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Clustering, Classification and Explanatory 
Rules from Harmonic Monitoring Data 

Ali Asheibi, David Stirling, Danny Sutanto and Duane Robinson 
The University of Wollongong 

Australia 

1. Introduction 
With the increased use of power electronics in residential, commercial and industrial 
distribution systems, combined with the proliferation of highly sensitive micro-processor 
controlled equipment, a greater number of distribution customers are becoming sensitive to 
excessive harmonics in the supply system. In industrial systems for example, harmonic 
losses can increase the operational cost and decrease the useful life of the system equipment 
(Lamedica, et al., 2001). For these reasons, large industrial and commercial customers are 
becoming proactive with regards to harmonic monitoring. The deregulation in the utility 
industry makes it necessary for some utilities to carry out extensive harmonic monitoring 
programs to retain current customers and targeted new customers by ensuring disturbance 
levels remain within predetermined limits (Dugan, et al. 2002). This will lead to a rapid 
escalation of harmonic data that needs to be stored and analysed.  
Utility engineers are now seeking new tools in order to extract information that may 
otherwise remain hidden within this large volume of data. Data mining tools are an obvious 
candidate for assisting in such analysis of large scale data. Data mining can be understood 
as a process that uses a variety of analysis tools to identify hidden patterns and relationships 
within data. Classification based on clustering is an important unsupervised learning 
technique within data mining, in particular for finding a variety of patterns and anomalies 
in multivariate data through machine learning techniques and statistical methods. 
Clustering is often used to gain an initial insight into complex data and particularly in this 
case, to identify underlying classes within harmonic data. Many different types of clustering 
have been reported in the literature, such as: hierarchical (nested), partitioned (un-nested), 
exclusive (each object assigned to a cluster), non-exclusive (an object can be assigned to 
more than one cluster), complete (every object should belong to a cluster), partial (one or 
more objects belong to none), and fuzzy (an object has a membership weight for all clusters) 
(Pang, et al., 2006).  
A method based on the successful AutoClass (Cheeseman & Stutz, 1996) and the Snob 
research programs (Wallace & Dowe, 1994); (Baxter & Wallace, 1996) has been chosen for 
our research work on harmonic classification. The method utilizes mixture models 
(McLachlan, 1992) as a representation of the formulated clusters. This research is principally 
based on the formation of such mixture models (typically based on Gaussian distributions) 
through a Minimum Message Length (MML) encoding scheme (Wallace & Boulton, 1968). 
During the formation of such mixture models the various derivative tools (algorithms) allow 
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for the automated selection of the number of clusters and for the calculation of means, 
variances and relative abundance of the member clusters. In this work a novel technique has 
been developed using the MML method to determine the optimum number of clusters (or 
mixture model size) during the clustering process. Once the optimum model size is 
determined, a supervised learning algorithm is employed to identify the essential features of 
each member cluster, and to further utilize these in predicting which ideal clusters any new 
observed data may best described by.  
This chapter first describes the design and implementation of the harmonic monitoring 
program and the data obtained. Results from the harmonic monitoring program using both 
unsupervised and supervised learning techniques are then analyzed and discussed. 

2. Harmonic monitoring program 
A harmonic monitoring program (Gosbell et al., 2001); (Robinson, 2003) was installed in a 
typical 33/11kV MV zone substation in Australia that supplies ten 11kV radial feeders. The 
zone substation is supplied at 33kV from the bulk supply point of a transmission network. 
Fig. 1 illustrates the layout of the zone substation and feeder system addressed with this 
harmonic monitoring program.  
Seven monitors were installed; a monitor at each of the residential, commercial and 
industrial sites (sites 5-7), a monitor at the sending end of the three individual feeders (sites 
2-4) and a monitor at the zone substation incoming supply (Site ID 1). Sites 1-4 in Fig. 1 are 
all within the substation at the sending end of the feeders identified as being of a 
predominant load type. Site 5 was along the feeder route approximately 2km from the zone 
substation, feeds residential area. Site 6 supplies a shopping centre with a number of large 
supermarkets and many small shops. Site 7 supplies factory manufacturing paper products 
such as paper towels, toilet paper and tissues.  
Based on the distribution customer details, it was found that Site 2 comprises 85% 
residential and 15% commercial, Site 3 comprises 90% commercial and 10% residential and 
Site 4 comprises 75% industrial, 20% commercial and 5% residential. 
The monitoring equipment used is the EDMI Mk3 Energy Meter from Electronic Design and 
Manufacturing Pty. Ltd. (EDMI, 2000). Three phase voltages and currents at sites 1-4 were 
recorded at the 11kV zone substation and at the 430V sides of the 11kV/430V distribution 
transformers at sites 5-7, as shown in Fig. 1. The memory capabilities of the above meters, at 
the time of purchase limited recordings to the fundamental current and voltage in each 
phase, the current and voltage Total Harmonic Distortion (THD) in each phase, and three 
other individual harmonics in each phase. 
For the harmonic monitoring program, the harmonics selected for recording were the 3rd, 5th 
and 7th harmonic currents and voltages at each monitoring site, since these are typically the 
most significant harmonics. The memory restrictions of the monitoring equipment dictated 
that the sampling interval would be constrained to 10 minutes. This follows the suggested 
measurement time interval by the International Electrotechnical Commission (IEC) standard 
as given in IEC61000-4-30 for harmonic measurements, inter-harmonic and unbalances 
waveforms. The standard is regarded as best practice for harmonic measurement and it 
recommends 10 minute aggregation intervals for routine harmonic survey. Each 10 minute 
data sample represents the aggregate of the 10-cycle rms (root mean squared) magnitudes 
over the 10 minutes period.  A recent study (Elphick, et al., 2007) suggested that statistically, 
sampling at faster rate will not provide additional significant extra insight. 
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Fig. 1. Single line diagram illustrating the zone distribution system. 

