
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information
Sciences

1998

Numerical algorithms for the computation of the Smith normal form of Numerical algorithms for the computation of the Smith normal form of

integral matrices, integral matrices,

C. Koukouvinos

M. Mitrouli

Jennifer Seberry
University of Wollongong, jennie@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers

 Part of the Physical Sciences and Mathematics Commons

Recommended Citation Recommended Citation
Koukouvinos, C.; Mitrouli, M.; and Seberry, Jennifer: Numerical algorithms for the computation of the
Smith normal form of integral matrices, 1998.
https://ro.uow.edu.au/infopapers/1156

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F1156&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F1156&utm_medium=PDF&utm_campaign=PDFCoverPages

Numerical algorithms for the computation of the Smith normal form of integral Numerical algorithms for the computation of the Smith normal form of integral
matrices, matrices,

Abstract Abstract
Numerical algorithms for the computation of the Smith normal form of integral matrices are described.
More specifically, the compound matrix method, methods based on elementary row or column operations
and methods using modular or p-adic arithmetic are presented. A variety of examples and numerical
results are given illustrating the execution of the algorithms.

Disciplines Disciplines
Physical Sciences and Mathematics

Publication Details Publication Details
C. Koukouvinos, M. Mitrouli and Jennifer Seberry, Numerical algorithms for the computation of the Smith
normal form of integral matrices, Congressus Numerantium, 133 (1998), 127-162.

This conference paper is available at Research Online: https://ro.uow.edu.au/infopapers/1156

https://ro.uow.edu.au/infopapers/1156

Numerical algorithms for the
computation of the Smith normal

form of integral matrices

c. Koukouvinos~ M. Mitrouli! and Jennifer Seberryt

Abstract

Numerical algorithms for the computation of the Smith
normal form of integral matrices are described. More specif­
ically, the compound matrix method, methods based on ele­
mentary row or column operations and methods using modular
or p-adic arithmetic are presented. A variety of examples and
numerical results are given illustrating the execution of the
algorithms.
AMS Subject Classification: Primary 65F30, Secondary 15A21,
15A36.
Key words and phrases: Smith normal form, numerical algo­
rithms, integral matrices.

1 Introduction

The Smith normal form of matrices has applications to many prob­
lems in pure and applied mathematics: for example, in the deter­
mination of the invariant polynomials and the elementary divisors
of polynomial matrices, see [5, p137-139]; in the matrix pencil ap­
proach for the study of linear time-invariant control systems, see[13];

"Department of Mathematics, National Technical University of Athens, Zo­
grafou 15773, Athens, Greece.

tDepartment of Mathematics, University of Athens, Panepistimiopolis, 15784,
Athens, Greece.

tDepartment of Computer Science, University of Wollongong, Wollongong,
NSW 2522, Australia.

CONGRESSUS NUMERANTIUM 133 (1998), pp.127-162

in solving systems of linear diophantine equations [3]; in group the­
ory for the determination of basis of groups [21]; for the computation
of the set of finite and infinite elementary divisors, see [20]; in design
theory, and more specifically in Hadamard matrices, SBIBD(v, k, A),
D-optimal designs etc, see [24, p410-415], [15, 16]; in integer linear
programming, see [9, p317-354], in digital signal processing and in
algebraic topology research.

First we introduce some notation and summarize results on the
Smith normal form.

Let Rmxn be the set of all m X n real matrices. The unit (or
unimodular) elements of Rmxn are those with determinant ±l.

Definition 1 The matrices A, B of Rmxn are equivalent (written
B '" A) if B = P AQ for some unimodular matrices P E R mxm and
Q E Rnxn.

The following Theorem is due to Smith [23] and has been re­
worded from the theorems and proofs in MacDuffee [17, p41] and
Marcus and Minc [18, p44]. It is the most important theorem in the
area of equivalence, and quite possibly the most important theorem
in all of elementary matrix theory.

Theorem 1 If A = (aij) is any integer (or with elements from any
Euclidean domain) matrix of order n and rank r, then there is a
unique integer (or with elements from any Euclidean domain) matrix

such that A '" D and ai I ai+l where the ai are non-negative. The
greatest common divisor of the i X i subdeterminants of A is

If A '" E where

then ai+1 is the greatest common divisor of the non-zero elements of
F. 0

128

Definition 2 The ai of theorem 1 are called the invariants of A and
the diagonal matrix D is called the Smith normal form (SNF).

The above form of the SNF of a matrix was described in the original
paper of Smith [23] on this topic. The SNF can be similarly defined
on a nonsquare matrix.

Several numerical methods have been proposed and developed for the
computation ofthe SNF of a given integral matrix, see [1,2,5,6,8,9,10,
15,16] and references therein.

In the present paper we present a survey of the most impor­
tant existing numerical algorithms. Moreover, we develop a new
numerical algorithm to obtain the SNF of a matrix using exclusively
elementary row operations and greatest common divisor (GCD) eval­
uations. The described methods apply their computations to square
matrices but they can also be used for nons quare matrices too.

Throughout this paper, znxn denotes the set of all n X n integer
matrices, the symbol" II denotes any matrix norm and finally the
notation A(i : n, i : n) denotes a submatrix of the original matrix A
consisting of rows i, i + 1, ... , n and columns i, i + 1, ... , n of A. All
the algorithms presented are described in a MATLAB like language
which is very convenient for the description of procedures involving
matrices, see [19].

2 The compound-matrix method

2.1 Theoretical background

In this method the theoretical notion of compound matrices can
be applied. More precisely, the following theoretical background is
required. Let us first introduce some useful notation concerning se­
quences of integers and compound matrices.

Notation (2.1) see [18]

129

(i) Qp,n denotes the set of strictly increasing sequences of p in­
tegers (1 ::; p ::; n) chosen from 1, 2, ... , n. If a,{3 E Qp,n
we say that a precedes {3 (a < (3), if there exists an integer t

(1 ::; t ::; p) for which al = {31,· .. , at-l = {3t-l, a < {3, where
ai, {3i denote the elements of a, {3 respectively. This describes
the lexicographic ordering of the elements of Qp,n. The set of
sequences Qp,n will be assumed to be lexicographically ordered.

