
University of Wollongong University of Wollongong 

Research Online Research Online 

Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information 
Sciences 

1-1-2008 

Adaptive Calibration for Prediction of Finite Population Totals Adaptive Calibration for Prediction of Finite Population Totals 

Raymond L. Chambers 
University of Wollongong, ray@uow.edu.au 

Robert Graham Clark 
University of Wollongong, rclark@uow.edu.au 

Follow this and additional works at: https://ro.uow.edu.au/infopapers 

 Part of the Physical Sciences and Mathematics Commons 

Recommended Citation Recommended Citation 
Chambers, Raymond L. and Clark, Robert Graham: Adaptive Calibration for Prediction of Finite Population 
Totals 2008, 163-172. 
https://ro.uow.edu.au/infopapers/1404 

Research Online is the open access institutional repository for the University of Wollongong. For further information 
contact the UOW Library: research-pubs@uow.edu.au 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online

https://core.ac.uk/display/37005871?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F1404&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F1404&utm_medium=PDF&utm_campaign=PDFCoverPages


Adaptive Calibration for Prediction of Finite Population Totals Adaptive Calibration for Prediction of Finite Population Totals 

Abstract Abstract 
Sample weights can be calibrated to reflect the known population totals of a set of auxiliary variables. 
Predictors of finite population totals calculated using these weights have low bias if these variables are 
related to the variable of interest, but can have high variance if too many auxiliary variables are used. This 
article develops an adaptive calibration approach, where the auxiliary variables to be used in weighting 
are selected using sample data. Adaptively calibrated estimators are shown to have lower mean squared 
error and better coverage properties than non-adaptive estimators in many cases. 

Keywords Keywords 
sample surveys, sample weighting; prediction approach; ridge estimation; model selection; stepwise 
procedures 

Disciplines Disciplines 
Physical Sciences and Mathematics 

Publication Details Publication Details 
Clark, R. G. & Chambers, R. L. (2008). Adaptive Calibration for Prediction of Finite Population Totals. 
Survey Methodology, 34 (2), 163-172. 

This journal article is available at Research Online: https://ro.uow.edu.au/infopapers/1404 

https://ro.uow.edu.au/infopapers/1404


Article

Component of Statistics Canada
Catalogue no. 12-001-X Business Survey Methods Division

Adaptive calibration for 
prediction of finite 
population totals
 
by Robert G. Clark and Raymond L. Chambers

December 2008



Survey Methodology, December 2008  163 
Vol. 34, No. 2, pp. 163-172 
Statistics Canada, Catalogue No. 12-001-X 

 

Adaptive calibration for prediction of finite population totals 

Robert G. Clark and Raymond L. Chambers 1 

Abstract 

Sample weights can be calibrated to reflect the known population totals of a set of auxiliary variables. Predictors of finite 

population totals calculated using these weights have low bias if these variables are related to the variable of interest, but can 

have high variance if too many auxiliary variables are used. This article develops an “adaptive calibration” approach, where 

the auxiliary variables to be used in weighting are selected using sample data. Adaptively calibrated estimators are shown to 

have lower mean squared error and better coverage properties than non-adaptive estimators in many cases. 

                                                           
1. Robert G. Clark and Raymond L. Chambers, Centre for Statistical and Survey Methodology, University of Wollongong, NSW 2522 Australia. E-mail: 

Robert_Clark@uow.edu.au. 

  

Key Words: Sample surveys; Sample weighting; Prediction approach; Ridge estimation; Model selection; Stepwise 

procedures. 

 

 

 

1. Introduction 

 
Predictors of finite population totals are commonly 

calculated by weighted sums of sample values. Auxiliary 

variables are often available, whose sample values and 

population totals are known. Weights can be constructed so 

that weighted sums of auxiliary variables agree with the 

known population totals, a process called calibration 

(Deville and Särndal 1992). Predictors of finite population 

totals based on calibrated weights generally have much 

lower prediction bias than predictors calculated without 

auxiliary information.  

Existing literature on finite population prediction 

essentially assumes that a set of useful auxiliary variables is 

chosen without reference to sample data. In practice, 

however, there may be a large set of potential auxiliary 

variables, not all of which should be used. Using additional 

auxiliary variables generally reduces the bias of calibrated 

predictors but increases the variance, so that using too many 

auxiliary variables can actually increase the mean squared 

error of calibrated predictors. The choice of which auxiliary 

variables to use is often not obvious, and sample data may 

be required to determine which set of auxiliary variables is 

appropriate for predictors of the totals of particular variables 

of interest. This paper develops methods for making this 

determination. Our approach may be called adaptive 

calibration, because the set of variables is chosen adaptively 

from sample data, rather than statically without reference to 

the sample at hand.  

The prediction framework to finite population estimation 

will be used (see for example Brewer 1963; Royall 1970; 

Valliant, Dorfman and Royall 2000). In this approach, the 

population values of the variables of interest are treated as 

random variables. The aim is to predict the population total 

(which is also a random variable) or other finite population 

quantities using sample data on the variable of interest, and 

population data on some auxiliary variables. The sample 

may have been selected using probability sampling or some 

other method, and is conditioned upon in inference. A 

stochastic model for the variable of interest is a central 

feature. One feature of the prediction framework is that mis-

specification of the model, for example due to omitting 

important auxiliary variables, can lead to substantial bias.  

An alternative framework is the model-assisted approach 

(Särndal, Swensson and Wretman 1992). In this approach, a 

stochastic model is used but the model plays a less crucial 

role. The randomized nature of sampling is exploited to 

ensure that estimators are approximately unbiased even if 

the model is incorrect. When the model is correct, both 

approaches give approximately unbiased estimators, but the 

model-based approach would generally give lower vari-

ances of estimators of interest. If the model is mis-specified, 

then model-based predictors and variance estimators may be 

more biased, however robust model-based methods have 

been developed to combat this problem. For example Royall 

and Herson (1973a, 1973b) discuss robust prediction and 

Royall and Cumberland (1978, 1981a, 1981b) developed 

variance estimators that are robust to heteroscedasticity. For 

comparisons of the prediction and model-assisted frame-

works, see for example Smith (1976) and Hansen, Madow 

and Tepping (1983). 

