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On Binary Reflected Gray Codes and
Functions

Martin W. Bunder, Keith P. Tognetti and Glen E. Wheeler
School of Mathematics and Applied Statistics

University of Wollongong
Wollongong NSW 2522 AUSTRALIA
email: martin bunder@uow.edu.au

Abstract

The Binary Reflected Gray Code function b is defined as follows: If m is a
nonnegative integer, then b(m) is the integer obtained when initial zeros are omitted
from the binary reflected Gray code of length m.

This paper examines this Gray code function and its inverse and gives simple
algorithms to generate both. It also simplifies Conder’s result that the jth letter of
the kth word of the binary reflected Gray code of length n, is(

2n − 2n−j − 1
b2n − 2n−j−1 − k

2c

)
mod 2,

by replacing the binomial coefficient by⌊
k − 1

2n−j+1
+

1
2

⌋
.

1 Introduction

A binary Gray code of length n is a sequence s0, s1, . . . , s2n−1 of the 2n distinct n-bit
strings (or words) of 0s and 1s, with the property that each si differs from si+1 in only
one digit. Gray codes were first designed to speed up telegraphy, but now have numerous
applications such as in addressing microprocessors, hashing algorithms, distributed sys-
tems, detecting/correcting channel noise and in solving problems such as the Towers of
Hanoi, Chinese Ring and Brain and Spinout. Cyclic binary Gray codes of length n also
describe Hamiltonian paths around an n-dimensional hypercube.

A particular Gray code, the binary reflexive Gray code of length n, represents the integers
0 to 2n − 1, as n-bit strings s0, s1, . . . , s2n−1. We will write b(m) for sm represented as an
integer; b(m) will be independent of n.

In this paper we study the function b, its orbits and the decoding function b−1, and give
new simple methods for evaluating b(m) and b−1(m).
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One result, in Theorem 6(ii), is that:

(b(m))i =
⌊

m

2i+1
+

1

2

⌋
mod 2

(where ni denotes the coefficient of 2i in the binary expansion of n); this is a major
simplification of a result of Conder in [2].

Also we show that b(m) can be represented using Nim sums.

2 Binary Reflexive Gray Codes

Table 1 below will help to illustrate the construction of the Binary Reflextive Gray Code
(BRGC) of any length n. Decimal values of m and of the BRGC of m, written as b(m),
are also given.

Table 1

m m in binary BRGC of m b(m)
0 0 0 0
1 1 1 1
2 10 11 3
3 11 10 2
4 100 110 6
5 101 111 7
6 110 101 5
7 111 100 4

The initial line, representing: 0 is the BRGC (of length 1) of 0, is given. Further lines are
then generated by drawing (for successively k = 0, 1, 2, . . . , n−1) a line below m = 2k−1
and doing a reflection about the line of all the numbers in the BRGC of m column. Then
2k (i.e. a 1 in the currently empty k+1th place) is added. Finally, after the k = n−1 case
of this algorithm, initial 0s can be added to make the words of length n, giving Binary
Reflexive Gray Codes of length n (BRGC(n)). For each n, the top half of the table for
the BRGC(n) of m (that is for 0 ≤ m < 2n−1), with the initial zero deleted, will show the
BRGC(n− 1) of m.

Table 1, once the initial 0s are added, gives BRGC(3).

3 The Function b

Clearly from the above description b is given by:

Definition 1 b(0) = 0, b(2k + i) = b(2k − i− 1) + 2k (0 ≤ i < 2k).

The Gray Code properties, given this definition, will be proved in Section 4. For this we
need some notation and some lemmas.
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Notation We will sometimes write a nonnegative integer m as mkmk−1 . . . m0 where mi

(0 or 1) is the coefficient of 2i in the binary expansion of m. We assume mk = 1 unless
k = 0 and m0 = 0. If k > 0 we will let mp denote the first 0 (if any) from the left in
mkmk−1 . . . m0.

Lemma 1 (i) b(mkmk−1 . . . m0) = 2k + 2p + b(mp−1 . . . m0).
(ii) If mk = mk−1 . . . = m0 = 1 then b(mkmk−1 . . . m0) = 2k, that is

b(2k+1 − 1) = 2k for all k ≥ 0.