(ii) Suppose A = [ai,jj E n mxn , let k, p be positive integers satis­
fying 1 ::; k ::; m, 1 ::; p ::; n, and let a = (ill i2,··., ik) E Qk,m
and {3 = (jl ,j2, ... ,jp) E Qp,n- Then A[al {3] E n kxp denotes
the submatrix of A which contains the rows iI, i2, ... , ik and
the columns jl,h, ... ,jp-

(iii) Let A E nmxn and 1::; p::; min{m,n}, then the p-th com­
pound matrix or p-th adjugate of A is the (;) X (;) matrix
whose entries are det(A[al (3]), a E Qp,m, {3 E Qp,n arranged
lexicographically in a and (3. This matrix will be designated
by Cp(A).

Example 1: If A E Z3X3 and p = 2 then

Q2,3 = {(1, 2), (1, 3), (2, 3)} and C2(A) =

[

det(A[(1,2)/(1,2)]) det(A[(1, 2)/(1, 3)]) det(A[(1, 2)/(2, 3)]) 1
det(A[(1, 3)/(1, 2)]) det(A[(1, 3)/(1, 3)]) det(A[(1, 3)/(2, 3)])
det(A[(2, 3)/(1, 2)]) det(A[(2, 3)/(1, 3)]) det(A[(2, 3)/(2, 3)])

o
The above procedure produces the following numerical algorithm.

Algorithm COMREL

For a given matrix A E zmxn and for an integer p, 1 ::; p ::;
min{m, n}, the following algorithm computes the p-th compound

matrix of A, Cp(A) E zC;)xG).
If r. E nn the symbol A = [A, r] adds a column to matrix A while
the symbol A = [Aj r] adds a row to matrix A. The notation A = []
denotes an empty matrix while a = [] denotes an empty vector.

130

Construct the sets

Qp,m = {rl, ... ,rC;)}

Qp,n = {Cl, ... ,CC;)}

COMP = []
for i = 1,2, ... , length(Qp,m)

M=[]
for j = 1,2, ... , length(Qp,n)

elem = det(A[rifqj])
M = [M,elem]

COMP = [COMP;M]

Algorithm 2.1

2.2 Application of compounds to Smith form evalua­
tion

We apply the notion of compound matrices to the definitions given
in Section 1. The following procedure is derived for the evaluation of
the Smith form via compound matrices. We suppose that A E znxn
consists of coprime entries (otherwise the computation of the GCD
of all the given integer entries of A will be required).

Dl := 1
al := 1
for p = 2, ... ,n

evaluate Cp(A) = [Cij], i,j = 1,2, ... , (;)
find Dp := GCD(Cij), i,j, = 1,2, ... , (;)

ap := Dp/ Dp- l

SM := diag{ap}, p = 1, ... , n

Algorithm 2.2

131

2.3 Numerical interpretation of the Algorithm

The compound matrix technique can work satisfactorily for any given
integral matrix. The internal determinantal computations required
are based on using Gaussian elimination with partial pivoting which
forms a stable numerical method. A severe disadvantage of this
method is the rather high computational complexity, since calcula­
tions of order O(k~~4), kp E n are required. Thus, although the
method theoretically can work for the evaluation of any Smith nor­
mal form, in practice it is not recommended due to its high com­
plexity. Another drawback of this method is that it is not possible
to identify the left and right unimodular matrices and thus it is not
suitable in cases where these matrices are needed. One reasonable
method for compound matrix implementation is the parallel method
as parallel SNF computations may be very effective in practice. In
[12] parallel algorithms working for matrices of polynomials are pre­
sented.

Example 2: Let

~2 1

8

6 ~~ 1 Z4X4
4 10 14 E

18 26 34

be a given integral matrix. Compute its SNF (SM(A)) using the
compound matrix method.

STEP 1:
-444 -272 -680 144 360 0
-256 -156 -412 88 88 -88

C2(A) =
-564 -348 -932 168 48 -248

20 28 -348 -4 -76 -176
384 188 -708 -132 -516 -496
196 72 48 -76 -116 -24

D2 := GCD(C2(A)) = 4
a2 := 4/2 = 2

132

STEP 2:

[-184 4424 2992 -1584] 552 15144 8432 -4464
C3(A) = 552 3112 1008 -880

-184 3144 1200 -1320

D3 := GCD(C3(A)) = 8

a3 := 8/4 = 2

STEP 3:
C4(A) = 11776

a4 = 11776/8 = 1472

Sh{ = diag{2,2,2,1472}
o

3 Elementary Row(Column) Operations Meth­
ods

In order to produce algorithms which have less computational com­
plexity than the compound matrix method various different tech­
niques have been developed to carry out the required computations.
The central idea of these methods is to perform specific operations on
the original matrix and finally modify it to an appropriate form from
which the SNF can be directly derived. The following operations are
defined:

1. Elementary Row(Column) Operations (EROS or ECOS)

The EROS or ECOS operations consists of

a. Addition of integer multiples of one row (column) to an­
other.

h. Multiplication of a row (column) by-1.

133

c. Interchange of two rows (columns).

2. GCD Operations

The GCD operations are divided into the following two classes:

a. GCD determination.
For a given matrix A = [aij] E znxn let 9 = GCD(aij) =
GCD(A) be the GCD of its all entries. The above defi­
nition can be realized after the application of techniques
based on the Euclidean algorithm. Subsequently we present
the Euclidean algorithm which for two given numbers a,b
constructs their gcd.

Algorithm EUCLID

while a or b =I- 0
if b = 0

gcd=a
break

else if a > b
t=a mod b
a=a-tb
if a = 0

gcd=b
break

end
else swap a and b

b. The Make To Divide property.
For a given matrix A = [aij] E znxn in many approaches
one random element aij of the matrix is required to divide
another akl. For example,during reduction using row (col­
umn) operations then aij is required to divide akj (aik)

for various values of k and random i, j.

For a given matrix A = [1:.1,1:.2, ... ,1:.n]t E nnxn the following al­
gorithm ensures the above property for the elements Tij and Tkj when

134

row operations are performed. The symbol l x J denotes the greatest
integer less than or equal to x whereas the symbol r x 1 denotes the
least integer greater than or equal to x. Let also sign(x) be -1,0,1
according to whether x is negative, zero or positive.

