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Numerical algorithms for the 
computation of the Smith normal 

form of integral matrices 

c. Koukouvinos~ M. Mitrouli! and Jennifer Seberryt 

Abstract 

Numerical algorithms for the computation of the Smith 
normal form of integral matrices are described. More specif­
ically, the compound matrix method, methods based on ele­
mentary row or column operations and methods using modular 
or p-adic arithmetic are presented. A variety of examples and 
numerical results are given illustrating the execution of the 
algorithms. 
AMS Subject Classification: Primary 65F30, Secondary 15A21, 
15A36. 
Key words and phrases: Smith normal form, numerical algo­
rithms, integral matrices. 

1 Introduction 

The Smith normal form of matrices has applications to many prob­
lems in pure and applied mathematics: for example, in the deter­
mination of the invariant polynomials and the elementary divisors 
of polynomial matrices, see [5, p137-139]; in the matrix pencil ap­
proach for the study of linear time-invariant control systems, see[13]; 
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in solving systems of linear diophantine equations [3]; in group the­
ory for the determination of basis of groups [21]; for the computation 
of the set of finite and infinite elementary divisors, see [20]; in design 
theory, and more specifically in Hadamard matrices, SBIBD( v, k, A), 
D-optimal designs etc, see [24, p410-415], [15, 16]; in integer linear 
programming, see [9, p317-354], in digital signal processing and in 
algebraic topology research. 

First we introduce some notation and summarize results on the 
Smith normal form. 

Let Rmxn be the set of all m X n real matrices. The unit (or 
unimodular) elements of Rmxn are those with determinant ±l. 

Definition 1 The matrices A, B of Rmxn are equivalent (written 
B '" A) if B = P AQ for some unimodular matrices P E R mxm and 
Q E Rnxn. 

The following Theorem is due to Smith [23] and has been re­
worded from the theorems and proofs in MacDuffee [17, p41] and 
Marcus and Minc [18, p44]. It is the most important theorem in the 
area of equivalence, and quite possibly the most important theorem 
in all of elementary matrix theory. 

Theorem 1 If A = (aij) is any integer (or with elements from any 
Euclidean domain) matrix of order n and rank r, then there is a 
unique integer (or with elements from any Euclidean domain) matrix 

such that A '" D and ai I ai+l where the ai are non-negative. The 
greatest common divisor of the i X i subdeterminants of A is 

If A '" E where 

then ai+1 is the greatest common divisor of the non-zero elements of 
F. 0 
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Definition 2 The ai of theorem 1 are called the invariants of A and 
the diagonal matrix D is called the Smith normal form (SNF). 

The above form of the SNF of a matrix was described in the original 
paper of Smith [23] on this topic. The SNF can be similarly defined 
on a nonsquare matrix. 

Several numerical methods have been proposed and developed for the 
computation ofthe SNF of a given integral matrix, see [1,2,5,6,8,9,10, 
15,16] and references therein. 

In the present paper we present a survey of the most impor­
tant existing numerical algorithms. Moreover, we develop a new 
numerical algorithm to obtain the SNF of a matrix using exclusively 
elementary row operations and greatest common divisor (GCD) eval­
uations. The described methods apply their computations to square 
matrices but they can also be used for nons quare matrices too. 

Throughout this paper, znxn denotes the set of all n X n integer 
matrices, the symbol" II denotes any matrix norm and finally the 
notation A( i : n, i : n) denotes a submatrix of the original matrix A 
consisting of rows i, i + 1, ... , n and columns i, i + 1, ... , n of A. All 
the algorithms presented are described in a MATLAB like language 
which is very convenient for the description of procedures involving 
matrices, see [19]. 

2 The compound-matrix method 

2.1 Theoretical background 

In this method the theoretical notion of compound matrices can 
be applied. More precisely, the following theoretical background is 
required. Let us first introduce some useful notation concerning se­
quences of integers and compound matrices. 

Notation (2.1) see [18] 
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(i) Qp,n denotes the set of strictly increasing sequences of p in­
tegers (1 ::; p ::; n) chosen from 1, 2, ... , n. If a,{3 E Qp,n 
we say that a precedes {3 (a < (3), if there exists an integer t 

(1 ::; t ::; p) for which al = {31,· .. , at-l = {3t-l, a < {3, where 
ai, {3i denote the elements of a, {3 respectively. This describes 
the lexicographic ordering of the elements of Qp,n. The set of 
sequences Qp,n will be assumed to be lexicographically ordered. 