The problem of selecting a set of auxiliary variables in 

the model-assisted framework was considered by Silva and 

Skinner (1997) and Skinner and Silva (1997). They found 

that adding calibration variables reduces the mean squared 

error (MSE) up to a point, after which adding further 

variables increases the MSE. Choosing calibration variables 

adaptively, based on sample data, gave better estimates than 

either calibrating on all variables or no variables. The 

applicability of this work to model-based prediction is not 

clear, because the role of the model is very different in the 

two frameworks. Mis-specified models can lead to 
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substantially biased model-based predictors, whereas 

model-assisted estimators are approximately unbiased even 

if important variables are omitted. As a result, different 

strategies for model selection could be appropriate in the 

two frameworks. Moreover, the differences between alter-

native approaches would be expected to be more pro-

nounced in the prediction framework than in the model-

assisted framework.  

Chambers, Skinner and Wang (1999) proposed an 

approach for selecting calibration variables in the prediction 

framework, using forward, backward or stepwise selection. 

(This paper will henceforth be referred to as CSW.) The 

decision whether to omit (or add) a variable at each step was 

based on minimizing the estimated squared error of 

prediction (MSEP) for the predictor of interest. The 

approach was not evaluated by simulation study, and the 

estimators of MSEP used were not robust to hetero-

scedasticity.  

The purpose of this paper is to develop the basic 

approach of CSW to apply to a wider range of situations, 

including heteroscedastic populations and multi-stage 

samples, and to evaluate the approach using realistic 

simulation studies. Estimators of the MSEP which are 

robust to heteroscedasticity, and to correlation in the case of 

multi-stage surveys, will be used. The performance of the 

estimators will be evaluated by simulation from two 

populations: financial data on farms generated from a farm 

survey and labour force data from a population census.  

Following CSW, the basic approach will be to build a set 

of auxiliary variables using stepwise selection of variables, 

starting with some initial set. This algorithm builds up a set 

of auxiliary variables by a sequence of many decisions 

between two nested sets of variables. We compare several 

alternative criteria for deciding between two nested sets, 

including statistical significance and a number of alternative 

estimators of the mean squared error of prediction (MSEP). 

Three alternative estimators of MSEP are considered: a non-

robust estimator; an estimator of MSEP which is robust to 

heteroscedasticity; and an estimator which is robust both to 

heteroscedasticity and correlations within primary sampling 

units in multi-stage sampling.  

Section 2 contains notation and definitions. Section 3 

derives the difference in the MSEP of two predictors based 

on nested models, and develops several alternative estima-

tors of this difference. Section 4 contains simulation results 

for a farm survey and a multi-stage household survey. 

Section 5 is a discussion. We conclude that adaptive calibre-

tion generally performs better than static calibration, 

provided that a non-robust estimator of the MSEP, or 

statistical significance, is used as the objective in model 

selection.  

 

2. Notation and definitions  
 

A variable of interest iY  is observed for a sample s  of n  

units, which is a subset of a finite population U  containing 

N  units. The aim is to estimate the population total YT =  

i U iY∈∑  and other finite population quantities of .Y  A vector 

of auxiliary variables ix  is available for 1 ,i … n= , ,  with 

known population total .i Ux ∈∑= iT x  

Weighted estimators of YT  are given by ˆ ,i sY i iT w Y∈∑=  

where iw  can depend on the auxiliary variables but not on 

the variable of interest. A set of weights is said to be 

calibrated on ix  if i s iw∈∑ = .i xx T  

The best linear unbiased predictor (BLUP) based on a 

linear regression model is one example of a calibrated 

estimator. The most commonly used BLUP is based on the 

model  

2 2

[ ]

var[ ]

cov[ ] 0( )

i

i i i

i j

E Y

Y v

Y Y i j

=

= σ = σ

, = ≠

T

ixββββ

 (1) 

(with iv  assumed to be known) and is given by  

ˆˆ
Y i

i s i r

T Y
∈ ∈

= +∑ ∑ T

ixββββ  (2) 

where r U s= −  is the set of non-sample units and  

{ }
11 1ˆ

i i i

i s i s

v v Y
−− −

∈ ∈

= ∑ ∑β
T

i i ix x x  (3) 

is a weighted least squares estimator of .β  The BLUP can 

also be written in weighted form as  

ˆ
Y i i

i s

T w Y
∈

= ∑  

where the weights iw  are given by  

{ }
11 11 T

i j i
j s

w v v
−− −

∈

= + ∑ T

xr j j iT x x x  (4) 

and .i r∈∑=xr iT x  It is straightforward to verify that 

.i s iw∈∑ =i xx T  

For heteroscedastic data, it is usually difficult to model 

iv  reliably. In this case, robust estimators of the prediction 

variance of the BLUP are available, which do not rely on 

knowledge of iv  (Royall and Cumberland 1978, 1981a, 

1981b). For multi-stage samples, the assumption of 

independence may be violated. In this case, the BLUP based 

on (1) may still be used, and a robust ultimate cluster 

variance estimator of its prediction variance can be used 

(e.g., Valliant et al. 2000, Chapter 9). An alternative 

approach, which will not be considered here, would be to 

construct a BLUP based on a model that includes the 
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within-cluster correlations (Royall 1976). Section 3 will 

discuss robust and non-robust estimation of the mean 

squared error of prediction of the BLUP in more detail.  

A decision needs to be made on what to include in ix  in 

the BLUP. Stepwise selection, forward selection and 

backward selection are algorithms that can be used to decide 

which subset of the available auxiliary variables should be 

used. All three algorithms include many choices between 

two nested sets of auxiliary variables. Suppose the choice is 

between (A) using a predictor ˆ
AT  based on ix  and (B) 

using a predictor ˆ
BT  based on a subvector .1ix  We can 

partition ix  as ( ) .T= ,1 2

T T

i i ix x x  The number of elements of 

, 1i ix x  and 2ix  are denoted by ,p 1p  and 2,p  respectively.  

