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Abstract 

Most wind farms currently being installed are based upon doubly-fed induction generator (DFIG) or 

direct-drive synchronous generator (DDSG) technology. Given that one of the impacts of 

introducing distributed generation is an alteration of steady-state power flows and voltages, both 

technologies are capable of providing local voltage support. Wind farms may, therefore, be included 

in optimal power flow calculations to minimise fuel cost and/or network losses. The IEEE 30-bus 

system is considered as a case study, comparing fixed-speed induction generator (FSIG) 

requirements with DFIG capability. Results are presented for a range of DFIG capability modes, at 

varying system load and wind farm penetration levels. A significant reduction in losses can be 

achieved by suitable co-ordination of DFIG reactive power import/export, operating within typical 

grid code specifications. It is shown that the dynamic variability of reactive power requirements is 

readily accommodated by the power system. Finally, implementation options for the scheme and 

incentivising strategies are considered. 
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1. Introduction 

Most wind farms now being installed are of the variable-speed type [1]. Whether they are based on 

doubly-fed induction generators (DFIGs) or on direct-drive synchronous generators (DDSGs), it is 

possible to vary reactive power import/export within the volt-ampere rating of the individual wind 

turbine generators (WTGs). The resulting wind farm is often connected at transmission or sub-

transmission level. From an operational perspective, the wind farm is a small power station, with 



active power determined by current wind conditions, and reactive power that may be controlled to 

achieve overall system objectives. 

The determination of optimal power system steady-state operating conditions is the well-known 

optimal power flow (OPF) problem [2-3]. The OPF is a non-linear optimisation problem with 

constraints. Normally, the function to be minimised is the cost of operating the available generating 

plant or the summed network losses. The transmission system is modelled by the familiar Newton-

Raphson power flow equations [4]. The solution of these non-linear equations enforces sufficient 

generation to supply the demand and losses. However, the OPF differs from a load flow calculation 

in that generator node quantities – active power, P, and voltage, V – are now independent variables 

with defined ranges. The OPF seeks to determine those values of P and V that minimise operating 

cost (or network losses). There may also be other variables which can be adjusted, in particular 

transformer tap ratios. An essential feature of OPF is that the dependent quantities, such as load 

voltages and line flows, must lie within defined ranges. The OPF solution must therefore conform 

to the Karush-Kuhn-Tucker (KKT) conditions of optimality [5]. 

While commercial OPF packages have been available for some years, the solution techniques 

continue to evolve. OPF is a mixed-integer, non-linear optimisation problem: integer variables 

appear in the mathematical formulation as discrete transformer tap positions, shunt capacitor bank 

switching, etc. Many analytical techniques have been proposed to solve the OPF problem including 

the gradient method [6], the Newton method [7], linear programming [8] and the interior point 

method [9-10]. More recent work has focussed on the use of artificial intelligence techniques such 

as fuzzy logic, genetic algorithms and evolutionary computing [11-13]. In the present work, the 

authors have used an iterative interior-point algorithm based on the Newton-Lagrange method [14]. 

The purpose of the work reported here is twofold. Firstly, to demonstrate the reactive power 

capabilities of various wind generation technologies, i.e. FSIG, DFIG, and DDSG, within the ambit 

of overall power system optimisation. Secondly, to show that such action is capable of delivering 

reduced system losses, and hence fuel savings, while maintaining a satisfactory network voltage 

profile under various system operating conditions. The paper will explain how a wind farm with 

reactive power control capability can be included within the OPF formulation. It will be shown how 

the WTG volt-ampere limits and grid code requirements can be incorporated. The paper will then 

go on to demonstrate the benefits of including wind generation within OPF for the standard IEEE 

30-bus network, with four distributed wind farms each supplying up to 3.25% and 13% of the 

nominal demand.  



