaptive phase. However, the current
implementation of BAIS does not easily accomodate a mixture model proposal
in the way that CEAIS does. Thus it has some of the same disadvantages as
other methods with unimodal proposals when attempting to sample from a
multimodal target density. Nevertheless, we found that BAIS performed well
even for a bimodal distribution.

A possible drawback of our algorithms is that for certain problems the compu-
tational cost of performing pre-runs in CEAIS or of running multiple chains in
BAIS may offset the benefits of accelerated convergence and mixing. However,
this is an issue shared with all adaptive MCMC algorithms. Adaptive methods
are not appropriate for such problems, and the MCMC practitioner must use
his or her judgement to decide when adaptive methods will be advantageous.
General rules for deciding when adaptive techniques should be implemented
are a substantial matter for further research.

The strength of adaptive MCMC algorithms lies in the fact that parameters
of the proposal distribution can be updated to improve the efficiency and
convergence of the sampler, whereas the classical MCMC algorithms have
the parameters of the proposal fixed. In this paper, we have described two
new adaptive MCMC methods based on the Independence Sampler, both of
which provide simple, natural, efficient and easily implemented procedures for
updating the proposal.
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