We similarly partition β  as ( ) .T= ,1 2β β βT T  Predictor ˆAT  

is unbiased under model A:  

[ ] .iE Y = = +1 1 2 2β β βT T T

i i ix x x  (5) 

The predictor ˆBT  is unbiased for model B,  

[ ] ,iE Y = 1 1βT ix  (6) 

which is the special case of model A where .=2β 0  

 
3. Estimation of the difference in the MSEP 

 
3.1 Comparing predictors from nested models  

 

Following CSW, our approach is to estimate the 

difference in the MSEPs of the two estimators:  

2 2ˆ ˆ[( ) ] [( ) ]A Y B YE T T E T T∆ = − − −  

where the expectations are evaluated with respect to model 

A, because model B is a special case of this model. 

Typically, ˆ
AT  will be less biased than ˆ

BT  but have higher 

variance. Either predictor can have higher or lower MSEP 

depending on the particular population and sample.  

For single stage sampling, it is usually reasonable to 

assume iY  and jY  independent for all .i j≠  Section 3.2 

will derive ∆  and an estimator of it in this case. Section 3.3 

will describe the instructive special case where variances are 

equal and BLUPs are used; this was the case considered by 

CSW. Section 3.4 extends this by describing a hetero-

scedasticity-robust estimator of .∆  Section 3.5 further 

extends the approach by deriving ∆  and an estimator of it 

for multi-stage sampling where there may be correlations 

between values from the same cluster.  

 
3.2 Estimating ∆∆∆∆  in single-stage sampling with 

known variance 
 

In addition to model (5), we assume in this subsection 

that iY  and jY  are independent for i j≠  and that 

2 2var[ ]i i iY v= σ = σ  where iv  are known. In this case, the 

MSEP of any predictor ˆ i s i iT w Y∈∑=  is given by  

{ }

{ }

2

2

2 2 2 2

ˆ ˆMSEP[ ] [( ) ]

var ( 1)

.( 1)

Y

i i i i i i
i s i U i s i r

i i ii
i s i U i s i r

T E T T

E w Y Y w Y Y

w w

   
   
      ∈ ∈ ∈ ∈

 
  
 ∈ ∈ ∈ ∈

= −

= − + − −

= − + σ + σ−

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑βT i ix x

 

Writing ,i s iw∈∑= −i xd x T  we can rewrite the MSEP as  

( )2 2 2ˆMSEP[ ] ( ) 1 .i i i

i s i r

T w
∈ ∈

= + − σ + σ∑ ∑T T
d dββββββββ  

Let i s Aiw∈∑= −A i xd x T  and .i s Biw∈∑= −B i xd x T  

Then ∆  is given by:  

2 22 2

ˆ ˆMSEP[ ] MSEP[ ]

( ) ( )

( 1) ( 1) .

A B

Ai i Bi i
i s i s

T T

w w
∈ ∈

∆ = −

= −

+ − σ − − σ∑ ∑

ββ ββT T T T

A A B Bd d d d

 (7)

 

To estimate ,∆  we first consider how to estimate β  and 

the variance of ˆ.β  The usual weighted least squares estima-

tor is 
1ˆ

x xyS S
−=β  where 1

i sx iS v−∈∑= T

i ix x  and 1
i sxy iS v−∈∑=  

.iYix  The usual estimator of the variance of β̂  is � ˆvar[ ] =β  
2 1

ˆ xS
−σ  where 2 2 1

( )ˆˆ ( ).i s i iY v n p−
∈∑σ = − / −β

T

ix  

We can estimate ( )ββT  unbiasedly by �ˆ ˆ ˆ( var[ ]).T −ββ β  

Hence the following is an unbiased estimator of :∆  

� �

2 22 2

ˆ ˆ ˆ ˆ ˆ ˆˆ ( var [ ]) ( var [ ])

ˆ( 1) ( 1) .ˆAi i Bi i
i s i s

w v w v
∈ ∈

∆ = − − −

+ − − −σ σ∑ ∑

ββ β ββ βT T T T

A A B Bd d d d

 (8)
 

Expression (7) applies, and estimator (8) is an unbiased 

estimator of it, for any weighted predictors ˆAT  and ˆ
BT .    

We are concerned with the special case where  ˆ
AT  and     

ˆ
BT  are BLUPs. In this case, ˆAT  is calibrated to xT  so that 

,= 0Ad  and so (8) simplifies to  

�

2 22 2

ˆ ˆ ˆˆ ( var [ ])

( 1) ( 1)ˆ ˆAi i Bi i
i s i s

w v w v
∈ ∈

∆ = − −

+ − − − .σ σ∑ ∑

ββ βT T

B Bd d

 (9)
 

 
3.3 An important special case  

In this Subsection, we make the assumptions stated in 

Section 3.2, and further assume that 1iv =  for all .i  We 

also assume that the dimension of 2ix  is 1, i.e. that we are 

considering whether or not one particular auxiliary variable 

from ix  is to be used in prediction. Expressions (7) and (9) 

simplify in this case. 
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Let iu  be the residual of a regression of 2ix  on :1ix  

2

1

2

T

i i

i
i s i s

u x C

C x
− 

 
 
 ∈ ∈

= −

= .∑ ∑

1

1 1 1

i

T

i i i

x

x x x
 

Using straightforward linear algebra operations, it can be 

shown that  

2β i

i r

u
∈

= − ∑β
T

Bd  

and that  

2
2 2 1

( 1) ( 1) i
Ai Bi u

i r
i s i s

uw w S
  −
  
 ∈∈ ∈

− − − = ∑∑ ∑  

where 2.i su iS u∈∑=  

Hence (7) becomes  

2 2
2 1 2

2
i i

u
i r i r

u uS
   −
      
   ∈ ∈

∆ = σ − β .∑ ∑  

CSW show that � 2 12
2

ˆvar [ ] ( ) .ˆ
T

i rB B i ud d u S −
∈∑β = σ  Hence 

(9) becomes  

2
2 1 2

2
ˆˆ ˆ(2 β )i

u
i r

u S
  −
  
 ∈

∆ = σ − .∑  

It is proposed that ˆ
AT  be adopted when ˆ 0,∆ <  and ˆ

BT  be 

used otherwise. It follows that we adopt ˆ
AT  whenever 

2 2 1

2
ˆ ˆ2 .uS

−β > σ  As noted by CSW, this is equivalent to 

adopting ˆ
AT  whenever 2 12

2
ˆ ( )ˆ uF S −= β / σ  is greater than 2. 