(ii) Suppose A = [ai,jj E n mxn , let k, p be positive integers satis­
fying 1 ::; k ::; m, 1 ::; p ::; n, and let a = (ill i2,··., ik) E Qk,m 
and {3 = (jl ,j2, ... ,jp) E Qp,n- Then A[al {3] E n kxp denotes 
the submatrix of A which contains the rows iI, i2, ... , ik and 
the columns jl,h, ... ,jp-

(iii) Let A E nmxn and 1::; p::; min{m,n}, then the p-th com­
pound matrix or p-th adjugate of A is the (;) X (;) matrix 
whose entries are det(A[al (3]), a E Qp,m, {3 E Qp,n arranged 
lexicographically in a and (3. This matrix will be designated 
by Cp(A). 

Example 1: If A E Z3X3 and p = 2 then 

Q2,3 = {(1, 2), (1, 3), (2, 3)} and C2(A) = 

[ 

det( A[( 1,2)/(1,2)]) det(A[(1, 2)/(1, 3)]) det( A[(1, 2)/(2, 3)]) 1 
det(A[(1, 3)/(1, 2)]) det(A[(1, 3)/(1, 3)]) det(A[(1, 3)/(2, 3)]) 
det(A[(2, 3)/(1, 2)]) det(A[(2, 3)/(1, 3)]) det(A[(2, 3)/(2, 3)]) 

o 
The above procedure produces the following numerical algorithm. 

Algorithm COMREL 

For a given matrix A E zmxn and for an integer p, 1 ::; p ::; 
min{m, n}, the following algorithm computes the p-th compound 

matrix of A, Cp(A) E zC;)xG). 
If r. E nn the symbol A = [A, r] adds a column to matrix A while 
the symbol A = [Aj r] adds a row to matrix A. The notation A = [ ] 
denotes an empty matrix while a = [ ] denotes an empty vector. 
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Construct the sets 

Qp,m = {rl, ... ,rC;)} 

Qp,n = {Cl, ... ,CC;)} 

COMP = [] 
for i = 1,2, ... , length(Qp,m) 

M=[] 
for j = 1,2, ... , length(Qp,n) 

elem = det(A[rifqj]) 
M = [M,elem] 

COMP = [COMP;M] 

Algorithm 2.1 

2.2 Application of compounds to Smith form evalua­
tion 

We apply the notion of compound matrices to the definitions given 
in Section 1. The following procedure is derived for the evaluation of 
the Smith form via compound matrices. We suppose that A E znxn 
consists of coprime entries (otherwise the computation of the GCD 
of all the given integer entries of A will be required). 

Dl := 1 
al := 1 
for p = 2, ... ,n 

evaluate Cp(A) = [Cij], i,j = 1,2, ... , (;) 
find Dp := GCD(Cij), i,j, = 1,2, ... , (;) 

ap := Dp/ Dp- l 

SM := diag{ap}, p = 1, ... , n 

Algorithm 2.2 
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2.3 Numerical interpretation of the Algorithm 

The compound matrix technique can work satisfactorily for any given 
integral matrix. The internal determinantal computations required 
are based on using Gaussian elimination with partial pivoting which 
forms a stable numerical method. A severe disadvantage of this 
method is the rather high computational complexity, since calcula­
tions of order O(k~~4), kp E n are required. Thus, although the 
method theoretically can work for the evaluation of any Smith nor­
mal form, in practice it is not recommended due to its high com­
plexity. Another drawback of this method is that it is not possible 
to identify the left and right unimodular matrices and thus it is not 
suitable in cases where these matrices are needed. One reasonable 
method for compound matrix implementation is the parallel method 
as parallel SNF computations may be very effective in practice. In 
[12] parallel algorithms working for matrices of polynomials are pre­
sented. 

Example 2: Let 

~2 1

8

6 ~~ 1 Z4X4 
4 10 14 E 

18 26 34 

be a given integral matrix. Compute its SNF (SM(A)) using the 
compound matrix method. 

STEP 1: 
-444 -272 -680 144 360 0 
-256 -156 -412 88 88 -88 

C2(A) = 
-564 -348 -932 168 48 -248 

20 28 -348 -4 -76 -176 
384 188 -708 -132 -516 -496 
196 72 48 -76 -116 -24 

D2 := GCD(C2(A)) = 4 
a2 := 4/2 = 2 
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STEP 2: 

[ -184 4424 2992 -1584] 552 15144 8432 -4464 
C3(A) = 552 3112 1008 -880 

-184 3144 1200 -1320 

D3 := GCD(C3(A)) = 8 

a3 := 8/4 = 2 

STEP 3: 
C4(A) = 11776 

a4 = 11776/8 = 1472 

Sh{ = diag{2,2,2,1472} 
o 

3 Elementary Row(Column) Operations Meth­
ods 

In order to produce algorithms which have less computational com­
plexity than the compound matrix method various different tech­
niques have been developed to carry out the required computations. 
The central idea of these methods is to perform specific operations on 
the original matrix and finally modify it to an appropriate form from 
which the SNF can be directly derived. The following operations are 
defined: 

1. Elementary Row(Column) Operations (EROS or ECOS) 

The EROS or ECOS operations consists of 

a. Addition of integer multiples of one row (column) to an­
other. 

h. Multiplication of a row (column) by-1. 
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c. Interchange of two rows (columns). 