2. Problem Formulation 

2.1 Interior Point Algorithm 

Interior point methods (IPM) are widely used in optimisation problems due to their fast 

convergence [14]. There are several variants of IPM, and this work incorporates the iterative 

infeasible primary-dual interior point algorithm based on the Newton-Lagrange method. Any 

optimisation problem can be represented as an objective function to be optimised subject to equality 

and inequality constraints as follows: 
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In an optimal power flow problem, the objective function f(x) can be a function representing the 

transmission losses or generator fuel cost. The state vector x represents the system states such as 

voltage magnitudes, phase angles, active and reactive powers of generators, etc. The equality 

constraints generally are the load flow equations, while the inequality constraints correspond to 

system operating limits such as voltage limits, generator active power limits, etc.  

As the first step, all the inequality constraints in (1) are transformed to equality constraints by the 

addition of slack variables, and the non-negative constraints are then replaced by the logarithmic 

barrier function. This implicitly imposes positive conditions for the slack variables (s) which then 

can be represented in the following way while incorporating the objective function. 
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The penalty weighting factor µ is decreased iteratively from a defined maximum to a minimum 

(zero is the theoretical minimum) during the iterative optimisation process. The Lagrangian 

function can then be derived from equation (2) and represented as follows: 
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The stationary point of the Lagrangian function represents the optimal solution of the sub-problem, 

which should fulfil the required first-order KKT conditions [15]. 
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S is a diagonal matrix consisting of components of s, e is a matrix of ones with appropriate 

dimensions (e = [1,…,1]
T
), and µ is a matrix consisting of components of µ. Equation (4-d) can be 

transformed and represented as a complementary slackness condition as follows: 

. .S e μ e                                                                                                                                        (5) 

П is a diagonal matrix consisting of components of π. Newton’s method is then applied by taking 

the first derivatives of equations (4-a)-(4-c) and (5), and the following symmetrical system can be 

obtained.  
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The Hessian matrix (H) consists of second-order partial derivatives of the objective function. The 

gradient of the penalty weighting factor (µ) tends to zero, since the KKT system was solved for a 

fixed penalty factor. The derived equation (6) identifies the direction of the new optimal point in the 

solution space, while the following equations are used to update the variables before the next 

iteration. 
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In order to update the variables it is essential to determine the size of the primary and dual steps, 

which can be accomplished using the following equations: 
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Using the updated variables and penalty weighting factor, the optimisation problem will revert to 

equation (3), which will solve the Newton equations until the predefined error factor is met. The 

optimisation problem will successfully converge if either of the following conditions is satisfied.

 



I. All load flow constraint equations (g(x) = 0 and h(x) < 0) are fulfilled to a predefined degree 

of exactness (i.e. within an allowable tolerance). 

II. The Lagrangian function ( , , )L x s  converges. This can be achieved if either the objective 

function itself converges to a stationary point, or the gradient of the objective function 

converges to zero. 

The optimisation process starts by initialising the starting configuration of the system, determined 

here through a load flow solution. It has been found that the optimum solution can be obtained 

within 6 or 7 iterations. 

2.2 Operating Characteristics of Wind Farms 

Wind farms employ mainly fixed-speed induction generators (FSIG) or doubly-fed induction 

generators (DFIG). A FSIG wind farm consists of multiple FSIG wind turbines, each with its own 

reactive power requirements, dependent on wind speed (active power) and local voltage. A 

capacitor bank is placed at each FSIG busbar node providing fixed no-load reactive power 

compensation (Qcap) to ensure compliance with grid code standards. Figure 1 illustrates how the 

reactive power requirement of a FSIG depends on active power generation. 

In the case of a DFIG wind farm it is assumed that active power depends on wind speed, while 

reactive power is a controlled variable [16]. Reactive power is controlled using the DFIG’s rotor-

side voltage source converter, rated typically at 25% of the generator rating. The reactive power 

capability of DFIGs is not well defined, and varies between different manufacturers, but grid codes 

generally require that a wind farm is capable of operating from 0.95 lagging to 0.95 leading power 

factor at full active power output [17]. The potential therefore exists for continuous voltage 

regulation in response to variations in load behaviour, external faults, etc. [18]. Furthermore, since a 

DFIG is considered as a controllable PQ source, the presented results are equally applicable to full-

converter (synchronous machine) wind turbines. Various operating charts have been derived in the 

literature for DFIGs based on technical constraints [19], i.e. stator and rotor current limits. Here it is 

assumed conservatively that the DFIG complies with the typical grid code requirement illustrated in 

Figure 2.  

