
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information
Sciences

1-1-2008

A scalable lightweight distributed crawler for crawling with limited A scalable lightweight distributed crawler for crawling with limited

resources resources

Milly W. Kc
University of Wollongong, millykc@uow.edu.au

Markus Hagenbuchner
University of Wollongong, markus@uow.edu.au

Ah Chung Tsoi
Hong Kong Baptist University, act@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers

 Part of the Physical Sciences and Mathematics Commons

Recommended Citation Recommended Citation
Kc, Milly W.; Hagenbuchner, Markus; and Tsoi, Ah Chung: A scalable lightweight distributed crawler for
crawling with limited resources 2008, 663-666.
https://ro.uow.edu.au/infopapers/1672

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F1672&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F1672&utm_medium=PDF&utm_campaign=PDFCoverPages

A scalable lightweight distributed crawler for crawling with limited resources A scalable lightweight distributed crawler for crawling with limited resources

Abstract Abstract
Web page crawlers are an essential component in a number of Web applications. The sheer size of the
Internet can pose problems in the design of Web crawlers. All currently known crawlers implement
approximations or have limitations so as to maximize the throughput of the crawl, and hence, maximize
the number of pages that can be retrieved within a given time frame. This paper proposes a distributed
crawling concept which is designed to avoid approximations, to limit the network overhead, and to run on
relatively inexpensive hardware. A set of experiments, and comparisons highlight the effectiveness of the
proposed approach.

Keywords Keywords
scalable, lightweight, distributed, crawler, for, crawling, limited, resources

Disciplines Disciplines
Physical Sciences and Mathematics

Publication Details Publication Details
Kc, M. W., Hagenbuchner, M. & Tsoi, A. (2008). A scalable lightweight distributed crawler for crawling with
limited resources. IEEE/WIC/ACM international Conference on Web Intelligence and Intelligent Agent
Technology (pp. 663-666). Sydney, Australia: IEEE Computer Society.

This conference paper is available at Research Online: https://ro.uow.edu.au/infopapers/1672

https://ro.uow.edu.au/infopapers/1672

A Scalable Lightweight Distributed Crawler for crawling with limited resources

Milly Kc
University of Wollongong

Wollongong, Australia
millykc@uow.edu.au

Markus Hagenbuchner
University of Wollongong

Wollongong, Australia
markus@uow.edu.au

Ah Chung Tsoi
Hong Kong Baptist University

Hong Kong
act@hkbu.edu.hk

Abstract
Web page crawlers are an essential component in a number
of web applications. The sheer size of the Internet can pose
problems in the design of web crawlers. All currently known
crawlers implement approximations or have limitations so
as to maximize the throughput of the crawl, and hence, max-
imize the number of pages that can be retrieved within a
given time frame. This paper proposes a distributed crawl-
ing concept which is designed to avoid approximations, to
limit the network overhead, and to run on relatively inex-
pensive hardware. A set of experiments, and comparisons
highlight the effectiveness of the proposed approach.

1 Introduction
Information retrieval through crawling the Internet is

commonly performed for a variety of tasks, for instance:
Research purposes: Snapshots of the Internet are often
created for statistical or other research purposes. A snap-
shot provides a static dataset which greatly simplifies the
analysis, or the development of new methods, compared to
the evaluation on the dynamic Internet.
Web search services: The crawler is one of the core mod-
ules of Internet search engines. Google, for example, con-
tinuously retrieves very large portions of the Internet. These
pages, once crawled, are indexed in a large database and are
then processed by a variety of filters and ranking methods.

Crawling is not a complex process, however, challenges
often arise during a crawl due to the amount of data, the
variation in the types of information crawled, the dynamic
nature of the web, and communication disturbances. There
have been much research efforts into crawling methods
[1, 2, 3, 5, 6], with particular focus on improving the crawl-
ing efficiency; as efficient information retrieval methods
are crucial in obtaining a reasonably large amount of data
within a short time frame from the ever expanding World
Wide Web. It has been shown that it is feasible, using a stan-
dalone system, to retrieve a large amount of data from the
Internet [6] with the support of high-end hardware and large
supply of resources, e.g. high network bandwidth. How-
ever, it is not sufficient to address crawling efficiency alone;
the crawling effectiveness should also be addressed for the