2. GCD Operations 

The GCD operations are divided into the following two classes: 

a. GCD determination. 
For a given matrix A = [aij] E znxn let 9 = GCD(aij) = 
GCD(A) be the GCD of its all entries. The above defi­
nition can be realized after the application of techniques 
based on the Euclidean algorithm. Subsequently we present 
the Euclidean algorithm which for two given numbers a,b 
constructs their gcd. 

Algorithm EUCLID 

while a or b =I- 0 
if b = 0 

gcd=a 
break 

else if a > b 
t=a mod b 
a=a-tb 
if a = 0 

gcd=b 
break 

end 
else swap a and b 

b. The Make To Divide property. 
For a given matrix A = [aij] E znxn in many approaches 
one random element aij of the matrix is required to divide 
another akl. For example,during reduction using row (col­
umn) operations then aij is required to divide akj (aik) 

for various values of k and random i, j. 

For a given matrix A = [1:.1,1:.2, ... ,1:.n]t E nnxn the following al­
gorithm ensures the above property for the elements Tij and Tkj when 
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row operations are performed. The symbol l x J denotes the greatest 
integer less than or equal to x whereas the symbol r x 1 denotes the 
least integer greater than or equal to x. Let also sign(x) be -1,0,1 
according to whether x is negative, zero or positive. 

Procedure MakeToDivide 

while rij does not divide rkj 

if rij > rkj 

end 

d = lrij/rkjJ 

if sign( rij) = sign( rkj) 
r~ := r~ - d . rt -, -, -k 

else 

else 
rt := r~ + d . rt 
-I ·-1 -k 

d = lrkj/rijJ 
if sign( rkj) = sign( rij) 

d :=d-d.r.; 
else 

d:= d + d· r.~ 

Algorithm 3.1 

Implementation of the Algorithm 

When rij > rkj, Algorithm 3.1 requires at most log2(rkj) operations 
for its execution. This is due to the fact that after the execution of 
each row operation the row affected is reduced to less than one half 
of its previous value. 

In the following we develop some of the most important methods of 
this category. 

3.1 Bradley's method 

Bradley's method was developed in [1]. 
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For a given matrix A E znxn the basic idea of Bradley's method 
is twofold: 

1. After the application of EROS and GCD operations reduce A 
to a diagonal form D = diag{ d1 , ... , dn }. 

2. Using GCD operations ensure the Smith property d1 id2 i ... idn 
for the diagonal elements of D. 

In the following, we describe the numerical version of the method. 
Let A = [1:.1,1:.2' ... ,1:.n]t E znxn be a given integer matrix. The 

following algorithm constructs its SNF stored on a diagonal matrix 
SM. The notation A( I'i: : A,j) denotes the vector (rk,j, rk+l,j, ... , r>..,j)t. 

STEP 1: Reduction of A to a diagonal form 
for i = 1,2, ... , n 

ifrit=j:.Q.t 

for j = i + 1, ... , n 
if rii does not divide rij and rji 

make it divide them 
end 

end 
Apply Gaussian elimination to the i-th column of A 
transforming it to a form Aa with the property 
Aa(2 : n - i + 1, i) = 0 
A:= Aa 

end 
SM:=A 

STEP 2: Ensure the property SMlliSM22i·· .iSMnn 
for the elements of S M 

for i = 1,2, ... , n 

if SMii does not divide SMkk' 
for some k = i + 1, ; .. , n 

Make it divide 
end 

end 
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Algorithm 3.2 

Implementation of the Algorithm 

In [1] analytical remarks concerning the performance of the above 
algorithm have been developed. The required "make it divide" prop­
erty can be implemented using the algorithm 3.1. An upper bound 
for the required computational complexity of STEP 1 equals !n2 

(log2 Idet(A)1 + 3) +~2n3. STEP 2 of the above algorithm in gen­
eral, requires only a small number of multiplications. A significant 
disadvantage of this algorithm is that it is not polynomial as was 
pointed out in [4]. Thus, in transforming the integer matrix to its 
SNF the number of digits of integers occuring in intermediate steps 
does not appear to be bounded by a polynomial in the length of the 
input data. 

Example 3: Let A be the integer matrix of Example 2. Next we 
compute its SNF, SM(A) according to Bradley's algorithm. 