Procedure MakeToDivide

while rij does not divide rkj

if rij > rkj

end

d = lrij/rkjJ

if sign(rij) = sign(rkj)
r~ := r~ - d . rt -, -, -k

else

else
rt := r~ + d . rt
-I ·-1 -k

d = lrkj/rijJ
if sign(rkj) = sign(rij)

d :=d-d.r.;
else

d:= d + d· r.~

Algorithm 3.1

Implementation of the Algorithm

When rij > rkj, Algorithm 3.1 requires at most log2(rkj) operations
for its execution. This is due to the fact that after the execution of
each row operation the row affected is reduced to less than one half
of its previous value.

In the following we develop some of the most important methods of
this category.

3.1 Bradley's method

Bradley's method was developed in [1].

135

For a given matrix A E znxn the basic idea of Bradley's method
is twofold:

1. After the application of EROS and GCD operations reduce A
to a diagonal form D = diag{ d1 , ... , dn }.

2. Using GCD operations ensure the Smith property d1 id2 i ... idn
for the diagonal elements of D.

In the following, we describe the numerical version of the method.
Let A = [1:.1,1:.2' ... ,1:.n]t E znxn be a given integer matrix. The

following algorithm constructs its SNF stored on a diagonal matrix
SM. The notation A(I'i: : A,j) denotes the vector (rk,j, rk+l,j, ... , r>..,j)t.

STEP 1: Reduction of A to a diagonal form
for i = 1,2, ... , n

ifrit=j:.Q.t

for j = i + 1, ... , n
if rii does not divide rij and rji

make it divide them
end

end
Apply Gaussian elimination to the i-th column of A
transforming it to a form Aa with the property
Aa(2 : n - i + 1, i) = 0
A:= Aa

end
SM:=A

STEP 2: Ensure the property SMlliSM22i·· .iSMnn
for the elements of S M

for i = 1,2, ... , n

if SMii does not divide SMkk'
for some k = i + 1, ; .. , n

Make it divide
end

end

136

Algorithm 3.2

Implementation of the Algorithm

In [1] analytical remarks concerning the performance of the above
algorithm have been developed. The required "make it divide" prop­
erty can be implemented using the algorithm 3.1. An upper bound
for the required computational complexity of STEP 1 equals !n2

(log2 Idet(A)1 + 3) +~2n3. STEP 2 of the above algorithm in gen­
eral, requires only a small number of multiplications. A significant
disadvantage of this algorithm is that it is not polynomial as was
pointed out in [4]. Thus, in transforming the integer matrix to its
SNF the number of digits of integers occuring in intermediate steps
does not appear to be bounded by a polynomial in the length of the
input data.

Example 3: Let A be the integer matrix of Example 2. Next we
compute its SNF, SM(A) according to Bradley's algorithm.

STEP 1: By Gauss transformations modify it to the form

[

2 0 0 0] o -222 -136 -340
o -128 -78 -206
o -282 -174 -466

STEP 2: Apply procedure MakeToDivide and after 6 steps
modify it to the form:

[

2
o 2
o 14
o -36

o
o 0 1 6 340

-4 206.
30 466

Apply
Gaussian

137

[~OO ~OO -J 217~]
138 6586

STEP 3: Apply procedure MakeToDivide and after 4 steps
modify it to the form:

[H ~ l~ 1 A;y [H ~ ~ 1 Gaussian o 0 -262 162 0 0 0 1472
The last matrix gives the SNF SM(A) of matrix A.

3.2 Kannan and Bachem's method

o

Kannan and Bachem's method was developed in [11]. For a given
matrix A E znxn the method is based on the computation of the
Hermite normal form (HNF) of A.

Theorem 2 Given a nonsingularnxn integer matrix A, there exists
an n X n unimodular matrix I(such that AI(is lower triangular with
positive diagonal elements. Further, each off-diagonal element of AI(
is nonpositive and strictly less in absolute value than the diagonal
element in its row. AI(is called the Hermite normal form (HNF) of
A. 0

Next, we describe the algorithm HNF which successively puts the
principal minors of orders 1,2, ... , n of A into HNF.

Algorithm HNF

Permute the columns of A such as
det (1 : k, 1 : k) =f; 0, 'if k = 1, ... , n
i := 1
While i =f; n

for j:= 1 : i
calculate
r = GC D(AU,j), AU, i + 1))
and p, q such as
r = p' AU,j) + q. AU, i + 1)

D = [p -AU, i + 1)/r 1
q AU,j)/r

138

end

end

A(:,j) = A(:,j). D
A(:,i+ 1) = A(:,i+ l)·D

if j> 1
REDUCE SIZE (j, A)

end
REDUCE SIZE (i + 1,A)
i := i + 1

Algorithm 3.3

Function REDUCE SIZE

IfA(:,k)<O
A(:,k) = -A(:,k)

end
For z = 1 : k - 1

A(:,z) = A(:,z) - fA(k,z)jA(k,k)lA(:,k)
end

Algorithm 3.4

Implementation of the Algorithm
The above algorithm is polynomial since all the intermediate cal­

culations are polynomial [11]. The following result was proved in
[11].

Lemma 3 If A = A(1), A(2), ... , A(n) are the matrices produced af­
ter the application of algorithm HNF, then

maxla(k)1 < 23n . n20n3 . maxla(1)112n3
',J - ',J

o

Thus a bound for the size of the intermediate numbers can be
produced in terms of the given initial matrix.

139

An extension of the above algorithm can easily calculate the left
an right multipliers. In the case where row operations are performed,
instead of column, Algorithm 3.3 computes the Left Hermite normal
form of the matrix (LHNF) i.e. matrix A will be transformed into
an upper triangular form H with positive diagonal elements. Fur­
ther, each off-diagonal element of H is nonpositive and strictly less
in absolute value than the diagonal element in its column.

Based on the above algorithms, we next describe an algorithm
computing the SNF of A. In the algorithm the following notation is
used. HNF(n - i, n - i, A) is the procedure which puts the bottom­
right-hand minor consisting of the last (n - i) rows and columns into
Hermite normal form. LHNF(n - i, i + 1, A) is the procedure which
puts the submatrix of A consisting of the last (n - i) rows and the
column i + 1 into left Hermite normal form.