Notice that F  is the usual F-statistic for testing the null 

hypothesis that 2β 0.=  For large ,n  the cutoff for the F-

test at the 5% significance level is 3.96, whereas we have 

arrived at a cutoff of 2 for adopting the larger set of 

variables. Thus, the decision to use A instead of B on the 

basis of a test of significance requires more evidence against 

B than a simple comparison of the estimated MSEPs of ˆ
AT  

and ˆ
BT  would suggest. That is, using ∆̂  leads to larger 

models compared to using significance testing.  
 
3.4 Heteroscedasticity-robust estimation of ∆∆∆∆    

The estimators of ∆  in Sections 3.2 and 3.3 relied on 

knowing var[ ]iY  at least up to a constant of proportionality. 

In practice, variances are at best known approximately, and 

methods which do not rely on an assumption of known 

variance may perform better. We will use an estimator of 
2

iσ  which, assuming model (5), is approximately unbiased 

for 2

iσ  in general, and exactly unbiased if 2 2:iσ = σ  

22 ˆˆ ( )i i

n
Y

n p
σ = .−− β

T

ix  

(An alternative estimator would be 2 2ˆˆ ( ) ,i iYσ = − β
T

ix  as in 

Royall and Cumberland 1981b.) 

The estimator of β  would still be the weighted least 

squares estimator given by (3). The variance of β̂  is  

1

1

1 2 1

ˆvar[ ] var[ ]

var

.

x xy

x i
i s

x i x

i s

S S

S Y

S S

−

−

∈

− −

∈

=

 =
  

 = σ 
 

∑

∑

β

i

T

i i

x

x x

 

This can be estimated by  

� ( )1 12
robust

ˆvar [ ] .ˆ ix x

i s

S S
− −

∈

= σ∑β
T

i ix x  

Hence we can estimate ∆  by  

�

�

robust

robust

2 2 2 2

ˆ ˆ ˆˆ ( var [ ])

ˆ ˆ ˆ( var [ ])

ˆ ˆ( 1) ( 1) .Ai i Bi i
i s i s

w w
∈ ∈

∆ = −

− −

+ − σ − − σ∑ ∑

ββ β

ββ β

T T

A A

T T

B B

d d

d d

 (10)

 

 

3.5 Estimation of ∆∆∆∆  in multi-stage sampling   
The estimators of ∆  in Sections 3.2, 3.3 and 3.4 all 

assumed that the values of Y  are independent for different 

units. In multi-stage sampling, a sample of primary 

sampling units (PSUs) is initially selected. A sample of units 

within the selected PSUs is then selected. For example, 

PSUs may be areas and units may be households or people; 

or PSUs could be schools and units could be students. 

Typically units from the same PSUs tend to be similar, so 

that values of iY  and jY  may be correlated if i  and j  

belong to the same PSU. This section develops an estimator 

of ∆  which is approximately unbiased even when there are 

correlations between values of Y  within the same PSU.  

Let Is  be the sample of PSUs, selected from the 

population .IU  Let gs  be the sample of units from PSU ,g  

where Ig s∈ . Let I I Ir U s= −  and .g g gr U s= −  We 

assume model (5), and further assume that iY  and jY  are 

uncorrelated for 1i g∈  and 2j g∈  if 1 2.g g≠  The values 

iY  and jY  may be correlated if i j≠  with .gi j U, ∈  

Let ˆ
i s i iT w Y∈∑=  be any predictor and let =d  

.i s iw∈∑ −i xx T  The bias of T̂  is ,βTd  as in Section 3.2. 

The variance of ˆ( )YT T−  is  

( )
( )

ˆvar[ ] var ( 1)

var ( 1)

var 1 var .

I g g I g

I g g I g

Y i i i
i s i r

i i i i
g s i s i r g r i U

i i i i
g s i s i r g r i U

T T w Y Y

w Y Y Y

w Y Y Y

 
 
  ∈ ∈

∈ ∈ ∈ ∈ ∈

 
 
 ∈ ∈ ∈ ∈ ∈ 

− = − −

= − − − 
  

= − − +  
  

∑ ∑

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑
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It is further assumed that the variance of 
gi r iY∈∑  and the 

covariance between 
gi r iY∈∑  and ( )1

gi s i iw Y∈∑ −  are 

negligible relative to other terms. This is the case if cluster 

sampling is used (because in this case g gs U=  and gr  is 

empty) or if the sampling fraction within PSUs is small. The 

variance becomes  

ˆvar [ ] var ( 1) var
I g I g

Y i i i
g s i s g r i U

T T w Y Y   
   
   ∈ ∈ ∈ ∈   

− ≈ − + .∑ ∑ ∑ ∑  

Applying this to ,∆  we get: 

ˆ ˆMSEP[ ] MSEP[ ]

( ) ( ) var ( 1)

var ( 1) .

I g

I g

A B

T T

Ai i
g s i s

Bi i

g s i s

T T

w Y

w Y

 
 
 ∈ ∈ 

 
 
 ∈ ∈ 

∆= −

= − + −

− −

∑ ∑

∑ ∑

ββ ββT T

A A B Bd d d d

(11)

 

To estimate ,∆  we need estimators of the variance of ˆ,β  

and of ( ( 1) ).
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This can be estimated using the “ultimate cluster variance” 

method by  
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This is a well known estimator of the variance of a weighted 

sum from clustered data, and is equivalent to Valliant et al. 