following reasons:
1.) It is evident that there is a large amount of data duplica-
tion due to mirror sites, dynamic scripts, links in directory
structure and other replication utilities. This data duplica-
tion takes up a crawler’s processing time and resources un-
necessarily; it could even trap a crawler in an infinite loop.
An effective crawler should exhibit mechanism to detect
and avoid this. However, there is a trade-off between the
amount of processing the crawler is required to perform,
and its crawling efficiency. Therefore current crawlers do
not directly address data duplication issues. The crawler
proposed in this paper aims at avoiding crawling duplicated
data without affecting the crawling efficiency significantly.
2.) Researchers often have limited resources available to
support information retrieval experiments. A crawler that
supports information retrieval tasks with minimal resource
requirement would be of value. Although this can be more
challenging in a distributed crawler, as communication be-
tween nodes is required, it is shown in this paper that it
is possible to make much more efficient use of network
bandwidth when compared to a stand-alone crawler. A dis-
tributed approach allows parallelism, and hence, this can
reduce dependencies on powerful computing resources.

A number of challenges with web crawling and some
novel approaches are addressed in Section 2. The focus is
on crawling effectiveness rather than on crawling efficiency.
Evaluations are made according to the amount of resources
consumed during the course of a crawl, and the usefulness
of the crawling result. The crawler proposed in the paper
is named LiDi Crawl, and is described in some detail in
Section 3. Some experimental results are presented and an-
alyzed in Section 4. Finally, Section 5 offers a conclusion.

2 Crawling challenges
The unregulated nature of the Internet has introduced a

number of challenges for web crawling. Some of these chal-
lenges are well-known, such as leniency for HTML syntax,
bad responses from domain hosting server, etc. This section
addresses some of the less frequently discussed challenges
encountered during a crawl, and proposes some novel solu-
tions which help overcome the problem.
Non-terminating crawling loop: Non-terminating crawl-
ing loop can be caused by symbolic links, server-side

2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-3496-1/08 $25.00 © 2008 IEEE

DOI 10.1109/WIIAT.2008.234

663

2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-3496-1/08 $25.00 © 2008 IEEE

DOI 10.1109/WIIAT.2008.234

663

scripts, web spam and a virtually unlimited number of host-
names per domain. This is a serious issue, as retrieving
multiple copies of the same page can significantly waste
network resources, and processing time.

The most commonly adopted solution is to restrict the
directory depth (i.e. [1, 4, 5]), or to limit the number of web
pages retrieved from a site (see e.g. [6]). Although these ap-
proaches prevent crawling in a non-terminating loop, they
do not prevent the crawler from retrieving multiple copies
of a page. The solution proposed in this paper is to detect
duplicated web pages by firstly comparing directory struc-
ture and then find the degree of similarity in the content for
suspected pages. Pages with more than 95% of content sim-
ilarity would then be labeled as duplicated page. If multiple
web pages from a domain or a directory have been identi-
fied as duplicated copies, the site (or directory) is labeled
as a mirror, in which case the crawler would not crawl fur-
ther into the domain or directory. It will be shown that this
approach is very effective.
DNS lookup time consumption: It is important to min-
imize DNS lookup to allow optimal crawling result. Tests
show that the average time taken for the retrieval of an IP ad-
dress from a local database is ≈ 0.00158 seconds, whereas
the average retrieval time of an IP address from the DNS
server is on an average 1.661 seconds 1. Given that the large
majority of URLs require a DNS lookup, the speed impact
is significant. The proposed approach stores the lookup re-
sults in a central location, and a DNS lookup is only con-
ducted when an unseen domain is encountered. Note that
the approach is more efficient than DNS caching by an op-
erating system. This is due to the fact that the approach ex-
ploits the working of the proposed crawler which engages
a depth-first crawling approach; it crawls into a domain be-
fore crawling other domains. It can be assumed that the
DNS rule is unlikely to change during the crawl of a do-
main, and hence, the proposed approach is not required to
regularly check for updates of a DNS entry.
File type misinterpretation: File extension, or the http
response header provide basic but important information
about the content of a page, especially when efficiency
and appropriate resource allocation are the major crawl-
ing concerns. For example, the “.html” extension, or the
file header content description “html/text” indicates a static
web page most likely to be constructed by ASCII charac-
ters, whereas the “.exe” extension, or associated file header
content description indicates an executable file of binary
content. These file type information help crawlers to de-
termine whether a file is worth crawling before its actual
retrieval. In recent years, as part of the dynamics of the In-
ternet, leniency is introduced to web hosting servers in order
to accommodate the rapidly increasing variety of file types.
As a result, file extensions and file header description pro-
vide a less accurate indication of the file type, and therefore

1Different hardware might have different figures for these retrievals of
IP addresses. But the relative speedup as shown remains valid.

older versions of crawler can fail more often due to file type
mis-interpretation. A proposed solution is to monitor data
contained in a page while it is loaded to confirm the file
type. The loading of the file is interrupted immediately if
retrieved data do not match the indicated file type. This ap-
proach has been particularly effective with domains which
create content dynamically.