Proof By Definition 1:

(i) b(2k + 2k−1 + . . . + 2p+1 + mp−12
p−1 + . . . + m0)

= 2k + b(2k − 2k−1 . . .− 2p+1 −mp−12
p−1 − . . . m0 − 1)

= 2k + b(2p + 2p −mp−12
p−1 − . . .−m0 − 1)

= 2k + 2p + b(mp−12
p−1 + . . . + m0).

(ii) b(2k + 2k−1 + . . . + 2 + 1) = 2k + b(2k − 2k−1 − . . .− 1− 1)
= 2k + b(0) = 2k.

Corollary 2 If 2k − 2p+1 ≤ j < 2k − 2p, then b(2k + j) = b(j + 2p+1 − 2k) + 2p + 2k.

Corollary 3 If 0 ≤ j < 2k−1, then b(2k + j) = b(j) + 2k + 2k−1.

Lemma 4 If 2k ≤ m < 2k+1 then 2k ≤ b(m) < 2k+1.

Proof By an easy induction, using Lemma 1.

Lemma 5 (i) If 0 ≤ p < k and 2k − 2p+1 ≤ j < 2k − 2p, then

(a) If i = k or p, b(2k + j))i = 1.

(b) If p < i < k, (b(2k + j))i = 0.

(c) If i < p, (b(2k + j))i = (b(j))i.

(ii) If j = 2k − 1, then (b(2k + j))k = 1, while (b(2k + j))i = 0 for i < k.

Proof (i) (a) and (b) follow from Corollary 2 and Lemma 4.

(c) If i < p = k − 1, by Corollary 3

(b(2k + j))i = (b(j))i.

If i < p < k−1 and 2k−2p+1 ≤ j < 2k−2p we have 0 ≤ 2k−1−2p+1 ≤ j−2k−1 < 2k−1−2p

and by Corollary 2:

b(j) = b(2k−1 + (j − 2k−1))

= 2k−1 + 2p + b(j + 2p+1 − 2k)

b(j) + 2k−1 = b(2k + j).

So if i < p < k − 1, then (b(j))i = (b(2k + j))i.
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(ii) By Lemma 1(ii).

The following theorem gives three ways of quickly evaluating b(m).

Theorem 6 For m ≥ 0,

(i) (b(m))i = (m + 2i)i+1

(ii) (b(m))i = b m
2i+1 + 1

2
c mod 2

(iii) (b(m))i = (mi+1 + mi) mod 2.

Proof (i) Let 0 ≤ m < 2k+1, then by Lemma 4, 0 ≤ b(m) < 2k+1 and if i > k,
(m)i = (b(m))i+1 = 0.

We now assume i ≤ k and proceed by induction on m.

Case 1 m = 0 (b(0))i = 0i = 0 = (0 + 2i)i+1.

Case 2 m = 2k+1 − 1, k ≥ 0.

m + 2i = 2k+1 + 2i−1 + 2i−2 + . . . + 1

so (m + 2i)i+1 = 0 if i 6= k,

(m + 2k)k+1 = 1

so we have the result.

Case 3 m = 2k + j where 2k − 2p+1 ≤ j < 2k − 2p and 0 ≤ p < k

By Lemma 5(i)(a)

(b(m))k = 1 = (2k + j + 2k)k+1

(b(m))p = 1 = (2k + j + 2p)p+1

as 2k+1 − 2p ≤ 2k + j + 2p < 2k+1.

By Lemma 5(i)(b) if p < i < k,

(b(m))i = 0 = (2k + j + 2i)i+1

as 2k+1 + 2i − 2p+1 ≤ 2k + j + 2i < 2k+1 + 2i − 2p.

By Lemma 5(i)(c) if i < p, by the induction hypothesis:

(b(m))i = (b(j))i = (j + 2i)i+1 = (j + 2k + 2i)i+1

as i < p < k.

(ii) By (i) and ni+1 = b n
2i+1 c mod 2.