The reactive power limits considered in turn at the wind farm nodes are one of the following: 

0.329 pu (equivalent to a power factor of 0.95 at rated active power export); 0.203 pu (equivalent 

to a power factor of 0.98 at rated active power export); and unlimited reactive power. Reactive 

power imports are represented as negative (leading) quantities, while reactive power exports are 

expressed as positive (lagging) quantities. 

 



2.3 Loss Minimisation with Wind Generation 

The objective here is to minimise the active power loss in the network. The following equation is 

defined as the objective function for loss minimisation. 
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Regardless of the objective function, however, an OPF must ensure that the entire set of voltage and 

power constraints are satisfied. Various categories of constraints exist, and these distinct categories 

are described below. 

2.3.1 Equality constraints 

The transmission network is modelled by a power balance equation at each node. The algebraic sum 

of the active and reactive powers injected into each node i must equal zero: 
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In addition, the following equality constraint was formulated to ensure that all the available wind 

generation (Pwind) at a particular instant is generated by the wind farms installed in the network 

during the optimisation. 
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2.3.2 Inequality constraints  

The active power of the wind generating units are set according to equation (11). However, as 

explained earlier, FSIG reactive power output depends on the active power generation, and is 

therefore beyond the scope of the OPF optimisation problem. By contrast, DFIG reactive power 

output (QDFIG) can be controlled, and the following inequality constraint can be included within the 

OPF framework, based on the grid code requirement for a power factor range of 0.95 leading to 

0.95 lagging.  

0.329 pu 0.329puDFIGQ  
                                                                                                       (12)                                                                                  

 

The conventional generating units have maximum and minimum generating limits, both in active 

and reactive power, beyond which it is not feasible to generate for technical or economic reasons.  
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Voltage limits constrain bus voltages (Vi) to remain within an allowable range. Our assumption here 

is that node voltages are maintained between 0.95 pu and 1.05 pu. 

0.95pu 1.05pu,i B U   i N                                                                                                         (14)                                                                                                       

2.4 Test System Formulation 

The above problem formulation was applied to the standard IEEE 30-bus system, which operates at 

fixed tap positions and with relaxed branch flow limits – see Figure 3. The formulated OPF problem 

was then solved using the steps shown in equations (2) to (8) until the defined criterion was met. 

The simulation study was carried out using the DIgSILENT Power Factory software [20] to perform 

the optimal power flow. The nominal system load is 283.4 MW, supplied by 6 generators located at 

nodes 1, 2, 5, 8, 11 and 13. The existing system was modified by introducing 4 wind farms. Bearing 

in mind that wind farms are usually located in remote areas of a network, LV nodes 10, 14, 18 and 

30 have been selected for this study. It was noted that bus 30 is the weakest bus of this system [21]. 

Each FSIG has a capacity of 2.3 MW, with induction machine parameters based on commercial 

implementations [22]. For convenience within DIgSILENT, each DFIG wind farm was represented 

as a single synchronous machine, controlled within a PQ operating chart, as indicated in Figure 2. 

Such a representation is appropriate, since the internal electrical quantities of the DFIG do not 

influence the optimisation process. For clarity, each wind farm is assumed to provide a fixed 

proportion of the total wind generation. It was noted that the network voltage limits are not violated 

even when the system load is doubled. Consequently, the fixed capacitors at buses 10 and 24 were 

removed. Hence, the algorithm, as implemented, contains no integer variables. When more wind 

generation is added to the network, the conventional generation capacity is reduced, starting from 

the most heavily loaded unit since it contributes most to the losses, and subsequently other 

generator units also reduce their output until the lower limit is reached. The upper and lower limits 

of generator active and reactive power are taken from [6] and are given in Table 1. 