Algorithm SNF

i := 0
While i -=I- n

repeat
for k = 1 : n - 1

Call LHNF(n-i,i+1,A)
Call HNF(n-i,n-i,A)

end
if A(i + 1, i + 1))' A(j, k), i + 1 ~ j ~ k,

i+1~k~n
Specify j, k

A(:,i + 1) = A(:,i + 1) + A(:,k)
end

until {A(i + 1,i + 1) I A(j,k), i + 1 ~ j ~ k,
i+1~k~n}

end

Algorithm 3.5

Implementation of the Algorithm
Algorithm SNF is polynomial since it performs at most

n 2 (logn maXlai,jl) + 2n HNF computations.

140

Example 4: Let A be the integer matrix of Example 2. Next we
compute its SNF, SM(A), using Kannan and Bachem's method.

STEP 1: Compute the LHNF taking as submatrix the first
column of the given matrix:

[

2 0 0 0] o -94 -58 -134
o -128 -78 -206
o -282 -174 -466

HNF [~ -32~ j J]
STEP 2: Compute the LHNF taking as submatrix the
second column of the modified matrix:

[

2 0
o 2
o 0
o 0

00] o 0
2 0

-64 1472

--+

HNF 0
[

2

LHNF ~

o 0
2 0
o 2
o 0

Remark 1 Chou and Collins' method

~] = SM(A)

1472
o

An extension and improvement of Kannan and Bachem's method
has been developed in [3]. In this method, starting with a given
square nonsingular matrix A E nnxn we apply preconditioning in
order to ensure that all its principal minors are nonsingular. In the
sequel, the n X n identity matrix is adjoined to the bottom of A,
and the new matrix is called A. Since A is of rank n, there exists a
nonsingular submatrix A* of A consisting of r linearly independent
rows of A and n - r rows of the n X n identity matrix. The main idea
of the algorithm is the transformation of A* into a pseudo-Hermite
matrix by applying a sequence of unimodular transformations to
A. A square nonsingular matrix is a pseudo-Hermite matrix or in
a pseudo-Hermite form, if it is lower triangular and the absolute
value of any off-diagonal element is less than the absolute value of
the diagonal element to its right. The transformation of A* into a
pseudo-Hermite matri~ enables the derivation of very good bounds,

141

of order n + rllogj3(lmaxai,jl + l)J,maXai,j =I 0, on the lengths of
the coefficients pertaining to A.

o

3.3 The new method (Simplify and Divide method).

In order to perform efficiently the row operations and reduce as much
as possible the number of GCD operations required on the one hand
and the size of the elements produced on the other, the following
new technique is proposed.

Let A E znxn be a given matrix. We apply to this matrix the
following procedure:

Fori=1,2, ... ,n
STEP 1: Make the GCD of A(i: n,i: n)

appear in the (i, i) position of A
STEP 2: Eliminate the entries of the vector

(ai+l,i,ai+2,i, ... ,an,i)t

After the termination of the above procedure the original matrix
A will have been transformed to an upper triangular form. The
diagonal elements of this form are actually the diagonal elements of
the SNF of A. In the implementation of the above technique the
problem of ensuring the GCD exists as an element is encountered.

Theorem 4 Let A = [aij] be an integer matrix. Suppose y=gcd of
all elements of A. Then y occurs in a matrix which is obtained from

A by using elementary row and column operations.

Proof. Let A = [r:.l,r:.2, ... ,r:.n]t E nnxn be a given matrix with
y = GCD(A) =I rij Vi,j. We want to modify the matrix A to
A' - [I I I I]t .c h' h . d . . t h - Ll,'" ,Li,'" ,1:.Jc, ... ,Ln lor w IC an III ex J eXlS s suc
as y = rij or rkj' Let gcd(A) is y. Divide all the elements of A by y
forming A'. Put y outside into the invariant. Now if ±1 appears in

142

the matrix we are through. Otherwise we know that the gcd of A'
is 1 (otherwise we wouldn't have had gcd(A)=y.) We check to see if
any row has two elements with gcd =1. If two elements have gcd=1
we use the Euclid process to get zero in one of these columns and 1
in the other. If not, every element in every row has a row gcd Yi for
the ith row. If for some i, Yi = 1 we check if the greatest common
divisors of the elements of the ith row are coprime. If two greatest
common divisors of specific elements are coprime we use the Euclid
process to make these greatest common divisors to appear and then
to get zero in one of these columns and 1 in the other. We now check
to see if any column has two elements with gcd =1 If two elements in
a column have gcd = 1 use Euclid process to get zero in one of those
rows and zero in the other. If not, every element in every column has
a column gcd Cj for the jth column. If for some j, Cj = 1 we check if
the greatest common divisors of the elements of the jth column are
coprime. If two greatest common divisors of specific elements are
coprime we use the Euclid process to make these greatest common
divisors to appear and then to get zero in one of these rows and 1 in
the other. If none of the above cases holds,we select randomly two
rows i,j and two columns k, m. This means the gcd of the matrix
can only occur across the contents of a rectangle for we have

Suppose gcd(YjCk, YiCm) = 1 (it must occur somewhere as gcd(A') =
1. If it is not straightforward, by performing elementary operations
we can always get gcd(ack' bcm) = 1). Use Euclid process to get

Suppose we have gcd(Ck, bcm) = 1 so ACk + Bbcm = 1. Further
suppose gcd(Ck, acm) i- 1 , for if it were 1 we could use the Euclid
process to get a 1 and a 0 in the first row by using elementary column
operations

Add A times the first column to the second and B times the

143

second row to the first obtaining

[
q aCm + ACk + Bbcm = aCm + 1 1
o bCm

Now if gcd(q,acm) i- 1 then gcd(Ck,acm + 1) = 1 and we use
the Euclid process to obtain 1 and 0 in the first row.

We now use a similar procedure where the gcd is not one for each
pair. Suppose gcd(Ck,acm) = a, gcd(a, b) = f3 and gcd(ck,bcm) = ,.
Write a = Al Ck + BI acm, f3 = A 2a + B 2b and, = A3Ck + B3bcm.
Add A3 times the first column to the second and B3 times the second
row to the first obtaining

[
COk aCm +, 1

bCm .