(iii) By (i) if mi = 0, (b(m)) = mi+1 = mi+1 + mi mod 2.

If mi = 1 (b(m))i = (mi+1 + 1) mod 2

4



= (mi+1 + mi) mod 2.

Note that, in Sharma and Khanna [5], part (ii) of our Theorem 6 is used as the
definition of the BRGC; our Definition 1 is later proved as a theorem.

4 b has BRGC properties

We require b to be a one to one and onto map and, for each m, b(m) and b(m + 1), in
binary notation (i.e. the BRGC of m and m + 1) to differ by one digit.

Lemma 7 b : {0, 1, . . . , 2n − 1} → {0, 1, . . . , 2n − 1} is one to one and onto.

Proof We prove by induction on i that

b(k) = b(m) ⇒ kn−i = mn−i

which proves that b is one to one. It then follows by Lemma 4 that b is onto.

i = 0 If b(k) = b(m) by Theorem 6 (i) and m, k < 2n,

(b(k))n = (b(m))n = (m + 2n)n+1 = (k + 2n)n+1 = 0 = mn = kn.

i > 0 We assume b(k) = b(m) and kn−i+1 = mn−i+1.

By Theorem 6 (iii)

kn−i+1 + kn−i = (mn−i+1 + mn−i)mod 2

and so kn−i = mn−i.

Lemma 8 There is exactly one i such that (b(m))i 6= (b(m + 1))i.

Proof By Theorem 6 (ii) and the fact that⌊
m

2i+1
+

1

2

⌋
and

⌊
m + 1

2i+1
+

1

2

⌋
cannot differ by more than 1, we have (b(m))i 6= (b(m))i+1 if and only if⌊

m + 1

2i+1
+

1

2

⌋
−

⌊
m

2i+1
+

1

2

⌋
= 1.

Letting m = 2i+1` + k where 0 ≤ k < 2i+1 this condition becomes⌊
k + 1

2i+1
+

1

2

⌋
−

⌊
k

2i+1
+

1

2

⌋
= 1,

which holds if and only if k = 2i − 1, that is, if and only if m + 1 = 2i(2` + 1).

Note The i for which (b(m))i 6= (b(m + 1))i is the highest power of 2 to divide m + 1.
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5 BRGC Algorithms

A standard algorithm (given in Nashelsky [4]) for generating a BRGC is:

Algorithm 1 for b For each digit in an n-digit word m, starting from the right, if the
digit to its left is 0 leave it as it is, while if the digit to its left is 1, change the digit.

This is effectively what we get from Theorem 6 (iii):

Algorithm 2 for b (b(m))i is (mi+1 + mi)mod 2.

Even simpler is Algorithm 3, which follows from Algorithm 1 or 2.

Algorithm 3 for b For m > 0, b(m) is m, in binary, with the first of any sequence of
1s or 0s becoming a 1 and every other digit a 0.

Example m = 111101101111. The 1st, 5th, 6th, 8th and 9th digits start new sequences
of 1s or 0s, so b(m) = 100011011000.

6 Some Recurrence Relations for b

The following two lemmas give some interesting recurrence relations for b.

Lemma 9 b(2m + 1) = b(2m) + (−1)m.

Proof As, for i > 0, (2m)i = (2m + 1)i by Theorem 6 (iii),

(b(2m))i = ((2m)i+1 + (2m)i) mod 2

= ((2m + 1)i+1 + (2m + 1)i) mod 2

= (b(2m + 1))i.

Hence, by Theorem 6 (i),

b(2m + 1)− b(2m) = (b(2m + 1))0 − (b(2m))0

= (2m + 2)1 − (2m + 1)1

= (−1)m,

as (2m + 2)1 = 1 and (2m + 1)1 = 0 if m is even

and (2m + 2)1 = 0 and (2m + 1)1 = 1 if m is odd.

Lemma 10 b(2m) = 2b(m) +
1− (−1)m

2
.