(2000, 9.5.5, page 312). The variance has been called a 

“sandwich-level variance estimator using the cluster-level 

residuals” (Valliant et al. 2000) and an “ultimate cluster 

variance” (e.g., Wolter 1985 describes essentially the same 

idea in a randomization framework).  

The variance of ( ( 1) )
gi s i iw Y∈∑ −  can also be estimated 

by the ultimate cluster variance method:  
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4. Simulation study  
 
4.1 Simulation of farm survey  
 
Population and sampling scheme   

The population distribution of the auxiliary variables, the 

sample and population size, and heteroscedasticity and other 

properties of the variable of interest would all be expected to 

play a part in the performance of the adaptive BLUPs. To 

make a realistic assessment of the performance of these 

estimators, a simulation study based on a large, realistic 

population is needed.  

We generated a simulation population of 80,000 units, 

using sample data on 1652 farms from the 1988 Australian 

Agricultural and Grazing Industry Survey (AAGIS) as a 

starting point. Total cash crop was used as the survey 

variable of interest, and potential auxiliary variables 

included DSE (a derived size estimate), number of sheep, 

crops area, number of beef cattle, region (29 regions) and 

industry (5 industries). DSE was a linear combination of the 

sheep, crops area and beef cattle variables. The dataset also 

contained a sampling weight which was approximately 

equal to the inverse of the selection probability. 27 outliers 

with very large values of DSE were removed, as these 

would normally be placed in a completely enumerated 

stratum in a survey. A population of 80,000 was then 

constructed by probability proportional to size sampling 

with replacement, with probabilities proportional to the 

estimation weight on the original sample file.  

250 samples were then selected without replacement 

from the simulation population. The samples were stratified 

by Region and DSE, with DSE divided into four categories, 

to give 116 strata. The category boundaries were set such 

that the category sums of DSE were equal. Total sample 

sizes of 250, 500, 1,000 and 1,500 were simulated. The 

stratum sample sizes were proportional to the original 

AAGIS sample sizes by Region and DSE.  
 
Auxiliary variables and stepwise selection method   

Auxiliary variables were included corresponding to the 

model containing: an intercept; sheep (x1); crops area (x2); 

beef cattle (x3); Industry; interaction of Industry and x1, x2 

and x3; and Region. This gives a total of 52 potential 

auxiliary variables. Some of these variables are collinear, 

but are still included in the set of potential variables, to give 

the model selection process a wider choice of possible 

models. We also considered the set of 139 auxiliary 

variables which included this set as well as the interaction of 

Region and x1, x2 and x3. Models were constructed by 

forward selection starting with the intercept-only model. 

Variables were added based on which step most reduced the 

estimated MSEP, for several alternative estimators of ∆ . 
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Stepwise selection was also trialled but was substantially 

slower to run for the larger variable set, and did not greatly 

improve the efficiency of the adaptive BLUPs.  

An adaptive BLUP was also calculated based on 

statistical significance, with 0 05p < .  being the cutoff for 

inclusion. For each progressive model, the statistical 

significance of adding each of the variables not in the model 

was assessed, using a standard t-test. The variable with the 

lowest p-value was included in the model at each step. 

When there were no further significant variables which 

could be added, the procedure terminated and this was the 

model chosen.  

A number of modifications were needed for the forward 

selection algorithm to work reliably: auxiliary variables 

were not added to the model if they had a pairwise Pearson 

correlation of 0.95 or higher (or -0.95 or lower); and 

variables were not added if this would result in the 

calibration equations not being solvable.  
 
Estimators used   

Several BLUPs were calculated: with all auxiliary 

variables included; with just Intercept and DSE; and with 

auxiliary variables chosen by forward selection using the 

non-robust estimator of ∆  (described in Section 3.2) or the 

heteroscedasticity-robust estimator of ∆  (described in 

Section 3.4), from either the set of 52 or the set of 139 

potential auxiliary variables. (The larger set of 139 variables 

was only evaluated for sample sizes of 500 and above.)  

Ridge estimators (e.g., Bardsley and Chambers 1984) are 

an alternative approach to the problem of variable selection, 

so we included them in the simulation to compare their 

performance to that of the adaptive BLUPs. The estimators 

we have so far considered either include or exclude each 

variable. If a variable is included, then the weights must 

calibrate on that variable exactly, in the sense that 

.i s iw∈∑ =i xx T  Ridge regression introduces a penalty for 

non-calibration, but does not necessarily require that the 

weights provide perfect calibration for all variables. In ridge 

regression, the vector of sample weights w  is chosen to 

minimise  

2
2 1 1

1

( 1)
p

i ij xj
i i j

i s
i s j

w x Tw v c
 − −
  
 ∈∈ =

−− + .∑∑ ∑  

The jc  are non-negative cost coefficients indicating the 

priority to be placed on meeting calibration constraint .j  A 

value of 0 indicates that the constraint must be met precisely 

and larger cost coefficients result in placing less weight on 

the constraint. Thus the ridge estimator allows for a smooth 

reduction in the effective dimension of the model, by 

effectively interpolating between including a calibration 

variable ( 0)jc =  and excluding it ( ).jc = ∞   

Typically the jc  are set to ,jc
∗λ  where jc

∗  reflect a 

somewhat subjective assessment of the relative importance 

of each constraint, and λ  is chosen to ensure that the final 

weights iw  have reasonable properties, for example are all 

greater than or equal to 0, or to 1. We set jc
∗  to 0 for the 

constant (reflecting an intercept in the model), to 1 for 

1,x 2x  and 3,x  to 10 for the region indicators, to 5 for the 

industry indicators, and to 100 for interactions. The choice 

of jc
∗  was based on which variables were thought to be 

likely to be most useful. The value of λ  was numerically 

determined for each sample to be the smallest value such 

that all weights were greater than or equal to 1.  