Now suppose gcd(Ck, acm) i- 1 and gcd(Ck, bCm) i- 1. Since Ck
divided every element of its column we use elementary row operations
to ensure q is the only non-zero element in its column. Rearrange
rows so we have

Ck bIcm dIcn

o b2cm d2cn

o b3cm d3cn

We now continue supposing the gcd of no pair of diagonal elements
is 1, nor the gcd of pairs of elements in any row or column. Sup­
pose gcd(b2 , b3 , .•. , bn) = f3. Then we use the Euclidean process,
elementary row operations and rearrangement of rows to obtain

Ck f3lcm eIcn ftcp

0 f3cm e2Cn h cp

0 0 e3Cn h cp

0 0 e4Cn f4cp

144

where f31 < f3. Let I = gcd(e3, e4,· .. , en) and 11 < I, 12 < I. Then
proceeding as before we obtain

Ck f31 Cm 11 Cn bl Cr

o f3cm 12Cn b2Cr

o 0 I~ ~~
o 0 0 b4Cr

o o o
D

The following examples demonstrates the use of the above The­
orem.

Example 5: Make the gcd of the following matrix to appear
among its entries.

A=
[

3150
4410
11025
7350

170170
190190
293930
248710

868434 2485830]
1036518 2803170
1397046 3213390
1108002 3063930

Since gcd(A)= 1, how can we make 1 to appear? We find the
gcd's of the rows and columns of the matrix. We have: Yl =
2, Y2 = 2, Y3 = 1, Y4 = 2 ,Cl = 105, C2 = 70, C3 = 42, C4 = 30.
Since Y3 = 1 we check if the gcd's of the elements of the third
row are coprime. If two gcd's of specific elements are coprime we
can use the Euclid process to make these gcd's to appear and then
to get zero in one of these columns and 1 in the other. We re­
mark that: gcd(a3ba32)= 35, gcd(a3ba33)= 21, gcd(a31,a34)= 15,
gcd(a32, a33)= 14, gcd(a32, a34)= 10, gcd(a33, a34)= 6, and gcd (gcd
(a3b a33), gcd(a32' a34))= 1. Thus, we will make 21 and 10 to appear
in the third row by using the Euclidean process. Finally we get the
matrix A' equal to:

[

-0.034726566

109 * -0.035349762
0.000000021

-0.013071198

-6.66225415 0.003284988
-7.71117077 0.003343956
0.000000010 0.000000147
-3.67395673 0.001236564

145

5.05923526]
5.85576986

0.000000020
2.78995834

Since 21 and 10 appeared in the final matrix, by applying again the
Euclid process we will make 1 to appear among the entries of the
matrix. D

Example 6: Make the gcd of the following matrix to appear among
its entries.

A = [1
6
0 165]

Since gcd(A)= 1, how can we make 1 to appear? We find the gcd's of
the rows and columns of the matrix. We have: Yl = 6, Y2 = 5, Cl =
2, C2 = 3. The gcd of the matrix will occur across the contents of the
rectangle:

[
6,26,3]
5·2 5·3

If we subtract the second row from the first we get:

for which gcd(2,3) = 1. By using the Euclid process we get:

and since gcd(2,3) = 1, after the application of Euclid process the
gcd will appear in the matrix. D

A crucial step in reducing the size of the elements produced at inter­
mediate steps for each value of i is the division of the current matrix
A(i : n, i : n) by its present GCD 9i.

<-ind1-l-+
Thus we can finally compute the following SNF for A: diag{ 1, ... ,1

<-ind2 -ind1-+ <-ind3 -ind2 -+ <-n-indn+l-+
},91*{ 1, ... ,1 },91*92*{ 1, ... ,1 }, .. ·,91* .. ·*9n*{ 1, ... ,1
}} The vectors fact = (91,92, ... ,9n)t and ind = (ind1, ... ,indn)t
form the factors and their indicies for the SNF of A. Next we de­
scribe the numerical algorithm for this technique.

Algorithm SDM

146

Given a matrix A E znxn the following procedure computes its
SNF, SM(A). We suppose that all is the GCD of all ai,j, i,j =
1,2, ... , n.

function SM = SMITH(A)
n:= rows(A) SM:= [] fact:= [] ind:=[]
for i = 1,2, ... ,n-1

Perform Gauss operations on the matrix
A:= Aa such as A(2 : n - i + 1, i) = 0
SM := [SM, lalll]
A := A(2 : n - i + 1,2: n - i + 1)
g:= GCD(aij), i,j = 1,2, ... , n - i + 1
if 9 i- 1

A:= A/g
fact:= [fact, g]
ind:= lind, i + 1]

end

if lanl i- 1
make GCD appear in the (1,1) position of A
by performing elementary row/column operations

end
SM = [SM, Ianni]

Algorithm 3.6

In order to develop a convenient method to produce 1 (which
forms the GCD) in the (1,1) position of each submatrix of A, the
following technique can be applied:

if aik = 1 for some i, k
Interchange rows 1, i and column 1, k of A

else if
two specific entries of columns or rows of A
differ by 1, perform a direct subtraction of
them and move the GCD to the (1,1) position by
interchanging
else

Make the GCD appear by using the

147

end
end

procedure MakeToDivide
Move the GCD into (1,1) position
by interchanging.

Algorithm 3.7

Implementation of the algorithm
For a given matrix A E znxn the algorithm requires in its im­

plementation the following three operations: Gaussian elimination,
GCD determination and GCD appearance. Gaussian elimination of
specific entries is a process requiring O(n3) operations. Let us sup­
pose that M is the maximum value of the matrix entries produced
through the steps of the elimination. Determination of the GCD
of a matrix is a process requiring OC n2lnM) computations; since
the Euclidean algorithm for the determination of the GCD of two
numbers a, b with 1 S; a, b S; M requires 0.8427661nM + 0.06 com­
putations (see [12]). Finally, when the procedure MakeToDivide is
needed, an extra O(log2M) operations will be spent. In total we
see that the whole process requires O(n3 + n2lnM) computations.
In trying to give an upper bound to the number of computations
required, we need to know the size of the elements produced in the
matrix. Unfortunately, since the algorithm is concerned only with
integer arithmetic and only determinantal operations are allowed,
we cannot apply any kind of scaling which can reduce and bound
the elements of the matrix. Also, since pivoting is not used in the
Gaussian process, as the GCD must be always be kept in the (1,1)
position of the matrix, we cannot guarantee the size of the elements
produced after several steps of Gaussian repetition. A drawback of
the SDM method is that we cannot always specify the required row
operations in order to ensure the gcd(ai,j, ak,j) = gcd(A).