Proof By Theorem 6 (iii) and (ii),

(b(2m))i+1 = ((2m)i+2 + (2m)i+1) mod 2

= (mi+1 + mi) mod 2

= (b(m))i = (2b(m))i+1.
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So

b(2m) = 2b(m) + (b(2m))0

= 2b(m) +
⌊
m +

1

2

⌋
mod 2

= 2b(m) +
1− (−1)m

2
.

A number of other recurrence relations can be obtained from these. For example:

b(8m + 2) = 4b(2m) + 3

b(2k) = 3.2k−1 if k > 0

b(2k + 1) = 3.2k−1 + 1 if k > 1.

We can also get a more general expression for b(m + 1) in terms of b(m).

Lemma 11 If m + 1 = 2k(2` + 1) then b(m + 1)− b(m) = 2k(−1)`.

Proof By induction on k. If k = 0 we have the result by Lemma 9.

If k > 0, we have by Lemmas 9 and 10:

b(m + 1)− b(m) = 2b
(

m + 1

2

)
+

1− (−1)
m+1

2

2
− b(m− 1)− (−1)

m−1
2

= 2
(
b

(
m + 1

2

)
− b

(
m− 1

2

))
+

1− (−1)
m+1

2

2

−(−1)
m−1

2 −

1− (−1)
m−1

2

2


= 2k(−1)`,

by the induction hypothesis.

7 b and Nim Sums

The Nim Sum m#k of two nonnegative binary integers is the addition of these numbers
without carry over. This is used in the study of the game of Nim in Berlekamp, Conway
and Guy [1].

i.e. (m#k)i ≡ mi + ki mod 2.

This, using
⌊
m

2

⌋
i
= mi+1 and Theorem 6 (iii) proves:

Theorem 12 b(m) = m#
⌊
m

2

⌋
.
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8 Orbits of b

An orbit of b is a set consisting of a number m and its successive images under powers
of b, and we are interested in finding the size (or length) of this set for each m, viz. the
smallest positive integer k for which bk(m) = m.
First we need two lemmas.

Lemma 13 (i)
(

j
k

)
is odd iff

∞∑
i=1

⌊
j

2i

⌋
−

⌊
j − k

2i

⌋
−

⌊
k

2i

⌋
= 0.

(ii)
(

j
k

)
is even for 1 ≤ k ≤ p < j iff 2blog2 pc+1

∣∣∣ j.
Proof (i) This follows from the well known result (see for example Griffin [3] Theorem

3.16) that the highest power of 2 to divide n! is
∞∑
i=1

⌊
n

2i

⌋
.

(ii) Let u = blog2 pc + 1 and j = 2u−1w + v, where 0 ≤ v < 2u−1 ≤ p. Then if
i < u, ⌊

j

2i

⌋
= 2u−1−iw +

⌊
v

2i

⌋
=

⌊
j − v

2i

⌋
+

⌊
v

2i

⌋
and if i ≥ u, as v < 2u−1 < 2i,⌊

j

2i

⌋
=

⌊
w

2i+1−u

⌋
=

⌊
j − v

2i

⌋
+

⌊
v

2i

⌋
.

So by (i),
(

j
v

)
is odd.

If
(

j
1

)
,
(

j
2

)
. . . ,

(
j
p

)
are all even, it follows that v = 0.

If w = 2r + 1 and v = 0, j = 2ur + 2u−1 and we can show, exactly as above, that(
j

2u−1

)
is odd.

Hence as 2u−1 ≤ p, if
(

j
1

)
,
(

j
2

)
, . . . ,

(
j
p

)
are all even, v = 0 and w must be even so

that 2blog2 pc+1|j.
If j = 2ur and k = 2k1 + 2k2 + . . . + 2kh , where k1 > k2 > . . . > kh ≥ 0, h ≥ 1 and

0 < k ≤ p, then k1 ≤ u− 1,

j − k = 2u(r − 1) + 2u−1 + . . . + 2k1+1 + 2k1−1 + . . . 2k2+1 + . . . + 2kh−1−1 + . . . + 2kh

and
⌊

j

2u

⌋
−

⌊
j − k

2u

⌋
−

⌊
k

2u

⌋
= r − (r − 1) > 0.