All of the methods were based on the same procedure for 

modelling var [ ].M iY  Firstly, a simple model with the 

intercept, x1, x2 and x3 was fitted to the sample values of Y  

using ordinary least squares. The log of the squared 

residuals from this model were then regressed against the 

log of DSE. The fitted values of this model were raised to 

the power of e  to give estimates of 2

iσ  for each .i s∈  The 

estimated values of 2

iσ  were then truncated so that no 

values were more than 4 times, or less than one quarter, of 

the median value. This adjustment was made to avoid 

extreme values of 2

i

−σ  which might lead to instability in 

calculating weighted least squares estimates of ˆ.ββββ  Results 

were somewhat sensitive to the variance modelling 

procedure, particularly the final adjustment to avoid extreme 

values: BLUPs based on a crude variance model with 
2 DSEi iσ ∝  had variances around 10-20% higher than the 

BLUPs shown here.  
 
Results   

Table 1 shows the Relative Root Mean Squared Error 

(RRMSE) of the various calibrated predictors. The first four 

rows of the table are for the first set of auxiliary variables 

(52 potential variables) and the last three rows are for the 

second set (139 potential auxiliary variables). Biases are not 

shown but were generally a relatively small component of 

the mean squared error for all of the predictors shown, 

except for the BLUP based on an intercept and DSE model, 

which was quite biased. This was somewhat surprising as 

we expected that a good trade-off between bias and variance 

would imply that biases were a non-negligible component 

of the mean squared error. Details on the biases and relative 

variances of the predictors can be found in Tables A1 and 

A2 of Clark and Chambers (2008). 

Of the adaptive BLUPs, the significance criteria 

performed the best in all cases, followed by the nonrobust 

criteria, with the robust criteria performing worst. For the 

smaller set of 52 potential variables, the adaptive BLUPs 

based on the nonrobust and significance criteria performed 

better than the nonadaptive BLUPs for n = 250 and 

n = 500; for n = 1,000 and n = 1,500, they performed 
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slightly worse than the BLUP with all variables but better 

than the intercept and size BLUP. For the larger set of 139 

potential variables, the adaptive BLUPs based on the 

nonrobust and significance criteria performed better than the 

nonadaptive BLUPs for all sample sizes, particularly for 

smaller values of n.  

 

Table 1 

RRMSE (%) of AAGIS predictors of total cash crops 
 

# Vars       n BLUP Adaptive BLUP Ridge 

  all int+size nonrobust ∆̂∆∆∆  robust ∆̂∆∆∆  Sig.Test  

52  250 3.59  3.02  2.97  3.09  2.87  3.30  

 500 2.35  2.54  2.33  2.33  2.30  2.31  

 1,000 1.56  2.21  1.58  1.64  1.57  1.54  

 1,500 1.36  2.22  1.39  1.41  1.37  1.37  

139  500 3.52  2.54  2.99  3.44  2.29  2.27  

 1,000 1.77  2.21  1.75  1.92  1.72  1.59  

 1,500 1.56  2.22  1.51  1.64  1.42  1.42  

 

The Ridge estimator generally performed about as well 

as the best of the adaptive BLUPs when there were 52 

auxiliary variables, and slightly better when there were 139 

potential variables.  

Table 2 shows how many auxiliary variables were 

selected for the two adaptive BLUPs. The robust ∆̂  led to 

larger sets of auxiliary variables than the non-robust, with 

about 10 more auxiliary variables selected. The significance 

criteria led to even smaller variable sets (6-10 less variables 

than from the non-robust criteria).  

 
Table 2 

Mean (Interquartile range) of number of auxiliary 
variables selected in AAGIS 
 

# Vars n nonrobust ∆̂∆∆∆  robust ∆̂∆∆∆  Sig.Test 

52  250  16.0 (14.0-18.0)  26.9 (24.0-29.0)  9.6 (8.0-11.0)  

 500  18.6 (16.0-21.0)  27.4 (25.0-30.0)  11.5 (10.0-13.0)  

 1,000 23.6 (21.0-26.0)  29.6 (26.0-33.0)  14.4 (13.0-16.0)  

 1,500 27.3 (25.0-29.0)  32.3 (30.0-35.0)  17.2 (16.0-18.8)  

139  500  42.1 (37.0-47.0)  69.4 (62.0-75.0)  23.2 (21.0-26.0)  

 1,000 51.5 (47.0-56.0)  74.2 (69.0-79.8)  29.9 (27.0-33.0)  

 1,500 59.2 (55.0-64.0)  75.8 (71.0-81.0)  34.9 (32.0-38.0)  

  
Table 3 shows the confidence interval (CI) non-coverage 

of the various predictors. 90% CIs were defined as the 

estimator +/- 1.64 standard errors, where the variance was 

estimated using a heteroscedasticity-robust variance esti-

mator (Royall and Cumberland 1978). Following common 

practice, CIs were based on estimated variance not esti-

mated mean squared error of prediction. The simulation 

estimates of the non-coverage rates are fairly rough given 

that only 250 simulations were used. A larger simulation 

study could be used to give more precise estimates of 

coverage, but this was not pursued due to the 

computationally intensive nature of the stepwise selection 

process. Table 3 suggests that: the BLUP using just 

intercept plus size had high non-coverage as did the 

adaptive BLUP based on robust ˆ .∆  The other estimators 

generally had non-coverage rates close to the nominal 10%.  

 
Table 3 

Confidence interval non-coverage in AAGIS 
 

# Vars     n BLUP Adaptive BLUP Ridge 

     all int+size nonrobust ∆∆∆∆  robust ∆∆∆∆  Sig.Test  

52 250 10.0 6.4 10.4 16.8 11.2 10.0 

 500 8.0 13.2 12.0 17.2 10.8 8.0 

 1,000 7.6 20.4 9.2 12.0 8.4 8.4 

 1,500 8.8 34.8 9.2 13.2 9.6 8.8 

139 500 16.8 13.2 18.0 29.2 12.8 8.8 

 1,000 12.4 20.4 14.0 20.4 13.2 7.2 

 1,500 13.6 34.8 13.6 19.6 12.4 11.2 

 

Total cash crops is a major variable of interest in the 

AAGIS survey, but the totals of other variables are also 

important, including Farm Equity. For practical reasons, a 

single set of weights is normally used for all variables. Table 

4 shows how well the adaptive calibration weights designed 

for the Total Cash Crops (TCC) variable performed when 

used to estimate the total of Farm Equity. For the case of 52 

potential auxiliary variables, the adaptive BLUP weights 

chosen based on TCC (using non-robust ∆̂ ) performed 

reasonably well, as did the ridge estimator. Improvements 

could be made, however, by choosing auxiliary variables 

based on Equity.  
 