3.4 The phenomenon of "entry explosion"

During the execution of algorithms derived from row operation meth­
ods the following two important numerical problems appear:

148

1. Since no pivoting is used in Gaussian elimination or in other
similar techniques, the size of the emergent error matrix cannot
be bounded exactly.

2. We cannot reduce by scaling the size of the matrices computed
at each step of the methods.

Due to these problems all row operation methods for computing
the SNF of integer matrices suffer from the problem of coefficient
growth or entry exposion or expression swell. Therefore, when
the SNF of matrices of large order is required, large coefficients are
expected to appear during the intermediate steps. Theoretically, the
only method which does not face the problems of coefficient growth
is the compound matrix method since the internal determinantal
computations are performed in a stable manner.

In order to keep entries small heuristic techniques can be used.
These techniques are time-consuming and not fully effective but in
some cases can be rather useful. In the sequel we describe some of
these techniques.

1. A column reduction technique
In the new Simplify and Divide method, the procedure NORM­

COL helps to keep the elements of the matrices within reasonable
ranges. Also the division of the matrix by its GCD provides a re­
markable reduction in the size of the emerging elements.

In order to reduce the sizes of the matrix elements achieved after
each Gaussian iteration we apply the following determinantal scaling
to the matrix.

Procedure NORMCOL

Let A = L~I,f2' ... ,fnl E nmxn be a given matrix. The follow­
ing algorithm produces a scalar matrix As satisfying the property

IIAsll ~ IIAII
Reorder the columns of A such that

Ilflll ~ IIf211 ~ ... ~ Ilfnll
As:= A
norma:= IIAII
norms:= IIAsl1

149

while norms < = norma
norma:= norms
for k = n, n - 1, ... ,2

if sign(clk) = sign(clk_l)
{;.k := {;.k - {;.k-l

else

~:= ~+~-l
Reorder the columns of A so that

II{;.lll :S 11{;.211 :S ... :S II{;.n II
As:= A
norms:= IIAsl1

Algorithm 3.8

Implementation of the algorithm
A major difficulty connected with the above algorithm is deciding

when to apply it. Practical experience showed that if the algorithm
was applied just once or twice at critical times the entries did not
exhibit further explosion.

2. Rosser-type techniques
In [3] the following technique was proved to restrain coefficient

growth very well in the early stages of the algorithm. Although the
growth becomes fast in the final stage of Chou and Collins' algorithm
it is still quite moderate compared to that in some other algorithms.

Proced ure ROSSER

Let A = [{;.l,f2, ... ,{;.n] E znxn be a given matrix. The following
algorithm implements Rosser's technique. We assume that ai,j 2': 0
(otherwise multiplication by -1 in the corresponding column can
take place).

Reorder the columns of A such that
Cl,l 2': Cl,2,··. 2': Cl,n

while cl,2 =I- 0
A(:, 1) = A(:, 1) - l cl,d Cl,2J A(:, 2)

150

end

Sort A(:,1),A(:,2), ... ,A(:,n) into descending order
according to their leading elements

Algorithm 3.9

Implementation of the algorithm
At the end of the above algorithm the first row of the matrix will

be of the form c, 0, ... ,0, where c = gcd(C1,1, C1,2, • .. , C1,n). Since C1,1

and c1,2 are the largest and the second largest elements in the first
row of A, the integer l C1,I/ C1,2J computed in the above algorithm
is usually small so the part A(2 : n,:) of the matrix will contain
uniformly small elements, especially when n is large, while other
methods will find a A(2 : n,:) with some large elements and the rest
quite small, including many zeros and ones.

3.5 Numerical Results

The Simplify and Divide method was programmed on a IBM - com­
patible 486/33 computer using MATLAB. This machine has f3 = 2,
word length 32 bits and floating point relative accuracy provided
from MATLAB of 1.0 * 10-16 . In the remainder of the paper we
present some representative examples. At the end of each exam­
ple the total number of floating point required operations and the
execution time required are estimated using appropriate MATLAB
functions. More examples and the MATLAB code of the algorithm
are available from the authors.

Example 7: Let A be the integer matrix of Example 2. We
compute its SNF according to SDM algorithm.

By procedure NORMCOL the original matrix is reduced to:

151

-9 6 -2 6

[

-1 3 5 12]

Al = 4 2 3 2 ,factor = {2}

8 9 4 4

SNF of a perturbed original matrix.
STEP 1: By Gauss and simplification transformations
the matrix is modified to the form:

STEP 2: Repeating the Gaussian transformations we obtain:

[

-1 3 5 12] [-1 3 ~ o -1 5 14 0 -1
o 0 -18 14 Make 0 0
o 0 -5 -37 ToAppear 0 0

~ -2~:]
-3 -1

STEP 3: After the final Gaussian operations we have:

[

-1 3 5
o -1 5
o 0 1
o 0 0

12] 14
-245
-736

SM(A) = 2 * diag{l, 1, 1, 736}

flops: 337, time: 0.17sec.
o

Example 8: To construct a Hadamard matrix of order 12, we ob­
serve that 12 = 11 + 1. The quadratic elements of GF(l1) are 1, 3,
4, 5 and 9. Let Q be the circulant matrix of order 11 with first row
(0 - + - - - + + + - +), where -,+ represents -1,1 respectively.

152

Then the matrix

H = [~~ ~ 1 + 112

is a Hadamard matrix of order 12, where ~T = (1, 1, ... , 1) is the 1
X 11 vector of l's.

We compute the Smith normal form of H.

SM(H) = diag{l, 2, 2, 2, 2, 2, 6, 6, 6, 6, 6, 12} ---....-- ---....--
5 times 5 times

flops: 3400, time: 0.22sec.
See (10, p.410] for a theoretical formula.