Hence by (i)
(

j
1

)
,
(

j
2

)
, . . . ,

(
j
p

)
are all even.
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Lemma 14 If m, i and j are nonnegative integers, then (bj(m))i =
j∑

k=0

(
j
k

)
mi+k mod 2.

Proof By induction on j.

j = 0 Obvious.

j > 0 Assume the lemma holds for j, then by Theorem 6 (iii),

(bj+1(m))i =
j∑

k=0

(
j
k

)
(b(m))i+k mod 2

=
j∑

k=0

(
j
k

)
(mi+k+1 + mi+k) mod 2

=
j−1∑
k=0

((
j
k

)
+

(
j

k + 1

))
mi+k+1 +

(
j
0

)
mi +

(
j
j

)
mi+j+1 mod 2

=
j−1∑
k=0

(
j + 1
k + 1

)
mi+k+1 +

(
j + 1

0

)
mi +

(
j + 1
j + 1

)
mi+j+1 mod 2

=
j+1∑
k=0

(
j + 1

k

)
mi+k mod 2.

Hence, by induction the lemma holds.

Theorem 15 bj(m) = m iff m = 0 or 1 or 2blog2blog2 mcc+1|j.

Proof The result holds for j = 0, so assume j > 0.

By Lemma 14, bj(m) = m iff for all i ≥ 0,
j∑

k=1

(
j
k

)
mi+k = 0 mod 2.

If m = 0 or 1, this is true for all j. If m > 1, for q = blog2 mc, 2q ≤ m < 2q+1 and mq = 1.

For i + k > q, mi+k = 0. Hence:

bj(m) = m iff for q ≥ i ≥ 0,
min(j,q−i)∑

k=1

(
j
k

)
mi+k = 0 mod 2.

If the statement to the right of the iff, which we will call (*), holds, we have, for
i = q − 1, q − i = 1 ≤ j and (

j
1

)
mq ≡

(
j
1

)
≡ 0 mod 2.

Now assume
(

j
t

)
≡ 0 mod 2, for 1 ≤ t < r ≤ min(j, q). Then if (*) holds we have,

for i = q − r,
r∑

k=1

(
j
k

)
mi+k =

(
j
r

)
mq ≡

(
j
r

)
≡ 0 mod 2.
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Hence, by induction, if (*) holds,(
j
1

)
,
(

j
2

)
, . . . ,

(
j

min(j, q)

)

are all even and as
(

j
j

)
= 1,

(
j

min(j, q)

)
=

(
j
q

)
.

If
(

j
1

)
, . . . ,

(
j
q

)
are all even (*) holds.

Hence, by Lemma 13, as q = blog2 mc, bj(m) = m iff 2blog2blog2 mcc+1|j.

Corollary 16 If 22k ≤ m < 22k+1
, bj(m) = m iff 2k+1|j.

17. For m > 1, the length of the orbit of b is 2blog2blog2 mcc+1.

9 The Decoding Function d = b−1

We define a new function d recursively and then show that this is the inverse of b.

Definition 2 d(0) = 0

d(2k + i) = 2k+1 − 1− d(i) (0 ≤ i < 2k).

We now prove lemmas similar to those for b.

Lemma 18 (i) d(1) = 1.

(ii) If mp is the second 1 from the left in mkmk−1 . . . m0, where mk = 1,
then

d(mkmk−1 . . . m0) = 2k+1 − 2p+1 + d(mp−1 . . . m0).

(iii) If mk = 1 and mk−1 = mk−2 = . . . = m0 = 0, then

d(mkmk−1 . . . m0) = 2k+1 − 1,

that is d(2k) = 2k+1 − 1 for all k ≥ 0.

Proof (i) From Definition 2.

(ii) By Definition 2,

d(2k + 2p + mp−12
p−1 . . . + m0) = 2k+1 − 1− d(2p + mp−12

p−1 + . . . + m0)

= 2k+1 − 1− (2p+1 − 1− d(mp−12
p−1 + . . . + m0))

= 2k+1 − 2p+1 + d(mp−1 . . . m0).