The data retrieved from the harmonic monitoring program spans a period from August 1999 
to December 2002. Figs. 2 and 3, show a typical output data from the monitoring equipment 
of the fundamental, 3rd, 5th and 7th harmonic currents in Phase ‘a’ at sites 1 and 2, taken on 
12 - 19 January 2002 showing a 10-min maximum fundamental current of 1293 Amps and 
minimum fundamental current of 435 Amps. It is obvious that for the engineers to 
realistically interpret such large amounts of data, it will be necessary to cluster the data into 
meaningful segments. 

 
Fig. 2. Zone substation (Site 1) weekly harmonic current data from the monitoring 
equipment. 
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3. Minimum Message Length (MML) technique in mixture modelling method 
The MML technique and mixture modelling was initially developed by Wallace and Boulton 
in 1968 through their classification program called Snob (Wallace & Boulton, 1968). The 
program was successfully used to classify groups of six species of fur seals. Since then, the 
program has been extended and utilised in different areas, such as psychological science, 
health science, bioinformatics, protein and image classification (Agusta, 2004). Mixture 
Modelling Methods using MML technique have also been applied to other real world 
problems such as human behaviour recognition and the diagnosis of complex issues in 
industrial furnace control (Zulli & Stirling, 2005).  
 

 
Fig. 3. Residential feeder (Site 2) weekly harmonic Current data from the monitoring 
equipment. 

The Minimum Message Length inductive inference methodology seeks to identify efficient 
models by evaluating the size of a hypothetical message that describes each model together 
with any data which does not fit to the supposed model (exceptions). By evaluating this 
message length, the algorithm is able to identify, from a sequence of plausible models, those 
that yield an incrementally improving efficiency, or reducing size. The general concept here 
is that the most efficient model, describing the data will also be the most compact. 
Compression methods generally attain high densities by formulating efficient models of the 
data to be encoded.  
The encoded message here consists of two parts. The first of these describes the model and 
the second describes the observed data given that model. The model parameters and the 
data values are first encoded using a probability density function (pdf) over the data range 
and assume a constant accuracy of measurements (Aom) within this range. The total 
encoded message length for each different model is then calculated and the best model 
(shortest total message length) is selected. The MML expression is given as:  

 (D/K) L  (K) L    K)(D, L +=  (1) 

where: 
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K  :  mixture of clusters in model 
L (K) : the message length of model K  
L(D/K) : the message length of the data given the model K 
L (D, K) : the total message length 

 
Initially given a data set D, the range of measurement and the accuracy of measurement for 
the data set are assumed to be available. The message length of a mixture of clusters each 
assuming to have Gaussian distributions with their own mean (µ) and variance (σ) can be 
calculated as follows: (Oliver & Hand, 1994).  
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where: 
Aom:  accuracy of measurement 
s  : sample standard deviation 
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An example of how the Mixture Modelling Method using MML technique works, can be 
illustrated by applying the method to a small data set that contained five distinct 
distributions of data points (D’s) each of which were randomly generated (D1, D2, …, D5), 
with its own mean and standard deviation. The generated clusters that were subsequently 
correctly identified through the MML algorithm are shown in Table 1 and the normal 
distributions of these clusters are superimposed on the data as shown in Fig. 4.  
 

 
Table 1. The parameters (μ and σ) of the five generated clusters. 

 
Fig. 4. Five randomly generated clusters each with its own mean and standard deviation. 

This mixture modelling approach using the MML technique was used for harmonics 
classification to discover similar groups of records in the harmonic database; this included 
clustering the harmonic data from the test system described in section 2. ACPro, a 
specialised data mining software tool for the automatic segmentation of databases, was 
primarily used in this work. The preparation of the harmonic data and clustering process 
are explained in the next section. 