Table 4 

RRMSE (%) of AAGIS predictors of total equity 
 

# Vars       n BLUP Adaptive BLUP 

(nonrobust ∆̂∆∆∆ ) 

Ridge 

  all int+size based on  

TCC 

based on  

Equity 

 

52  250 6.85  6.45  6.51  6.13  6.78  

 500 4.44  4.44  4.61  4.40  4.28  

 1,000 3.09  3.12  3.42  3.14  3.10  

 1,500 2.54  2.58  2.90  2.58  2.54  

139  500 5.53  4.93  4.98  4.74  4.20  

 1,000 3.68  4.03  3.23  3.15  3.08  

 1,500 3.04  3.63  2.66  2.60  2.57  

 
 
4.2 Simulation of Labour Force Survey  
 
Population and Sampling Scheme   

A simulation population was constructed by selecting a 

simple random sample without replacement of 30,000 

people aged 15-64 from the 1% sample file of the 1991 

Australian Census of Population and Housing. The variable 

of interest was Employment (1 for employed people, 0 for 

others). The simulation population was divided into 
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simulated primary sampling units (PSUs) containing 75 

people each, in such a way that the intra-cluster correlation 

was 0.05. (This is a fairly typical intra-class correlation for 

the employment variable within primary sampling units in a 

household survey. See for example Clark and Steel 2002). 

The algorithm for defining clusters was to sort the data by a 

randomly generated 2(0 )N , γ  variable plus the employment 

variable, then to define clusters as sequential sets of 75 

people, where γ  was chosen so as to give the desired intra-

cluster correlation.  

The simulation consisted of 250 repeated two-stage 

samples. The first stage was a simple random sample 

without replacement of m  PSUs and the second stage was a 

simple random sample without replacement of 20 people 

from each selected PSU. The total sample size was set to be 

200 400n = ,  and 1,000 people. Most national household 

surveys have sample sizes much larger than this, but it is 

common to construct estimation post-strata within states or 

provinces, and the sample sizes for these areas would often 

be in the range 200-1,000.  

The potential auxiliary variables were age by sex, where 

age was recorded in single years for 16-24 year olds, then in 

five year age groups 25-29, 30-34, ..., 55-59 year olds, and 

60+ year olds.  
 
Non-response   

One of the main reasons why age and sex are used as 

auxiliary variables in household surveys is that non-

response is known to depend on age and sex. For example, 

young men are typically the group with the lowest response 

rates. Non-response was simulated by assuming that the 

logit of the probability of response was equal to 1 8. −  
2(( 50) 25)age −  for men, and 22 0 7(( 50) 25)age− . −  

for women. This model gave a response rate of 75%. The 

initial sample size was increased so that the final responding 

sample size was equal to 200 400n = ,  or 1,000.  
 
Auxiliary variables and stepwise selection method   

The potential auxiliary variables were based on age by 

sex cells. The definition of the x-variables is shown in Table 

5. This parameterization was chosen so that the auxiliary 

variables corresponding to specific ages or agegroups can be 

dropped while still giving a sensible model. For example, if 

all auxiliary variables were included except for 4 ,ix  then the 

model expected value for people aged 17 would be the same 

as those aged 16, rather than being equal to the intercept 

parameter. Even better results might be obtained from using 

more sophisticated parameterizations such as spline models 

and this will be investigated in a future study.  
 

 

 

Table 5 
Potential auxiliary variables in labour force 
survey simulation 
 

Variable  Definition   

1ix   1 (corresponding to intercept in model for Y )   

2ix   1 if person i male -1 if female  

3ix   1 if person i aged 16 or over   

4ix   1 if person i aged 17 or over   

⋮  ⋮  

12 ix ,   1 if person i aged 25 or over   

13 ix ,   1 if person i aged 30 or over   

⋮  ⋮  

19 ix ,   1 if person i aged 60 or over   

20 ix ,   3ix  if person i male 3ix−  if female 

⋮  ⋮  

36 ix ,   19 ix ,  if person i male 19 ix ,−  if female  

 
Stepwise selection was used to select variables, starting 

with the intercept-only model. At each step, variables could 

be added or removed, according to which gave the best 

reduction in the criteria. If the stepwise selection began 

cycling (for example, adding x1, then adding x2, then 

removing x1, then removing x2, then adding x1, etc), then 

the model building process stopped, and the the current 

model was used as the final model. The estimators of ∆  

used were the non-robust estimator, the robust (to 

heteroscedasticity) estimator and the ultimate cluster 

variance (UCV) estimator which is robust to hetero-

scedasticity and correlations within PSUs. Significance tests 

were not used as they would need to incorporate correlations 

within PSUs to be realistic. Results for the ridge estimator 

are not shown because negative weights rarely occurred in 

this simulation, so that this estimator performed very 

similarly to the BLUP using all auxiliary variables.  
 
Results   

Table 6 shows the RRMSE of the various adaptive and 

non-adaptive BLUPs. There was relatively little difference 

in RRMSE between the BLUP with intercept only and the 

BLUP with all auxiliary variables. It is therefore not 

surprising that at best minor gains were made by using the 

adaptive BLUPs rather than using the BLUP with all 

variables. The adaptive BLUP using the non-robust ∆̂  gave 

the lowest RRMSE in all cases.  
 