Both cost and loss minimisation were applied to the IEEE 30-bus system. It was found that the 

losses were slightly greater when the cost was minimised, as would be expected. However, the 

trends presented later were similar, regardless of whether cost or loss minimisation was used. It was 

decided to apply loss minimisation, as defined by equation (9), to focus attention on DFIG reactive 

power adjustment as a means of minimising active losses subject to voltage constraints. 



3. Loss Minimisation with Variable Wind Conditions  

3.1 Smaller (4 × 9.2 MW) Wind Farm Installed Capacity 

Initially, 9.2 MW (2.3 MW × 4 turbines) FSIG/DFIG wind farms were sited at the 4 locations on 

the test system. The system load was varied from the nominal demand (283.4 MW) by ±10%, and 

optimal power flows were performed to minimise network losses for a range of wind farm outputs 

from 0 - 9.2 MW. DFIG reactive power was limited to 0.329 pu import/export, as outlined in Figure 

2. For the zero wind condition it was assumed that DFIGs can operate as STATCOMs, providing 

voltage support, as necessary, while any FSIGs are disconnected from the network. For 

convenience, it was assumed that wind speed is uniform within a particular wind farm and across 

sites, so that the active power output of each wind farm was identical for a particular loading 

condition. Similarly, any variation in the aerodynamic efficiency of variable-speed DFIGs in 

comparison with FSIGs was ignored. Figure 4 illustrates the variation in network losses for both 

FSIG/DFIG wind farms for a range of wind farm outputs and system loading. 

The system losses were determined as the transmission losses (including transformer losses) of the 

system, excluding internal generator losses. It can be clearly seen that as wind farm output is 

increased, network losses are reduced. So, for example, at 100% system loading with DFIG wind 

farms, the losses decrease from 4.83 MW at zero wind farm output to 3.12 MW with the 4 wind 

farms at full output, a 35% reduction. As wind farm output increases, more of the load is being 

supplied by local wind farms, thus reducing power flow and associated losses in the HV network. 

Similarly, as the system load is raised to 110% of nominal (311.7 MW), the network losses 

naturally increase, but the distributed wind farms provide a more significant reduction in losses, 

6.90 MW to 4.16 MW, for the same reason as before. 

It can also be seen that the network loss for DFIG-based wind farms is slightly lower than that for 

FSIG-based wind farms. Figure 5 depicts the loss reduction for DFIG installations as a fraction of 

the FSIG losses for each system condition, and is defined as follows: 

% 100FSIG DFIG

FSIG

L L
Loss reduction

L


                                                                            (15) 

As wind farm output increases, the benefit of DFIGs with control of reactive power export becomes 

more evident. So, at 110% system loading, the loss reduction increases from 1.9% to 5.0% between 

minimum and maximum wind farm output. The absolute loss reduction, however, remains almost 

constant, irrespective of system load and wind farm output. 

For the 100% load condition, Figure 6 illustrates the reactive power output variations for both FSIG 

and DFIG wind farms at the 4 wind farm locations. For the FSIG wind farms, reactive power import 



(negative quantity) increases with active power export, as would normally be expected. The power 

factor correction (PFC) capacitance placed at each wind farm is sized for no-load compensation at 1 

pu voltage, so that the net reactive power import at each location will depend on local voltage. For 

the DFIG wind farms, the reactive power control actions of each wind farm proposed by the OPF 

are slightly different. The DFIG located at bus 18 is restricted by its reactive power export 

(positive) limit of 3.03 MVAr (0.329 pu). For the remaining DFIGs, the reactive power export 

actually decreases between no wind and maximum active power, especially for buses 14 and 30. 

This is not surprising, given that the voltage at a generation node will tend to rise with active power 

export, particularly in network areas where the transmission line X/R ratio is low [23]. Reducing the 

reactive power export with increasing wind farm generation ensures that network voltages remain 

within limits – for the candidate nodes, a maximum voltage of 1.04 pu occurs at bus 14 at a wind 

farm output of 9.2 MW (not shown). 