D

Example 9: A design is a pair (X, B) where X is a finite set
of elements and. B is a collection of (not necessarily district) su b­
sets Bi (called blocks) of X. A balanced incomplete block design,
BIBD(v, b, r, k, A), is an arrangement of v elements into b blocks such
that:

(i) each element appears in exactly r blocks;

(ii) eack block contains exactly k(< v) elements; and

(iii) each pair of distinct elements appear together in exactly A
blocks.

As r(k - 1) = A(v-I) and vr = bk are well known necessary
conditions for the existence of BIBD(v, b, r, k, A) we denote the design
by BIBD(v, k, A).

The incidence matrix of a (v, b, r, k, A) design is a b X v matrix
A = (aij) defined ?y

ai. = {I if the ith block contains the jth element,
J 0 otherwise

If b = v, then r = k and the design is said to be symmetric.
This is denoted by SBIBD(v, k, A). If A is the incidence matrix of a
SBIBD(v, k, A) then

AT A = (k - A)1 + AJ

153

where f is the v X v indentity matrix and J is the v X v matrix every
entry of which is 1.

Let S be the circulant matrix of order 31 with first row:

(1 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0)

which is the incidence matrix of a SBIBD(31, 6, 1). Then

STS = 5f + J

where f is the indentity matrix of order 31, and J is the 31 X 31
matrix with every element 1. We compute the Smith normal form
of S:

SM(S) = diag{l,l, ... ,l, 5,5, ... ,5, 30}
~~

16 times 14 times

fiops:60343 , time:0.61 sec.
See[10, p.4ll] for a theoretical formula.

4 p-adic and modular arithmetic methods

o

In order to avoid the phenomenon of "entry explosion" that charac­
terised the elementary row or column operations methods, modular
techniques can be used. These techniques are fast and their main
characteristic is the performance of calculations in prime fields Zp
rather than Z. Next, we describe some of the methods developed.

4.1 Gerstein's method

Gerstein's method was developed in [6]. For a given matrix A E
znxn the method is based on matrix equivalence over principal ideal
domains using the technique of localization from commutative alge­
bra.

Let R be a principal ideal domain with quotient field F:::> Rand
let p be a fixed prime element of R. Every element x E F = F - {O}

154

can be written in the form x = pl/ Ct/ {3, Ct, (3 E R relatively prime to p
and v E Z. The integer v is uniquely determined by x, and we write
v = ordpx. We also define ordpO = 00, with the convention that
00 > v for all v E Z. Now define the localization of R with respect
to the prime ideal (p):

de!
R(p) = {x E F I ordpx ~ O}

Thus R(p) is the subring of F generated by R and the inverses in F
of all elements of R that are outside (p). An element E E R(p) is a
unit (a p-adic unit) if and only if ordpE = O. Also, p is the only
prime element of R(p), except for associates; hence every nonzero
element x E R(p) has the form x = Epl/ for some p-adic unit E and
v = ordpx ~ O. The divisibility relation Ct I (3 holds in R(p) if and
only if ordpCt ::; ordp{3. The ring R(p) is a principal ideal domain,
and it is a local ring with unique maximal ideal (p). Results over
R(p) will be called local, while those over R are global results.

Fix a complete set P of nonassociated prime elements for R; all
primes under discussion from now on will be assumed to come from
P, and the letter p will also denote such a prime. The next theorem
describes the local-global principle.

Theorem 5 Let A, B E Rnxn. Then A == B if and only if A ==p B
for all pEP; moreover,

S(A) = II Sp(A)
pEP

o

Next we describe an algorithm for computing the SNF of a given
matrix A = (ai,j) E Rnxn using the technique previously described.

Procedure P-ADIC

155

Compute IAI
Factor IAI into primes
IAI = Ep~l ... p~r, Pi are distinct
primes in P, E is an R-unit, and ai ~ 1 for 1 :::; i:::; r
for i = 1, ... , r

if ai = 1
SpJA) = diag(1, ... , 1,Pi)

else if ai > 1
VI = ordpal,1

Spi(A) = (pVl + Sp((al,lai'~-:-lai,lal'l)h~i,j~n
end

end

Sp(A) = I11~i~T SpJA)

Algorithm 3.10

Example 10: Let A be the integer matrix of Example 2. Next we
compute its SNF, SM(A) according to Gerstein's method.

A = A/2 , factor={2}.

IAI = 736 = 25 ·23

But S23(A) = diag{1, 1, 1, 23} whereas

[

-111 * * 1
S2(A) = (1) + S2(* * *) = diag{1, 1, 1, 25}

. * * *
(Since -111 is a 2-adic unit, we don't have to compute the other

elements of the matrix). Hence we have
SM(A) = 2 . diag{1, 1, 1,25 . 23}.

D

156

Remark 2. Other modular methods Other modular meth­
ods ,without requiring integer factorizations, have also been devel­
oped. In [8], for a given matrix A E zmxn, the following technique
is applied.

1. Determine the number r of nonzero elementary factors bi,i, i =
1, ... , r of the given matrix A.

2. Calculate S a multiple of IE bi,i.

3. Perform Gauss-Jordan elimination in Zs the ring of integers
modulo S.

Detailed comments about the implementation of the above tech­
nique can be found in [8].

In [10] a different modular technique is implemented. Actually, the
original matrix A E znxn is extended by adding to its end the matrix
det(A)In . Subsequently Gaussian elimination operations mod det(A)
are performed. Finally, another modular technique is described in
[7] .

In applications to group theory the matrices ansmg are not usu­
ally square. One important method for computing the SNF of such
matrices is the LLL algorithm [22].

5 Conclusions

There is no reasonable way of expecting to find the "best" strategy
for SNF computation. According to the nature of the specific appli­
cation one can select the method that is more suitable for a given
matrix. For matrices with reasonable sizes (less than 100) elemen­
tary row (column) operations methods can be applied. The MAT­
LAB code of the new SDM method is available from the authors.

157

In various computational group theory, number theory and homol­
ogy theory applications, matrices with dimensions into the thou­
sands are arising. Then modular techniques must be employed for
their SNF computation. The modular techniques described in [8]
are built into the computer algebra language CAYLEY [2]. Other
computer algebra packages including MAGMA, GAP, PARI, KANT
and QUOTPIC can also handle similar computations. Finally, a
free computer algebra system available for MACS performing com­
putation of the SNF and tested for at least 500 X 500 sparse ma­
trices can be downloaded from: http:j jwww.math.unl.eduj", bhar­
bour jfermat jfermat.html

The following table summarizes the basic characteristics of each of
the methods described.