3.1 Data preparation and clustering 
The dominant harmonic currents and voltages attributes identified in Section 2 (3rd, 5th, 7th 
and THD) were selected from the four different sites; Substation (Site 1), residential (Site 5), 
commercial (Site 6) and industrial (Site 7) ⎯ as per Fig. 1. The resulting data set used in this 
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application is one file of 8064 instances which consists of four combined files (4×2016) from 
the selected sites taken from 12-25 January 2002 inclusive. This data was normalised by 
dividing each data point by the typical values of each corresponding attribute. The 
suggested typical value for the harmonic currents is the maximum value whereas for the 
harmonic voltage is the average value. The maximum value of the harmonic current 
attributes and the average value of harmonic voltage after normalisation is one. The 
normalised attributes were selected as input features to the MML algorithm with a given 
accuracy of measurement (Aom) for each attribute. The number of clusters obtained was 
automatically determined based on the significance and confidence placed in the 
measurements, which can be estimated using the entire set of measured data. Each cluster 
contains a collection of data instances that have been so assembled according to an inferred 
(learnt) pattern, and the abundance of each group is calculated over the full data range. The 
abundance value for each cluster represents the proportion of data that is contained in the 
cluster in relation to the total data set. If for example, only one cluster was formed then the 
single cluster abundance value will be 100%. Each generated cluster can therefore be 
considered as a profile of the twelve variables (being the 3rd, 5th, 7th and THD for each of 3 
phases) within an acceptable variance. If new data lies beyond the clusters associated 
variance, another cluster is created. Using a basic spreadsheet tool the clusters are 
subsequently ordered inversely proportional to the actual abundance, i.e. the most abundant 
cluster is seen as, s0, and those that are progressively rarer have a high value type numbers. 

4. Results and outcomes 
The following section provides an array of results and outcomes relating to the mixture 
modelling afforded by the MML clustering algorithm, as well as other associated 
techniques. These include the detection of anomalous patterns within the harmonic data 
and, the simplification or transforming of the mixture model through an abstraction process. 
Without knowing in advance the appropriate size for a mixture model, i.e. its ideal number 
of clusters, abstraction to a fewer number of super groups, often assists in perceiving the 
associated contexts each super group. A range of detail applications illustrates this 
approach. Subsequent insights arising from these operations have lead to a novel outcome 
allowing for the prior identification of the correct model size for the harmonic data. Further 
inspection of interesting clusters or super groups is also facilitated through the use of 
supervised learning, wherein an essential (or minimal) set of influencing factors behind each 
is derived in a symbolic form.   

4.1 Anomaly detection and pattern recognition 
Initially six clusters were specified as input parameters to the MML data mining program, 
with cluster s5 having the least abundance at 6%. However, the value (mean) of the fifth 
harmonic in this cluster is at its maximum for all of the data. This cluster (s5) acquires its 
importance from both the high value of the fifth harmonic current (CT1_Harm_5) and its 
least number of occurrences. The second highest value of the fifth harmonic current is 
associated with cluster s1 at 0.78 of the maximum value an abundance of 22%. This cluster 
might be as important as s5 because it has high fifth harmonic current with a high frequent 
rate nevertheless the fundamental current (CT1_Fund) is very low. 
The concept of rare clusters may also be used to identify the most significant distorting 
loads at different customer sites. Fig. 6 illustrates a mosaic of patterns of the six clusters (see 
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Fig. 5) over the period of one week at sites 1, 5, 6 and 7 that are represented in Fig. 1. Here, 
all clusters are represented as a certain shades of grey in proportion to the abundance of 
each cluster, i.e. the least abundant cluster (s5) will appear as black and the most abundant 
cluster (s0) will be the lightest shade of grey. Noticeable characteristics from Fig. 6 include 
the two distinctive darker patterns towards the left hand side of the Medium Voltage 
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Fig. 5. Fundamentals and 5th harmonic current clusters in a single phase. 

 
Fig. 6. Clusters of harmonic emissions from the different customer loads and system overall 
for a one week period. 
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(MV) 33/11 kV substation data (Site 1). This indicates that the least abundant occurrences 
appear during the mornings of the weekend days. Also the commercial site, Site 6, exhibits a 
recurring pattern of harmonics over each day, noting that the shopping centre is in 
operation seven days a week. The industrial site (site 7) shows that there is a distinctly 
different pattern on weekend than during weekdays. The residential customer clusters (site 
5) are somewhat more random than the other sites, suggesting that harmonic emission 
levels in this site follow no well defined characteristics. 