Table 6 

RRMSE of labour force survey predictors of employment 
 

       n BLUP Adaptive BLUP 

 all intercept nonrobust ∆̂∆∆∆  robust ∆̂∆∆∆  UCV ∆̂∆∆∆  

200  6.54  6.77  6.44  7.06  6.96  

400  4.72  4.76  4.61  4.72  4.65  

1,000  2.45  2.70  2.43  2.45  2.49  
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Table 7 shows the mean number of variables selected for 

each of the adaptive BLUPs. Of the 36 potential auxiliary 

variables, between about 5 and 9 variables were selected 

based on the non-robust ˆ .∆  The number of variables 

selected increased as the sample size increased. The 

heteroscedasticity-robust criterion resulted in larger sets of 

auxiliary variables, and the UCV criterion gave even larger 

sets.  

 
Table 7 

Mean (Interquartile range) of number of auxiliary 
variables selected in labour force simulation 

 

 n  Variable Selection Method   

 nonrobust  robust  UCV 

200  6.5 (5.0- 8.0)  13.4 (10.0-16.0)  16.1 (13.0-19.0)  

400  7.4 (6.0- 8.0)  12.1 (9.0-15.0)  14.5 (12.0-17.0)  

1,000  8.6 (7.0-10.0) 11.6 (10.0-13.0)  14.2 (12.0-17.0)  

 

 

Table 8 shows the confidence interval (CI) non-coverage 

of the various predictors. 90% CIs were defined as the 

estimator +/- 1.64 standard errors, where the variance was 

estimated using a UCV variance estimator. Table 8 shows 

that the BLUP using all auxiliary variables had high non-

coverage for 200n =  and 400. The adaptive BLUP using 

nonrobust ∆̂  had reasonably close to nominal coverage, 

while the other adaptive BLUPs had high non-coverage.  

 
Table 8 
Confidence interval non-coverage (%) for predictors of 
employment 
 

    n BLUP Adaptive BLUP   

   all  intercept  nonrobust ∆̂∆∆∆   robust ∆̂∆∆∆   UCV ∆̂∆∆∆   

200  17.6  12.0  12.0  20.0  24.0  

400  17.2  12.0  14.8  16.8  17.6  

1,000  6.4  11.6  7.6  6.8  9.6  

 
 

Table 9 shows how well the various weights performed 

when used to estimate a different variable, unemployment 

(equal to 1 for unemployed people and 0 otherwise). 

Adaptive BLUPs were calculated using the non-robust ˆ ,∆  

with the variable of interest given by Employment, and by 

Unemployment. The adaptive BLUP with variables chosen 

for Employment had RRMSE between the non-adaptive 

BLUP with all variables and the non-adaptive BLUP with 

intercept only. This suggests that this adaptive BLUP gives 

reasonable results even when applied to variables other than 

employment. The adaptive BLUP based on Unemploment 

actually had higher RRMSE. This may be because the 

auxiliary variables had little or no predictive power for 

unemployment, so that attempting to tailor the choice of 

auxiliary variables for this variable of interest did not work 

well.  

Table 9 
RRMSE of labour force survey predictors of 

unemployment 
 

       n BLUP Adaptive BLUP   

 all  intercept  based on emp  based on unemp  

200 36.3  32.6  34.5  36.0  

400 24.1  21.7  22.8  23.7  

1,000 14.5  14.2  14.1  14.2  

 
5. Discussion   

The simulation studies described here showed that 

adaptive BLUPs can give useful gains compared to simple 

non-adaptive alternatives. In both the farm survey and the 

labour force survey simulations, the adaptive BLUPs based 

on a nonrobust estimator of ∆  and based on significance 

testing both had lower MSEP than non-adaptive estimators 

in almost all cases. In the case of the farm survey, the gains 

were sometimes substantial compared to either always using 

the full model or always using the intercept plus size 

variable model. In the case of the labour force survey, the 

gains were minor. The adaptive BLUPs also gave 

reasonable confidence interval coverage.  

The adaptive BLUPs based on the robust and UCV 

criteria performed much worse than the other adaptive 

BLUPs. This is surprising, as the AAGIS data is known to 

be heteroscedastic and the Labour Force data was clustered 

suggesting that the UCV criteria should have given good 

results. Further analysis of the farms survey simulation 

showed that robust∆̂  had higher variances than nonrobust∆̂  in 

the great majority of cases, particularly for auxiliary 

variables with little predictive power - see the Appendix of 

Clark and Chambers 2008 for details. This suggests that the 

robust method would tend to select counter-productive 

auxiliary variables more often and could explain its poor 

performance.  

There was a general tendency for all of the adaptive 

procedures to choose too many auxiliary variables, but 

despite this, the adaptive estimators generally performed 

better than or similar to simple non-adaptive alternatives. 

We suggest that in practice, an automatic model search 

(using either a non-robust ∆̂  or a statistical significance 

criterion) should be used in conjunction with some 

subjective judgement. For example, models could be 

selected from several sets of potential auxiliary variables of 

different sizes. If the larger sets gave only small apparent 

improvements, then the statistician might decide to restrict 

to a smaller set, even if apparently slightly suboptimal.  

Ridge estimators also performed reasonably well in terms 

of RRMSE and confidence interval coverage. They 

generally gave similar results to the adaptive BLUPs for 

estimating the total of the variable of interest when the 

choice of auxiliary variables was based on this variable. 
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However, when the adaptive BLUP weights were applied to 

different variables, the ridge estimators performed slightly 

better. An even better approach may be adaptively choose 

both which auxiliary variables to include and how to apply 

ridging, based on some criterion calculated from the sample. 

This will be the topic of future research.  

One concern that has been raised with the prediction 

approach to finite population sampling is its non-robustness 

to the omission of important auxiliary variables. In our 

simulations from farm economic data and social data, the 

adaptive predictors had low bias and lower mean-squared 

error than the non-adaptive estimators in most of the wide 

range of cases in our simulation study, and were never 

substantially worse. Provided that all design variables are 

considered as potential auxiliary variables, adaptive 

calibration provides a robust and efficient strategy for finite 

population prediction.  
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