Origin: This method works on
the given matrix applying
the compound matrix
definition without
performing any row or column
operations on the matrix

Compound matrix method and thus it overcomes problems
of numerical instability.
Numerical characteristics
• High computational complexity
• Does not compute the
transformation matrices
Origin: This method is based on
explicit calculation of the
GCD and of a set of
multipliers for each

Bradley's method of the rows and columns.
Numerical characteristics
• Rapid coefficient growth
• It is not a polynomial
algorithm

158

Origin: This method transforms
successively all the
(i + 1) X (i + 1) principal
minors of the matrix
into its Hermite normal form.

Kannan and Bachem's method Numerical characteristics
• The number of algebraic
operations and the number
of digits of all
intermediate numbers are
bounded by polynomials in
the length of the input data
• The transformation matrices
are computed
Origin: This method transforms
the original matrix to its
pseudo-Hermite form.

Chou and Collin's method Numerical characteristics
• More effective polynomial
time bounds compared with
those of Kannan and Bachem's
method are given
• The algorithm controls the
intermediate expression swell
very well
Origin: This method performs
exclusively row operations and
GCD evaluations on the
original matrix

Simplify and Divide method Numerical characteristics
• Reduces the size of the
coefficients by dividing with the
GCD of the matrix

159

Origin: This method applies
the technique of localization

Gerstein's method from commutative algebra
Numerical characteristics
• Integer factorization
techniques are employed
• The transformation matrices
are not com pu ted

Table 1: Comparison of existing methods

References

[1] G. H. Bradley, Algorithms for Hermite and Smith normal ma­
trices and linear diophantine equations. Math. of Computation,
25 (1971),897-907.

[2] J. Canon and W. Bosma, A Handbook of Cayley Functions,
Computer Algebra Group, Univ. of Sydney, 1991.

[3] T. J. Chou and G. E. Collins, Algorithms for the solution of
systems of linear diophantine equations. SIAM J. Comput., 11
(1982), 687-708.

[4] M. A. Frumkin, Polynomial time algorithms in the theory of
linear diophantine equations, M. Karpinski ed., Fundamentals
of Computation Theory, Springer, Lecture Notes in Computer
Science Vol. 56., New York (1977) 386-392.

[5] F. R. Gantmacher, The Theory of Matrices, VoLl, Chelsea, New
York, 1959.

[6] L. J. Gerstein, A local approach to matrix equivalence. Linear
Algebra Appl., 16 (1977), 221-232.

[7] J. 1. Hafner and K. S. McCurley, Asymptotically fast trian­
gulization of matrices over rings. SIAM J. of Computing, 20(6)
(1991), 1068-1083.

[8] G. Havas, D. F. Holt and S. Rees, Recognizing badly presented
Z-modules. Linear Algebra Appl., 192 (1993), 137-163.

160

[9] T. C. Hu, Integer Programming and Network Flows. Addison­
Wesley, Reading Mass., 1969.

[10] C. S. lliopoulos, Worst-case complexity bounds on algorithms
for computing the canonical structure of finite abelian groups
and the Hermite and Smith normal forms of an integer matrix.
SIAM J. Comput., 18 (1989), 658-669.

[11] R. Kannan and A. Bachem, Polynomial algorithms for comput­
ing the Smith and Hermite normal forms of an integer matrix.
SIAM J. Comput., 8 (1979),499-507.

[12] E. Kaltofen, M. S. Krishnamoorthy and B. D. Saunders, Fast
parallel computation of Hermite and Smith forms of polynomial
matrices. SIAM J. Alg. Discr. Meth., 8 (1987),683-690.

[13] N. Karcanias and G. Kalogeropoulos, Geometric theory and
feedback invariants of generalized linear systems: A matrix pen­
cil approach. Circuits Systems Signal Process, 8 (1989),375-397.

[14] D. E. Knuth, The Art of Computer Programming, Seminumer­
ical Algorithms, Vol II, Addison-Wesley, Reading Mass., 1969.

[15] C. Koukouvinos, M. Mitrouli and J. Seberry, On the Smith
normal form of D-optimal designs. Linear Algebra Appl., 247
(1996),277-295.

[16] C. Koukouvinos, M. Mitrouli and J. Seberry, On the Smith nor­
mal form of weighing matrices. Bull. Inst. Combin. Appl., 19
(1997), 57-69.

[17] C. C. Macduffee, The Theory of Matrices. Reprint of First Ed.,
Chelsea, New York, 1964.

[18) M. Marcus and H. Mine, A Survey of Matrix Theory and Matrix
Inequalities. Allyn and Bacon, Boston, 1964.

[19] MATLAB, High Performance Numeric Computation and Visu­
alization Software. User and Reference Guide, The Math Works
Inc., 1992.

161

[20J M. Mitrouli and G. Kalogeropoulos, A compound matrix algo­
rithm for the computation of the Smith form of a polynomial
matrix. Numerical Algorithms, 7 (1994) 145-159.

[21J M. Newman, Integral Matrices. Academic Press, New York,
1972.

[22J C.C. Sims, Computing with Finitely Presented Groups. Cam­
bridge University Press, 1994.

[23J H. J. S. Smith, Arithmetical notes. Proc. London Math. Soc., 4
(1873), 236-253.

[24] J. Seberry Wallis, Hadamard Matrices, Part IV, Combinatorics:
Room squares, sum free sets and Hadamard matrices. Lecture
notes in Mathematics, Vol. 292, eds. W. D. Wallis, A. P. Street
and J. Seberry Wallis, Springer-Verlag, Berlin - Heidelberg -
New York, 1972.

[25J J. Wilkinson, Rounding Error in Algebraic Processes. Her
Majesty's Stationery Office, London, 1985.

162

	Numerical algorithms for the computation of the Smith normal form of integral matrices,
	Recommended Citation

	Numerical algorithms for the computation of the Smith normal form of integral matrices,
	Abstract
	Disciplines
	Publication Details

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36