4.2 Abstraction of super groups 
From the results from the previous section it can be observed that data mining can become a 
useful tool for identifying additional information from the harmonic monitoring data, 
beyond that which is obtained from standard reporting techniques.  
Further additional information can be retrieved by using the Kullback-Lieber (KL) distance 
(Duda et al., 2001)which is a measure of similarities and dissimilarities between any two 
distributions (clusters). A multidimensional scaling algorithm (MDS) is utilised to process 
the resultant KL distances. This enables the generation a 2D geometric visualization 
(interpretation) in conjunction with an interactive link analysis, which can ultimately 
suggest what combinations of clusters, and neighbourhoods of clusters, could be merged to 
form various (fewer) super–groups.  
To explain the concept of super−groups, a subset of the harmonic data described in Section 2 
being (3rd, 5th, and 7th) from different sites (1, 5, 6, 7) was used as selected attributes for the 
MML segmentation. This time ACPro was allowed to determine the number of clusters itself 
resulting in eleven clusters (s0, s1, s2... s10). A detail of the abundances, means and standard 
deviations of the 5th harmonic current across these 11 clusters is illustrated in Fig. 7. The 
Kullback-Lieber tool in ACPro is applied on the model to generate the lower triangular 
11×11 matrix of KL−distances shown in Table 2. 
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Fig. 7. Abundance, mean and standard deviation for each cluster of 5th harmonic current in 
phase ‘a’. 
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Table 2. Kullback-Lieber distances between components of the 11 cluster mixture model. 

The highlighted distance values represent the three largest and the three smallest distance 
values. For example, the distance between s3 and s1 is given as 3186, which is the largest 
distance, which suggests that there is  a considerable difference between these two clusters, 
while on the other hand the distance between s10 and s5 is only 34, which suggests that 
there is a lot of similarity between these two clusters. 
The links between all clusters, based on the KL−distances, were visualized using a multi 
dimensional scaling (MDS) program (Interlink, 2007), which effectively reduces an 
11−dimensional model into a two dimensional representational graph. The resulting super-
groups were subsequently formed by removing any link whose distance exceeds a certain 
threshold. The obtained super-groups (A, B, C, D and E) are shown in Fig. 8. 
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Fig. 8. Super-group abstraction by MDS. 

Most of the super−group abstractions are formed based on the site type, for example 
supergroup A covers the industrial site, supergroup D covers the substation site, 
supergroup C and E covers the commercial sites, with supergroup C being separated 
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because the distances between s9 with s2 and s9 with s1 are larger than the distance 
between s1 with s2. Super-group B is formed from clusters containing data from all sites. 
The residential site does not seem to have a particular supergroup which means that the 
influence of harmonic emission (or participation) from this site is very low. The 
concurrences of two or more of these super-groups at different sites indicate that there is a 
mutual harmonic effect between those sites at that particular time. For example, a temporal 
correspondence of super-group A at the industrial site can be observed with both 
super−group D at the substation site and super−group E at the commercial site early in the 
morning of each day as shown in Fig. 9. The associated pattern of harmonic factors that 
might exist in the formation of these super−groups can, in future, be extracted using the 
classification techniques of supervised learning.  

4.3 Detection of harmonic events 
The number of the clusters in the previous sections was either specified as input parameters 
to the MML data mining program or automatically generated by the program itself given a 
data set D and its accuracy of measurement, Aom. In this section, however, the message 
length criterion of the MML is utilized to choose the model (number of clusters) that best 
represent the data. The smaller the encoded message length the better the model fits the 
data. Therefore the program was controlled to produce a series of models each with an 
increasing number of clusters for the same fixed values of Aom, and the message lengths of 
these models have been plotted against the number of clusters as shown in Fig. 10.  
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Fig. 9. Super-groups in all sites over one week. 

In this case, the best model to represent the data was identified as that with six clusters. The 
reasoning behind selecting this number of clusters is that the decline in the message length 
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significantly decreases when the model size reaches 6 clusters, and the message length is 
comparatively constant afterward as shown in Fig. 10. In other words, this can be 
considered to represent the first point of minimum sufficiency for the model. 
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Fig. 10. Message length vs. number of generated clusters. 

Using a basic spreadsheet tool the clusters are subsequently sorted in ascending order (s0, 
s1, s2, s3, s4 and s5) based on the mean value of the fundamental current, such that cluster 
s0 is associated with the lighter off peak loads period whilst cluster s5 related to the heavier 
on-peak load periods as shown in Fig. 11. The mean value (μ) of the fundamental, 5th and 7th 
currents along with the standard deviation (σ) and the abundance (π) of each model cluster 
are detailed in Table 3. 
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Fig. 11. Clusters obtained superimposed on the phase ‘a’ fundamental waveform at 
substation site. 
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Fundamental  
current 

5th  Harmonic 
current 

7th  Harmonic 
current Cluster Abundance 

(π) 
Mean (μ) SD (σ) Mean (μ) SD (σ) Mean (μ) SD (σ) 

s0 0.068386 0.096571 0.041943 0.165865 0.130987 0.062933 0.022882 

s1 0.155613 0.106102 0.061533 0.445056 0.123352 0.250804 0.127779 

s2 0.056779 0.1694 0.093434 0.300385 0.14996 0.115216 0.028599 

s3 0.090994 0.35053 0.132805 0.308374 0.120799 0.330834 0.142327 

s4 0.342654 0.38735 0.123757 0.524376 0.193181 0.604311 0.18195 

s5 0.285559 0.728608 0.095226 0.5218 0.191722 0.516901 0.149544 

Table 3. Generated model detailing the abundance value (π) of the six cluster a long with 
the mean (μ) and standard deviation (σ). 