A crawler designed to address these issues, and to pro-
vide an effective and low cost solution to crawling is de-
scribed in Section 3.

3 The proposed LiDi Crawl crawler
LiDi Crawl (short for Lightwight Distributed Crawler)

is a centralized distributed crawling application, and com-
prises of a central node (the master) that manages the indi-
vidual crawling components (the slaves). LiDi Crawl incor-
porates the approaches mentioned in Section 2, therefore is
addressing its goal on effectiveness. The distributed design
described in the following reduces dependency on expen-
sive resources (hardware and network).

LiDi Crawl can be executed either locally on a single
machine, or as a distributed crawling application with ma-
chines located globally. For both of these configurations,
there are a number of crawling options that can be used.
URL only method. The crawling component retrieves a
set of pages for a given set of URL provided by the master.
This is a common strategy for distributed crawlers but the
communication overhead is usually high for this method.
Rule-based method. The proposed crawler assigns a set of
seed pages belonging to one domain to an available slave
component. Efforts are made to allocate domains to a slave
which is the closest physically located relative to the slave.
This reduces network traffic and costs by aiming at crawl-
ing locally available sources (causing costs for local or na-
tional rather than international internet traffic). The slave
will then crawl all pages in that domain which are reach-
able from the given set of seeds. This approach can greatly
reduce the network overhead and costs due to (a) the mas-
ter is only required to send a relatively small set of seed
pages, and the IP address of the associated domain, (b) the
slave crawls pages from a domain which is located physi-
cally close. In the best case, the crawler and affected web
server both reside on the same local network. The slaves
compress the crawled data using the well-known z-lib li-
brary before sending it back to the master, and hence, the
traffic at the master node is by a magnitude smaller when
compared to stand-alone crawlers. This approach provides
a clear partitioning of the Internet into domains which eases
the assignment task to the crawlers, which can crawl inde-
pendently once the set of seeds is received. Note that the
slaves extract hyperlink information embedded in the pages
retrieved. These are compressed and returned to the master
so as to allow for the maintenance of a central database con-
taining complete information about the current knowledge
of the Internet at any given time.

664664

The master maintains information about known domains
including domain name, IP address, and status (either
scheduled, currently being crawled, or crawled). The mas-
ter is the only location at which DNS look-up is performed,
and the result of the DNS look-up is cached and passed to
the crawling components, so that no crawling components
need to perform a DNS look-up. The central node is also
the only node with knowledge of all the URLs, as this in-
formation is required for the allocation of seed URLs to the
participating slaves.

The independent crawlers (slaves) have several features
that are important for an effective crawling process. These
include compression of data on the fly to decrease storage
requirement, loop detection to reduce wasting resources on
duplicated data. The latter allows crawling to an unlim-
ited directory depth. To the best of our knowledge, there
is no other general purpose crawler armed with such a fea-
ture. State safety allows slaves to halt crawling at any time
then continue from where it left off, and fault tolerance to
prevent loss of data in cases of communication interruption
with the master.

The proposed crawler is scalable in that many slaves can
be added to participate in crawling for the retrieval of a large
amount of data. Assuming that the slaves reside on separate
standard machines with access to acceptable network band-
width, the overall performance is expected to be as many
times faster as the number of slaves, even with a large num-
ber of slaves, because the communication with the central
node (master) is minimal. “Light weight” here refers to the
impact of the crawling application on resources, where ded-
icated super-computer and high bandwidth are not necessi-
ties, in contrast to e.g. [6].