3.2 Larger (4 × 36.8 MW) Wind Farm Installed Capacity 

If the wind farm capacity at each node is now increased to 36.8 MW (2.3 MW × 16 turbines), the 

optimal power flows can be repeated. Figure 7 illustrates the variation in network losses for both 

FSIG and DFIG wind farms as the system load is varied by ±10% and the active power at each 

wind farm varies between minimum and maximum output. 

At low wind farm outputs, the system losses gradually decrease as before, as the system load is 

increasingly supplied by local (wind) generation. However, losses are minimised at a certain 

common wind farm output, and beyond this threshold network losses increase fairly rapidly, as the 

wind farms now export active power to the rest of the system. The exact threshold will depend on 

system demand, increasing from approximately 10, 15 and 20 MW at each wind farm as the system 

load is set at 90%, 100% and 110% of nominal load. 

Figure 8 illustrates the reactive power output for the FSIG and DFIG wind farms. The FSIG 

reactive power profile is similar to Figure 6-a, with the wind farm at bus 14 requiring most reactive 

power import. The voltage at bus 14 is noticeably higher than at the other buses (not shown), and at 

higher wind farm output is limited to the upper voltage threshold (1.05 pu). For the DFIG scenario, 

reactive power export at bus 10 (rather than bus 18) is now the limiting factor, with the wind farm at 

this location operating at its maximum capability of 12.11 MVAr (0.329 pu). For the remaining 

wind farms, reactive power export tends to decrease with increased active power output, limiting 

any voltage rise. Indeed, at bus 14 the DFIG exports reactive power at low wind farm output, before 

importing reactive power at higher wind farm outputs, in order to maintain the voltage at bus 14 

below the limit: see Figure 9. 



3.3 DFIG Reactive Power Capability 

So far it has been assumed that the rotor-side converter of each DFIG can support reactive 

import/export equivalent to ±0.95 power factor at full active power generation. Two additional 

scenarios are of interest: a DFIG with limited reactive power capability (±0.98 pf), and a DFIG with 

unlimited reactive power capability. The latter case is impracticable, but provides an indication of 

whether additional reactive power capability is of value. 

Figure 10 illustrates the impact on losses of the four 36.8 MW wind farms, comparing DFIGs with 

unlimited reactive power capability to converters limited to ±0.95 pf rating. For the unrestricted 

case, at maximum wind farm output, the active power loss is slightly reduced (from 5.46 MW to 

5.41 MW at 100% loading), but the overall benefit is clearly minimal.  

Similar results are obtained if the converter rating is restricted to ±0.98 pf at full active power 

export (5.71 MVAr at 100% loading). The network voltages tend to be slightly higher as the 

reactive power limits are relaxed, with buses 14 and 30 close to the upper voltage limit for high 

wind conditions. The only major difference is that the reactive power export at bus 10 ranges from 

7.5, to 12.1 and to 29.7 MVAr, corresponding to ±0.98 pf, ±0.95 pf and unlimited converter rating.  

If Figures 7 and 10, showing the system losses for FSIG, ±0.95 pf DFIG and unconstrained DFIG 

(uDFIG) are combined, the loss reduction for the three cases can be compared. Adopting the same 

form as equation (15), the loss reduction can be calculated as follows: 

% ( ) 100

% ( ) 100

FSIG DFIG

DFIG

DFIG uDFIG

DFIG

L L
Loss reduction DFIG v FSIG

L

L L
Loss reduction uDFIG v DFIG

L


 


                                                                (16) 

Figure 11 compares the loss reduction for (4 × 36.8) MW of 0.95 pf DFIG wind farm capacity 

relative to FSIG and uDFIG technology. In comparing FSIG and DFIG implementations, the loss 

reduction is slightly skewed by the parabola-shaped system loss characteristics of Figure 7 and 10. 

Consequently, DFIGs tend to offer maximum benefit when wind farm active power output is such 

that network losses are minimised, depending on system loading. An average reduction in losses of 

8-10% can be seen across the system loading and wind farm operating ranges. However, when 

DFIGs are replaced by unconstrained DFIGs, the benefits are less clear, with approximately 1% 

reduction in losses for all load conditions and wind farm outputs. These results suggest that loss 

reduction does not justify extending DFIG reactive power capability. 