Each generated cluster can therefore be considered as a profile of the three variables 
(fundamental, 5th and 7th harmonic currents) within an acceptable variance. If new data lies 
beyond this variance, additional clusters are created until all of the data is enclosed within 
the generated model as shown in Fig. 12.  
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Fig. 12. Graphical profile view of model clusters indicating the statistical parameters mean 
(μ), standard deviation (σ) and abundance (π). 

Despite the cluster labels having no specific meaning when initially generated, one can 
appreciate the benefit of their visual profiles in conjunction with previous sorting process, in 
particular one can see that cluster s5 not only has the highest fundamental current, but also 
the highest 5th harmonic current. This infers that the high 5th harmonic currents are due to 
an overloading condition. Fig. 12 also highlights that cluster s2 (and to a lesser extent s0) 
have a very low abundance. These may be viewed as anomalous, and potentially 
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problematic clusters as described later. Two of these clusters (s5, s2) are further examined to 
identify different operating conditions based on the various attributes used in the data 
(fundamental, 5th and 7th harmonic currents) as follows: 

4.3.1 Cluster s5 at residential site 
Fig. 13 illustrates the difference in harmonic clusters at residential site between the normal 
weather days and the hot days. In this polar coordinate plot the variable magnitude 
represented by the length of the radius vector of the circle whereas the angle from the x-axis 
to the radius vector represents the time of the day.  It is evident that the MML has identified 
s5 cluster occurring more often at daytime during the hot period compared to the days 
when the temperature is relatively mild. It can also be observed from Fig. 13, that there is a 
period of peak load (cluster s5) around midnight, and following discussion with the utility 
engineer, we were informed that this is related to turning-on of the off-peak water heaters. 
 

 
Fig. 13. Normal and hot days at residential site (Site 2). 

4.3.2 Cluster s5 at industrial site 
The 5th harmonic current at industrial site (Site 4) in different days of the week is shown in 
Fig. 14. On Saturday, for example, cluster s5 is only present from early morning to early in 
the afternoon which may indicate that an industrial process that could produce the levels of 
5th harmonic current, that characterize this cluster, has been terminated at around 2 pm.  
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Fig. 14. 5th harmonic current clusters at industrial site for different week days. 

On Sunday however, the cluster s5 has disappeared inferring that these loads were off. 
These loads were on again during the weekday at day and night time showing the long 
working hours in this small factory at the weekdays. Similar results of the 5th harmonic 
current can be seen at the commercial site, see Fig. 15. 
 

 
Fig. 15. 5th harmonic current clusters at commercial site for two different week days. 

4.3.3 Cluster s2 at substation site.  
Generally by examining the behaviour of MML model classifications (based on the recorded 
data) one is able to attribute further meaning to each of its cluster components(Asheibi, 2006). 
For example, it is noted that there are several sudden changes to cluster s2 at particular time 
instances during the day. It appears from Fig. 16(b) that this is due to sudden changes in the 7th 
harmonic current. After further investigation of the reactive power (MVAr) measurement at 
the 33kV side of the power system shown in Fig. 16(c), it can be deduced that the second 
cluster (s2) is related to a capacitor switching event. Early in the morning, when the system 
MVAr demand is high as shown in Fig. 16(c), the capacitor is switched on in the 33kV side to 
reduce bus voltage and late at night when the system MVAr demand is low, the capacitor is 
switched off to avoid excessive voltage rise. By just observing the fundamental current, it is 
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difficult to understand why the second cluster has been generated. The 7th harmonic current 
and voltage plots as shown in Fig. 16(b) provides a clue that something is happening during 
cluster s2, in that the 7th harmonic current increases rapidly and 7th harmonic voltage 
decreases, although the reason is still unknown. In this case, the clustering process correctly 
identified this period as a separate cluster compared to other events, and this can be used to 
alert the power system operator of the need to understand the reasoning for the generation 
of such a cluster, particularly when considering the fact that the abundance value for s2 is 
quite low (5%). When contacted, the operator identified this period as a capacitor switching  
event which can be verified from the MVAr plot of the system (which was not used in the 
clustering algorithm). The capacitor switching operation in the 33kV side can also be 
detected at the other sites (sites 2, 3 and 4) at the 11kV side. 
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Fig. 16. Clusters at substation site in two working days (a) Clusters superimposed on the 
fundamental current waveform, (b) 7th harmonic current and voltage data. (c) MVAr load at 
the 33kV. 