4 Experiments
During the development of the crawler, several experi-

ments were conducted to observe its performance. In par-
ticular, experiments were conducted to observe the amount
of improvement in crawling efficiency under a distributed
setting, and the degree of crawling effectiveness using con-
tent based depth restriction.
Impact on network and hardware resources: It is com-
monly believed that a distributed system is more efficient
than a single sequentially executed crawling process be-
cause a distributed system allows multiple processes to run
simultaneously over a number of hardware locations. How-
ever, a distributed system also has drawbacks. The manage-
ment and communication between the processes may result
in a complex system that requires additional tasks that it is
no longer efficient. The tests carried out aim to identify the
difference in crawling performance between a single pro-
cess and a distributed crawling application. An experiment
aimed to identify the threshold point where it is no longer
beneficial to crawl in parallel.

The crawling slaves have a “polite” feature to avoid over-
loading servers with requests, which means, there are delays

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 1 2 3 4 5 6 7 8 9 10

Cr
aw

lin
g

th
ro

ug
hp

ut

Number of crawlers

Figure 1. Crawling throughput versus the
number of slaves crawling the same domain.

in between the crawling of each page. Since it was not pos-
sible to access a domain host server’s performance statistics
while crawling was taking place, an attempt was made to
increase the number of total processes that is crawling the
same domain, to observe the likelihood of the crawling task
congesting the network for the hosting domain. For this ex-
periment, a number of tests were run on different days of
the week and at different times of the day, and for various
numbers of simultaneous crawlers. Figure 1 shows the min,
max, and average throughput values for this test.

Figure 1 shows that in the best case (max throughput is
obtained when server is not busy serving other users during
a test) there is no significant decrease in crawling efficiency.
There is only a slight decrease when the number of simulta-
neous crawlers reaches 9 and 10. However, in the worst case
(i.e. server is busy) the throughput can decrease quite dra-
matically with an increase of simultaneous crawler. Thus,
the impact of the crawler on the hosting domain is heavily
dependent on the network condition at the time.

Furthermore, in the graph, a trend of gradual decrease of
the average throughput seems to form with the increasing
number of crawlers, this decrease is more apparent for 8 or
more crawlers. Considering the scale of the throughput in
the graph, this decrease in the average throughput is not sig-
nificant, and shows that even with 10 crawlers all accessing
the same hosting domain simultaneously, it would not cause
significant network congestion.

For a second test, a set of domains is crawled using a
varying number of slaves running on the same machine.
The domains chosen are located either local, domestic,
of international. This is to investigate the impact of the
crawlers on resources available to a (slave) machine, and
to investigate the scalability when considering a single ma-
chine only. The resources monitored are CPU load, and
network bandwidth. The result is shown in Table 1.

Note that the slaves engage a “server friendly” crawling
technique by pausing 1.8 seconds between the retrieval of
pages. Thus, 1.8 seconds can be deducted from the times
indicated in Table 1 in order to obtain the actual time re-
quirement for loading, hyperlink extraction, and data com-

665665

Table 1. Throughput vs. number of slaves.
Locality 1 slave 2 slaves 3 slaves 4 slaves
Local 2.507 sec/pg2.549 sec/pg2.571 sec/pg2.578 sec/pg
Domestic2.815 sec/pg2.761 sec/pg2.800 sec/pg2.848 sec/pg
Interntl. 3.248 sec/pg3.086 sec/pg3.116 sec/pg3.131 sec/pg

pression. It was observed that during data compression that
the CPU is fully utilized albeit for a very short time. On
average, the CPU load was observed to be about 15% on
a 2GHz intel based CPU. It can be observed from Table 1
that when using a single slave in crawling web sites within
the same locality (country) or internationally is slower than
using 2 slaves in a distributed system.
Effectiveness: Page redirections, domain mirroring, sym-
bolic links within the domain structure can all result in
redundant web pages. The amount of resource saved by
avoiding crawling duplicated web pages is dependent on the
directory structure of each domain. This focus of retrieving
the complete set of unique web pages within a domain dur-
ing crawling is for achieving effective crawling. In a test
conducted on www.crown.net - a domain with hidden redi-
rections demonstrated the extent of redundancy reduction
that could be achieved using the recursion detection fea-
ture in crawling. During the test, crawling was conducted
twice, once with the fixed-depth set to 10, another with the
recursion detection feature proposed in Section 2. The fixed
depth crawling took a little over 34 hours, crawling 26,442
pages, whereas the proposed recursion detection crawling
only took about 8 hours to crawl 8,180 pages, eliminating
crawling of 18,262 redundant web pages. Therefore, the re-
duction that can be obtained using the proposed recursion
detection is significant.