 

 



4. Dynamic Network Loss Minimisation 

The analysis presented so far has considered static network loss minimisation for a particular power 

system incorporating different wind farm technologies. It is clear that DFIGs provide the capability 

to control local voltage and reduce network losses. However, it is also important to understand the 

dynamic variation of network voltages and reactive power import/export which may be required in 

practice to achieve the desired optimisation objective. System demand and wind generation output 

data for a 24-hour period, at 1-hour intervals, have been selected for a particular winter day on the 

Ireland power system [24], Figure 12. The nominal (100%) system load is taken as the average 

demand for the selected day, while 100% wind generation is based upon the maximum recorded 

wind generation for the Ireland system. For convenience of OPF analysis, the demand profile has 

been quantised in 5% load increments.  

Adopting the above demand and wind profiles, optimal power flow is performed for 4 × 9.2/36.8 

MW, FSIG/DFIG technology at the existing wind farm locations on the IEEE 30 bus system. The 

DFIG wind farms operate with a ±0.95 pf converter rating. The variation in system losses for FSIG 

and DFIG wind farms is shown in Figure 13. 

Considering first the 4 × 9.2 MW FSIG/DFIG wind farms: during periods of low demand, for 

example 2-7 am, system losses are reduced, as high wind farm output is sufficient to meet local load 

requirements. Later in the day, for example 5-9 pm, when the system demand is at its peak, wind 

farm output is comparatively low, so that most of the load must be supplied by conventional 

generation on the distant HV network. Hence, network losses are high. 

Considering now the 36.8 MW installations, a different pattern is obtained. In the early morning, 

network losses are at their peak, as now the high wind farm output exceeds the local load 

requirement and active power is exported to other parts of the network. Later in the day, even 

though wind farm output is less, much of the local demand can be supported and network losses are 

reduced. Overall, the variation in losses across the day is less significant for the 36.8 MW wind 

farms than for the 9.2 MW installations, and DFIG wind farms consistently offer reduced system 

losses compared with their FSIG equivalents.  

The corresponding variations in voltage and reactive power at bus 14 for the various scenarios are 

shown in Figure 14. For the 9.2 MW wind farms, the FSIG and DFIG voltage profiles are similar, 

offset from each other by approximately 0.004 pu at all times. If desired, therefore, the FSIG 

voltage profile could be optimised by increasing the PFC capacitance at node 14. Despite the 

variations in system load and wind generation the voltage variation is small, ranging from 1.030 – 

1.038 pu for the FSIG wind farm, for example. The corresponding variation in reactive power 



import/export for both FSIG and DFIG wind farms is minimal, varying slightly in sympathy with 

the system demand. For the 36.8 MW wind farms, the voltage remains close to the voltage limit of 

1.05 pu. It is only when the wind farm contribution to total generation decreases, 0-3 am and 7-9 

pm, that the voltage begins to fall. However, in order for the DFIG at bus 14 to maintain the voltage 

within limits, the reactive power export/import varies noticeably throughout the day, although well 

within the permitted limits of ±12.11 MVAr (0.329 pu). When wind generation is at its minimum, 

0-2 am, the DFIG exports reactive power, boosting the local voltage. But for the remainder of the 

day the DFIG imports reactive power, as a mirror image of the wind profile, in order that the 

voltage limit is not exceeded. This is particularly necessary at around 6 am when system demand is 

at its lowest and wind generation, coincidentally, is at its peak. 

The voltage and reactive power variations at buses 10, 14, 18 and 30 are summarised in Tables 2 

and 3, corresponding to the 4 × 9.2 MW and 4 × 36.8 MW installations. Similar to bus 14, it can be 

seen that the voltage variations at buses 10 and 18 for FSIG and DFIG modes are relatively small, 

approximately 0.01 pu. The voltage variation at bus 30, the weakest bus, is significantly more than 

at the other locations. 