(iii) d(2k) = 2k+1 − 1− d(0) = 2k+1 − 1.

Corollary 19 If 2p ≤ j < 2p+1 ≤ 2k, then d(2k + j) = 2k+1 − 2p+1 + d(j − 2p).

Lemma 20 If 2k ≤ m < 2k+1 then 2k ≤ d(m) < 2k+1.

10



Proof By induction on m.

We can now show that d is the inverse of b.

Theorem 21 d = b−1.

Proof (i) We show, by induction on j, that d(b(j)) = j.

This is obvious for j = 0.

If j > 0, we let j = 2k + i for 0 ≤ i < 2k.

Then b(j) = b(2k − i− 1) + 2k and as, by Lemma 4, 0 ≤ b(2k − i− 1) < 2k, we have by
the induction hypothesis and Definition 2:

d(b(j)) = 2k+1 − 1− d(b(2k − i− 1))

= 2k+1 − 1− (2k − i− 1)

= 2k + i = j.

(ii) We prove, by induction on j, that b(d(j)) = j.

This is obvious for j = 0.

If j > 0, we let j = 2k + i for 0 ≤ i < 2k, then

d(j) = 2k+1 − 1− d(i)

= 2k + (2k − 1− d(i)).

As by Lemma 20, 0 ≤ 2k−1−d(i) < 2k, by Definition 1 and the induction hypothesis:

b(d(j)) = b(2k − 1− (2k − 1− d(i))) + 2k

= b(d(i)) + 2k

= i + 2k = j.

We now write down a lemma for d, similar to Lemma 5 for b.

Lemma 22 (i) If 2p ≤ j < 2p+1 ≤ 2k then:

(a) (d(2k + j))p = 0

(b) (d(2k + j))i = 1 for p + 1 ≤ i ≤ k

(c) (d(2k + j))i = (d(j))i if 0 ≤ i < p.

(ii) (d(2k))i = 1 if 0 ≤ i ≤ k.

Proof By Lemma 18.

Using Lemma 5, we were able to prove Theorem 6 which gave simple methods for
finding (b(m))i. The formula for (d(m))i given below is not quite as simple and its proof
does not use Lemma 22.
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Theorem 23 (d(m))i =
k∑

j=i

mj mod 2

where k is the largest value of j for which mj is non-zero.

Proof By induction on i.
Let the non-zero values of mi be

mk1 , mp1 , mk2 , mp2 , . . . ,mpr (and mkr+1)

where k = k1 > p1 > k2 . . . > pr (> kr+1).

i = 0 If there is an even number of these non-zero mis then by Lemma 18:

d(m) = 2k1+1 − 2p1+1 + 2k2+1 − 2p2+1 + . . . 2kr+1 − 2pr+1

so (d(m))0 = 0 =
k∑

j=0

mj mod 2.

If this number is odd

d(m) = 2ki+1 − 2pi+1 + . . . 2kr+1 − 2pr+1 + 2kr+1 − 1

so (d(m))0 = 1 =
k∑

j=0

mj mod 2.

i > 0 By Theorem 6 (iii) and Theorem 21:

mi−1 = (d(m))i + (d(m))i−1 mod 2.

That is, using the induction hypothesis:

(d(m))i = (d(m))i−1 + mi−1 mod 2

=
k∑

j=i−1

mj + (m)i−1 mod 2

=
k∑

j=i

mj mod 2.

Corollary 24 (d(m))i = 0 if there is an even number of 1s to the left of mi−1 in the
binary representation of m, and d(m)i = 1 otherwise.

From this we have two forms of an algorithm to evaluate d(m).

Algorithm 1 for d
For each digit in the binary representation of m, put a 0 if there is an even number of

1s from this digit (including it) to the left and a 1 otherwise.

Algorithm 2 for d
To form d(m) from the binary representation of m replace the 1st, 3rd, 5th, etc.

occurrences of 1 and any subsequent 0s by 1s and replace the 2nd, 4th, etc. occurrences
of 1 and any subsequent 0s by 0s.

Example d(1100010110001) = 1000011011110.
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