In another test, the effectiveness of crawling was exam-
ined from a different perspective by focusing on crawling
coverage. This is to assess the proposed recursion detection
approach. For this experiment, we considered the domain
www.popularmechanics.com which is found to use deep di-
rectory structures extensively. In the test, 37,165 web pages
were crawled, and 24,775 of them have URLs with a depth
of more than 10. This finding shows that common fixed-
depth crawlers would miss all these unique web pages.

Most crawlers use a fixed-depth method of crawling,
where depth is set to 10 or 11 (eg. Google’s crawling agent).
This renders such crawlers clueless to whether the web page
belongs to a recursive directory, a mirrored directory, dy-
namically created redundant content, or genuine content.
One may argue that the amount of unnecessary data ob-
tained through crawling recursive directories, up to a fixed
depth, is insignificant. In a dataset crawled in December
2005 using a fixed-depth approach where depth restriction
was set to 10, it was found that 8.95% of crawled pages
were duplicates. The proposed approach of loop (and mir-
ror) detection eliminates almost entirely the problem at a
cost of 2 milliseconds of CPU time per page on average.

Comparisons: The crawler’s effectiveness is examined us-
ing precision. Crawling precision is calculated by divid-
ing the number of unique pages by the total number of web
pages retrieved by the crawler. It has been noted that there
is a trade-off among crawling speed, precision and recall.

A recently proposed crawler [6] reported a crawling pre-
cision of 0.16. This low precision may be due to its opti-
mization towards crawling at maximum speed. A system
proposed in [1] produced a precision of 0.2569. The LiDi
Crawl is able to achieve a precision of 0.8371. This demon-
strates the effect of the loop and duplication detection, and
file type misinterpretation meassures proposed in this pa-
per, and was achieved after having crawled over 27 million
pages. Although duplicated data is avoided, the precision
still cannot achieve the perfect 1. This is because suspected
pages, although not stored, still need to be retrieved in order
to verify its uniqueness. An entire mirroring site or repli-
cated directory will only be avoided once 3 duplicated web
pages are identified. Nevertheless, it is observed that the
crawling precision achieved by LiDi Crawl is significant.

5 Conclusion
The crawler implemented for the research project fo-

cuses on crawling effectiveness for the minimization of re-
source consumption. The result is a scalable, effective and
reasonably efficient crawling application. As the exper-
imental results show, the features in LiDi Crawl signifi-
cantly improves the completeness and accuracy of crawling
by minimizing wastage on redundant crawling. The recur-
sion detection feature in LiDi Crawl is an important addition
that does not exist in other known crawlers. It was shown
that recursion detection method outperforms its fixed-depth
counterpart in 3 major aspects: effectiveness, redundancy
reduction, and retrieval coverage.

References
[1] P. Boldi, B. Codenotti, M. Santini, and S. Vigna. Ubicrawler:

A scalable fully distributed web crawler. In AusWeb ’02: Pro-

ceedings of the 8th Australian World Wide Web Conference,
Sunshine Coast, Queensland, July 2002.

[2] J. Cho and H. Garcia-Molina. Parallel crawlers. In WWW ’02:

Proceedings of the 11th International Conference on World

Wide Web, Hawaii, USA, May 2002.
[3] J. Edwards, K. McCurley, and J. Tomlin. An adaptive model

for optimizing performance of an incremental web crawler. In
WWW ’01: Proceedings of the 10th International Conference

on World Wide Web, Hong Kong, May 2001.
[4] Google Inc. Google webmaster central blog: Official

news on crawling and indexing sites for the google in-
dex. [online] http://googlewebmastercentral.blogspot.com/-
search/label/crawling and indexing, 2008.

[5] A. Heydon and M. Najork. Mercator: A scalable, extensible
web crawler. World Wide Web, 2(4):219–229, 1978.

[6] H.-T. Lee, D. Leonard, X. Wang, and D. Loguinov. Irlbot:
Scaling to 6 billion pages and beyond. In WWW ’08: Pro-

ceedings of the 17th International Conference on World Wide

Web, pages 427–436, Beijing, china, April 2008.

666666

	A scalable lightweight distributed crawler for crawling with limited resources
	Recommended Citation

	A scalable lightweight distributed crawler for crawling with limited resources
	Abstract
	Keywords
	Disciplines
	Publication Details

	A Scalable Lightweight Distributed Crawler for Crawling with Limited Resources