4.4 Determination of the optimum number of clusters in harmonic data 
Determining the optimum number of clusters becomes important since overestimating the 
number of clusters will produce a large number of clusters each of which may not 
necessarily represent truly unique operating conditions, whereas underestimation leads to 
only small number of clusters each of which may represent a combination of specific events. 
A method is developed to determine the optimum number of clusters, each of which 
represents a unique operating condition. The method is based on the trend of the 
exponential difference in message length when using the MML algorithm. The MML states 
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that the best theory or model K is the one that produces the shortest message length of that 
model and data D given that model. From information theory, minimizing the message 
length in an MML technique is equivalent to maximizing the posterior probability in 
Bayesian theory (Oliver, et al. , 1996). This posterior probability of Bayes’ theorem is given 
by:  

 
Prob(D)

     (D/K) L * (K) Prob    K)|(D  Prob =  (8) 

 

Since the minimum message length in (1), is equivalent to the maximum posterior 
probability in (8), this yields: 

 )|(Pr)|( KDobKDL =  (9) 
 

This suggests that the message length declines as more clusters are generated and hence the 
difference between the message lengths of two consecutive mixture models is close to zero 
as it approaches its optimum value and stays close to zero. A series of very small values of 
the difference of the message length of two consecutive mixture models can then be used as 
an indicator that an optimum number of clusters has been found. Further, this difference 
can be emphasised by calculating the exponential of the change in message length for 
consecutive mixture models, which in essence represents the probability of the model 
correctness prob(D|K). If this value remains constant at around 1 for a series of consecutive 
mixture models then the first time it reaches this value can be considered to be the optimum 
number of clusters. 
To illustrate the use of the exponential message length difference curve on determining the 
optimal number of clusters for the harmonic monitoring system described in Section 2, the 
measured fundamental, 5th and 7th harmonic currents from sites 1, 2, 3 and 4 in Fig.1 (taken 
on 12 -19 January 2002) were used as the input attributes to the MML algorithm (here 
ACPro). The trend in the exponential message length difference for consecutive pairs of 
mixture models is shown in Fig. 17.  
Here, the exponential of the message length difference does not remain at 1 after it initially 
approaches it, but rather oscillates close to 1. This is because the algorithm applies various 
heuristics in order to avoid any local minima that may prevent it from further improving the 
message length. Once the algorithm appears to be trapped at the local minima, ACPro tries 
to split, merge, reclassify and swap the data in the clusters found so far to determine if by 
doing so it may result in a better (lower) message length. This leads to sudden changes to 
the message length and more often than not, the software can generate large number of 
clusters which are generally not optimum.  
This results in the exponential, message length difference deviating away from 1 to a lower 
value, after which it gradually returns back to 1. To cater for this, the optimum number of 
clusters is chosen when the exponential difference in message length first reaches its highest 
value. Using this method, it can be concluded that the optimum number of cluster is 16, 
because this is the first time it reaches its highest value close to 1 at 0.9779. With the help of 
the operation engineers, the sixteen clusters detected by this exponential method were 
interpreted as given in Table 4. It is virtually impossible to obtain these 16 unique events by 
visual observation of the waveforms shown in Fig. 18. 
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Fig. 17. Exponential curve detect sixteen clusters of harmonic data. 

Cluster Event 

s0 5th harmonic loads at Substation due to Industrial site 

s1 Off peak  load at Substation site 

s2 Off peak load at Commercial site 

s3 Off peak at load Commercial due to Industrial 

s4 Off peak at Industrial site 

s5 Off peak at Substation site 

s6 and s7 Switching on and off  of capacitor at Substation site 

s8 Ramping load at industrial site 

s9 Switch on harmonic load at Industrial 

s10 Ramping load at Residential site 

s11 Ramping load at Commercial site 

s12 Switching on TV’s at Residential site 

s13 Switching on harmonic loads at Industrial and Residential 

s14 Ramping load at Substation due to Commercial 

s15 On peak load at Substation due to Commercial 

Table 4. The 16 clusters by the method of exponential difference in message length. 
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4.5 Classification of the optimal number of clusters in harmonic data 
The C5.0 algorithm classification tool was applied to the measured data set and the sixteen 
generated clusters, obtained from the previous section, as class labels to this data. The C5.0 
algorithm is an advanced supervised learning tool with many features that can efficiently 
induce plausible decision trees and also facilitate the pruning process. The resulting models 
can either be represented as tree-like structures, or as rule sets, both of which are symbolic 
and can be easily interpreted. The usefulness of decision trees, unlike neural networks, is 
that it performs classification without requiring significant training, and its ability to 
generate a visualized tree, or subsequently expressible and understandable rules. 
 