5. Discussion 

The results assume that fixed-speed induction generators have fixed shunt capacitive compensation, 

set to reduce no-load reactive power consumption to zero. In fact, some manufacturers provide 

several steps of capacitive compensation as active power, and hence the induction generator 

reactive power requirement, increases [23], the aim being to approach unity power factor at all 

loads. Thus the loss reduction achieved by DFIG technology may be less significant in practice than 

the above results suggest. However, the results for DFIG based wind farms indicate that optimum 

wind farm reactive power generation varies with location and system loading. For example, the four 

wind farm reactive power generations depicted in Figure 8-b range from a fixed export over the 

load range (bus 10) to increasing import (bus 14). The results as a whole show that the OPF 

approach utilises DFIG reactive power capability in a way that is sympathetic to the changing 

network requirements. It should be noted that this flexibility may sacrifice loss reduction in favour 

of satisfying voltage limits – as was the case for bus 14 (Figures 8-b and 9). 

The proposed approach requires regular OPF calculations, and communications to reset the wind 

farm reactive power generations, probably for each trading period. Alternatively, OPFs could be 

computed off-line for a range of system demands and wind power generations, with the real-time 

values obtained by interpolation. In either case, the reactive power adjustment can be based on 

recent wind farm generation data, obviating the need for long-term wind power forecasting. 

Transmission system operators can already curtail the active power of newer wind farms [25]. 



Hence the procedure and infrastructure to support centralised reactive power control for wind farms 

is likely to become more common [26]. 

The results show that there is an economic benefit in controlling wind farm reactive power. The 

benefit is acknowledged in Spain, for example, where wind farms qualify for a bonus of up to 8% 

for operating at a desirable power factor from 0.95 leading to 0.95 lagging at peak, normal and 

valley periods [27-29]. True allocation of the costs and benefits of transmission losses to generators 

is a challenging market issue beyond the scope of this paper [28]. However, while research on the 

issue continues, market operators can adopt an approximate, pragmatic approach. For example, 

wind farms could receive a reward/penalty based on the market value of the sector’s impact on 

transmission losses, shared on the basis of reactive power capability. 

6. Conclusions 

It has been shown that DFIG based wind farms may be included in optimal power flow calculations. 

The objective, with or without wind farms, is to minimise losses while retaining node voltages and 

line currents within limits. In the case of DFIG based wind farms, only reactive power generations 

are available as control variables within the OPF. 

The loss reduction available through adjustment of wind farm reactive power generation was 

assessed for the IEEE 30-bus network. The wind generation, in the form of wind farms at four 

nodes, corresponded to 13% and 53% of total conventional generating capacity. Relative to wind 

farms based on fixed-speed induction generators with fixed no-load capacitive compensation, DFIG 

based wind farms with OPF-derived reactive power generations resulted in loss reductions of 6% (4 

 9.2 MW) and 11% (4  36.8 MW) at full wind farm output. The reductions would probably be 

somewhat less if the comparison were with fixed-speed technology incorporating switched 

capacitive compensation. 

The required range of DFIG reactive power capability to achieve the loss reductions was examined. 

It was found that the standard DC-link rating of 25% of the generating unit capacity provided ample 

scope for loss reduction. Hence there is little justification for increasing the DC-link rating for 

reasons of loss minimisation. 

The behaviour of the DFIG capacity under OPF control was examined over a typical 24 hour 

period. It was found that the wind generation energy, corresponding to 10.1% of the demand (4  

9.2 MW), delivered an additional 2.2% of loss reduction with OPF-controlled DFIG capacity 

relative to fixed-speed technology. The corresponding figure for the higher level of wind generation 