 
Fig. 18. Sixteen clusters superimposed on four sites (a) Substation, (b) Residential,                       
(c) Commercial and (d) Industrial. 

Two main problems may arise when applying the C5.0 algorithm on continuous attributes 
with discrete symbolic output classes. Firstly, the resulting decision tree may often be very 
large for humans to easily comprehend as a whole. The solution to this problem is to 
transform the class attribute, of several possible alternative values, into a binary set 
including the class to be characterised as first class and all other classes combined as the 
second class. Secondly, too many rules might be generated as a result of classifying each 
data point in the training data set to belong to which recognized cluster. To overcome this 
problem, the data is split into ranges instead of continuous data. These ranges can be built 
from the average parameters (mean (μ), standard deviation (σ)) of data distributions as 
listed in Table 5 and visualised in Fig. 19. 
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Range Range Name 

[       0   , μ–2*σ ] Very Low (VL) 

[ μ–2*σ ,   μ–σ   ] Low (L) 

[  μ–σ    ,   μ+σ   ] Medium (M) 

[  μ+σ    , μ+2*σ ] High (H) 

[ μ+2*σ ,      1     ] Very High (VH) 

Table 5. The continuous data is grouped into five ranges. 
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Fig. 19. The five regions of Gaussian distribution used to convert the numeric values. 

4.6 Rules discovered from the optimum clusters using decision tree 
Using the symbolic values (VL, L, M, H and VH) of input attributes (fundamental, 5th and 
7th harmonic current) and the binary sets of classes {(s0, other), (s1, other)…. (s15, other)} 
the C5.0 algorithm has been applied to as much times as the number of clusters (16 times) 
to uncover and define the minimal expressible and understandable rules behind each of 
the harmonic-level contexts associated with each of the sixteen cluster described in 
Section 4.4. Samples of these rules is shown in Table 6 for both s12 which has been 
identified as the cluster associated with switching on TV’s at the residential site and s13 
which is a cluster encompassing the engagement of other harmonic loads at both 
industrial and residential sites. The quality measure of each rule is described by two 
numbers (m, n) shown in Table 6, in brackets, preceding the description of each rules, 
where: 
m:        the number of instances assigned to the rule and  
n:         the proportion of correctly classified instances.  
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High 

Very High 

Normal (0.56951, 0.12993)
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For this process some 66% of the data has been used as the training set and the rest (33%) 
was used as test set, as generally the larger proportion of data used in training the better the 
result will be, however care needs to be exercised to avoid overtraining. The accuracy of the 
test data was reasonably close to that of the training data for most of the clusters. The full 
data set was also tested and resulted in the same accuracy level as sample data. Table 7 
shows the accuracy levels for cluster s7, s8, s9 and s10. The utilization of these rules on new 
data sets is explained in the next section. 
 
 

 
Table 6. The generated Rules by C 5.0 for clusters 12 and 13. 
 

  Data sets (January-April) 

Cluster ID Training (66%) Testing (33%) Full data 

s7 92.52 91.67 90.91 

s8 92.11 91.67 91.46 

s9 79.04 80.22 79.50 

s10 94.55 95.36 94.04 

Table 7. Model accuracy levels of training, test data and data sets for the cluster s7-s10. 

4.7 The C5.0 rules for prediction of harmonic future data 
The generated rules of the C5.0 algorithm used for classifying the optimum clusters have 
also been used for prediction. Several available harmonic data from different dates were 
used for this purpose. Data of the same period from another year (Jan-Apr 2001) and data 
from different time of the year (May-Aug 2002) were used to test the applicability of the 
generated rules. The model accuracy (see Fig. 20) for the similar data was considerably high 
whereas in different period data it was not always the case. This is due to fact that the 
algorithm performs well when the range of training data and test data are the same, but 
when these ranges are mismatched then the model will perform poorly and hence the 
accuracy of the future data (unseen data during training) will be low. 
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Fig. 20. Prediction Model accuracy levels for the clusters s7-s10 on training and future data. 

5. Conclusion 
Harmonic data from a harmonic monitoring program in an Australian medium voltage 
(MV) distribution system containing residential, commercial and industrial customers has 
been analyzed using data mining techniques. Unsupervised learning, and in 
particular,cluster analysis using MML, which searches for the best model describing the 
data using a metric of an encoded message, has been shown to be able to detect anomalies 
and identify useful patterns within the monitored harmonic data set. The output of the 
clustering process has to be appropriately displayed and interpreted in relation to the 
problem domain so that utility engineers can provide the relevant information. The 
technique presented in this work allows utility engineers to detect unusual harmonic events 
from monitored sites, using clustering, and then to subsequently characterize the obtained 
clusters using the classification techniques to infer information about future harmonic 
performance at the monitored sites. 
The C5.0 algorithm has been used to generate expressible and understandable rules 
characterising each cluster without requiring significant data training. The optimal number 
of clusters in different types of data sets was investigated using a proposed method based 
on the trend of the exponential difference in message length between two consecutive 
mixture models. Testing this method using various two-weekly data sets from the harmonic 
monitoring data over three year period show that the suggested method is effective in 
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determining the optimum number of clusters in harmonic monitoring data.  The continuous 
data has been split into ranges to avoid too many rules that might be generated. The C5.0 
algorithms were then used to generate considerable number of rules for classification and 
prediction of the optimum clusters. 