(4  36.8 MW) was 4.7%. 
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List of Symbols 

f(x), F   objective function 

g(x)     equality constraints 

h(x)     inequality constraints 

x       state vector 

s       slack variable vector 

n       number of inequality constraints 

µ    penalty weighting factor 

λ, π    Lagrangian multipliers 

 g(x)    matrix of the gradient vectors of the equality constraints  

 h(x)   matrix of the gradient vectors of the inequality constraints 

e    matrix of appropriate dimension with ones 

H    Hessian matrix 

S    diagonal matrix defined by the components of s 

П   diagonal matrix defined by the components of π  

I   identity matrix 

αP, αD     primary and dual step size 

α0    safety factor 

Qcap   no-load capacitive reactive power compensation 

Pi, Qi         active and reactive powers injected into network at bus i 

Ui, Uj   bus voltages at i and j 

Gij, Bij       mutual conductance and susceptance between bus i and bus j 

Pgi, Qgi,         active and reactive power of generator at bus i 

θij               voltage angle difference  between bus i and bus j 

gk              conductance of branch k 

NB, Nb             number of buses and branches in the system 

PWGi    wind farm i power output 

Pwind    total wind power 

NW, NG     number of wind generators and conventional generators in the system 

LFSIG   system losses with FSIG 

LDFIG   system losses with DFIG 

LuDFIG   system losses with unconstrained DFIG 

Pgi
min

, Pgi
max

 minimum and maximum active power limits of generator at bus i 

Qgi
min

, Qgi
max

 minimum and maximum reactive power limits of generator at bus i 
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Tables 

Table 1: Generator Data 

 
Active Power (MW) Reactive Power (MVAr) 

Bus no. Lower limit Upper Limit Lower limit Upper Limit 

1 50 200 -20 250 

2 20 80 -20 100 

5 15 50 -15 80 

8 10 35 -15 60 

11 10 30 -10 50 

13 12 40 -15 60 

 

Table 2: Voltage and reactive power variations for 4 × 9.2 MW wind farms 

 

Wind Farm 

Bus Voltage (pu) Reactive Power (MVAr) 

FSIG DFIG FSIG DFIG 

10 1.002 – 1.010 1.003 – 1.012 -1.75 to -0.53 2.44 to 2.62 

14 1.030 – 1.038 1.034 – 1.042 -1.8 to -0.65 1.6 to 1.87 

18 1.002 – 1.028 1.009 – 1.020 -1.74 to -0.52 3.02 

30 0.954 – 1.011 0.974 – 1.030 -0.4 to -1.75 2.1 to 3.0 

 

Table 3: Voltage and reactive power variations for 4 × 36.8 MW wind farms 

Wind Farm 

Bus Voltage (pu) Reactive Power (MVAr) 

FSIG DFIG FSIG DFIG 

10 1.004 – 1.008 1.008 – 1.013 -6.7 to -2.1 12.11 

14 1.040 – 1.049 1.044 – 1.049 -7.4 to -2.8 -4.4 to 1.4 

18 1.018 – 1.025 1.032 – 1.042 -7.0 to -2.1 5.9 to 6.1 

30 0.996 – 1.034 1.020 – 1.049 -1.45 to -3.65 1.1 to 2.7 
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Figure 2: DFIG capability chart 



 
 

Figure 3: IEEE 30-bus system, including FSIG/DFIG wind farms 

Figure 4: System losses with 4 × 9.2 MW installed wind capacity 



 
Figure 5: Extra loss reduction with 4 × 9.2 MW of DFIG cf. FSIG wind capacity 
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Figure 6: Net reactive power export for 100% load condition:  (a) FSIG, (b) DFIG 

 

 
Figure 7: System losses with 4 × 36.8 MW installed wind capacity 
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Figure 8: Net reactive power export for 100% load condition: (a) FSIG, (b) DFIG 



 
Figure 9: Bus voltages for DFIG technology under 100% load condition 

 

 
Figure 10: System losses for 0.95 pf/unconstrained converter ratings with 4 × 36.8 MW DFIG 

installations 



 
Figure 11: System loss reductions for 4 × 36.8 MW FSIG/DFIG installations 

 
Figure 12: Normalised system demand and wind generation for Ireland system 



 
Figure 13: System active power losses for 4 × 9.2/36.8 MW wind farm installations 
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(b) 

Figure 14: Bus 14 variations for 4 × 9.2/36.8 MW wind farm installations: (a) voltage, (b) reactive 

power 
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