6. References 
Agusta, Y. (2004). Minimum Message Length Mixture Modelling for Uncorrelated and 

Correlated Continuous Data Applied to Mutual Funds Classification, PhD Thesis, 
Monash University, Clayton, Victoria, Australia. 

Asheibi, A., Stirling, D. and Soetanto, D. (2006). Analyzing Harmonic Monitoring Data Using 
Data Mining. In Proc. Fifth Australasian Data Mining Conference (AusDM2006), 
Sydney, Australia. CRPIT, 61. Peter, C., Kennedy, P.J., Li, J., Simoff, S.J. and 
Williams, G.J., Eds., ACS. 63-68. 

Cheeseman, P.; Stutz, J. (1996). Bayesian Classification (AUTOCLASS): Theory and Results, 
In  Advances in Knowledge Discovery and Data Mining,  Fayyad, U.; Piatetsky-Shapiro, 
G.; Smyth, P.; Uthurusanny, R., eds, pp. 153-180, AAAI press, Menlo Park, 
California. 

Elphick, S.; Gosbell, V. & Perera, S. (2007). The Effect of Data Aggregation Interval on 
Voltage Results, Proceedings of Australasian Universities Power Engineering Conference 
AUPEC07, Dec. 2007, Perth, Australia, Paper 15-02   

Gosbell, V.; Mannix, D.; Robinson, D. ; Perera, S. (2001) Harmonic Survey of an MV 
distribution system,  Proceedings of Australasian Universities Power Engineering 
Conference, pp. 338-342,  23-26 September 2001, Perth, Australia. 

Interlink, Knowledge Network Organising Tool (2007), KNOT, 24 August, 2007. 
http://www.interlinkinc.net/KNOT.html, 

Lamedica, R.; Esposito, G.; Tironi, E.;  Zaninelli, D. & Prudenzi, A. (2001) A survey on power 
quality cost in industrial customers. Proceedings of IEEE PES Winter Meeting, Vol 2, 
pp. 938 – 943. 

McLachlan, G. (1992). Discriminant Analysis and Statistical Pattern Recognition, Wiley, New 
York. 

Oliver, J.; Baxter, R. & Wallace, C. (1996). Unsupervised Learning using MML, Proceedings of 
the 13th Int. Conf in  Machine Learning:( ICML-96), pp. 364-372.  

Oliver, J. J. &  Hand, D. J. (1994) Introduction to Minimum Encoding Inference, [TR 4-94] 
Dept. Statistics. Open University. Walton Hall, Milton Keynes,UK. 

Pang, T.; Steinbach, M. & Kumar V. (2006). Introduction to Data Mining, Pearson Education, 
Boston. 

Robinson, D., “Harmonic Management in MV Distribution System” PhD Thesis, University 
of Wollongong, 2003. 

Wallace, C.; Boulton D.M. (1968). An information measure for classification The Computer 
Journal, Vol 11, No 2, August 1968, pp185-194.  

Wallace, C.; Dowe D. (1994). Intrinsic classification by MML – the Snob program, proceeding 
of 7th Australian Joint Conf. on Artificial Intelligence, World Scientific Publishing Co., 
Armidale, Australia,1994.    

Wallace, C. (1998). Intrinsic Classification of Spatially Correlated Data, The Computer Journal, 
Vol. 41, No. 8. 



 Theory and Novel Applications of Machine Learning 

 

68 

Zulli, P.; Stirling, D. (2005) "Data Mining Applied to Identifying Factors Affecting Blast 
Furnace Stave Heat Loads," Proceedings of the 5th European Coke and Ironmaking 
Congress. 


	Clustering, classification and explanatory rules from harmonic monitoring data
	Recommended Citation

	Clustering, classification and explanatory rules from harmonic monitoring data
	Abstract
	Keywords
	Disciplines
	Publication Details

	Clustering, Classification and Explanatory Rules  from Harmonic Monitoring Data

	Text1: Source: Theory and Novel Applications of Machine Learning, Book edited by: Meng Joo Er and Yi Zhou, 
 ISBN 978-3-902613-55-4, pp. 376, February 2009, I-Tech, Vienna, Austria
	Text2: Open Access Database www.intechweb.org