STEP 1: By Gauss transformations modify it to the form 

[

2 0 0 0] o -222 -136 -340 
o -128 -78 -206 
o -282 -174 -466 

STEP 2: Apply procedure MakeToDivide and after 6 steps 
modify it to the form: 

[ 

2 
o 2 
o 14 
o -36 

o 
o 0 1 6 340 

-4 206. 
30 466 

Apply 
Gaussian 
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STEP 3: Apply procedure MakeToDivide and after 4 steps 
modify it to the form: 

[ H ~ l~ 1 A;y [H ~ ~ 1 Gaussian o 0 -262 162 0 0 0 1472 
The last matrix gives the SNF SM(A) of matrix A. 

3.2 Kannan and Bachem's method 

o 

Kannan and Bachem's method was developed in [11]. For a given 
matrix A E znxn the method is based on the computation of the 
Hermite normal form (HNF) of A. 

Theorem 2 Given a nonsingularnxn integer matrix A, there exists 
an n X n unimodular matrix I( such that AI( is lower triangular with 
positive diagonal elements. Further, each off-diagonal element of AI( 
is nonpositive and strictly less in absolute value than the diagonal 
element in its row. AI( is called the Hermite normal form (HNF) of 
A. 0 

Next, we describe the algorithm HNF which successively puts the 
principal minors of orders 1,2, ... , n of A into HNF. 

Algorithm HNF 

Permute the columns of A such as 
det (1 : k, 1 : k) =f; 0, 'if k = 1, ... , n 
i := 1 
While i =f; n 

for j:= 1 : i 
calculate 
r = GC D(AU,j), AU, i + 1)) 
and p, q such as 
r = p' AU,j) + q. AU, i + 1) 

D = [p -AU, i + 1)/r 1 
q AU,j)/r 
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end 

end 

A(:,j) = A(:,j). D 
A(:,i+ 1) = A(:,i+ l)·D 

if j> 1 
REDUCE SIZE (j, A) 

end 
REDUCE SIZE (i + 1,A) 
i := i + 1 

Algorithm 3.3 

Function REDUCE SIZE 

IfA(:,k)<O 
A(:,k) = -A(:,k) 

end 
For z = 1 : k - 1 

A(:,z) = A(:,z) - fA(k,z)jA(k,k)lA(:,k) 
end 

Algorithm 3.4 

Implementation of the Algorithm 
The above algorithm is polynomial since all the intermediate cal­

culations are polynomial [11]. The following result was proved in 
[11]. 

Lemma 3 If A = A(1), A(2), ... , A(n) are the matrices produced af­
ter the application of algorithm HNF, then 

maxla(k)1 < 23n . n20n3 . maxla(1)112n3 
',J - ',J 

o 

Thus a bound for the size of the intermediate numbers can be 
produced in terms of the given initial matrix. 
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An extension of the above algorithm can easily calculate the left 
an right multipliers. In the case where row operations are performed, 
instead of column, Algorithm 3.3 computes the Left Hermite normal 
form of the matrix (LHNF) i.e. matrix A will be transformed into 
an upper triangular form H with positive diagonal elements. Fur­
ther, each off-diagonal element of H is nonpositive and strictly less 
in absolute value than the diagonal element in its column. 

Based on the above algorithms, we next describe an algorithm 
computing the SNF of A. In the algorithm the following notation is 
used. HNF( n - i, n - i, A) is the procedure which puts the bottom­
right-hand minor consisting of the last (n - i) rows and columns into 
Hermite normal form. LHNF( n - i, i + 1, A) is the procedure which 
puts the submatrix of A consisting of the last (n - i) rows and the 
column i + 1 into left Hermite normal form. 

Algorithm SNF 

i := 0 
While i -=I- n 

repeat 
for k = 1 : n - 1 

Call LHNF(n-i,i+1,A) 
Call HNF(n-i,n-i,A) 

end 
if A( i + 1, i + 1) )' A(j, k), i + 1 ~ j ~ k, 

i+1~k~n 
Specify j, k 

A(:,i + 1) = A(:,i + 1) + A(:,k) 
end 

until {A(i + 1,i + 1) I A(j,k), i + 1 ~ j ~ k, 
i+1~k~n} 

end 

Algorithm 3.5 

Implementation of the Algorithm 
Algorithm SNF is polynomial since it performs at most 

n 2 (logn maXlai,jl) + 2n HNF computations. 
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Example 4: Let A be the integer matrix of Example 2. Next we 
compute its SNF, SM(A), using Kannan and Bachem's method. 

STEP 1: Compute the LHNF taking as submatrix the first 
column of the given matrix: 

[

2 0 0 0] o -94 -58 -134 
o -128 -78 -206 
o -282 -174 -466 

HNF [ ~ -32~ j J] 
STEP 2: Compute the LHNF taking as submatrix the 
second column of the modified matrix: 

[

2 0 
o 2 
o 0 
o 0 

00] o 0 
2 0 

-64 1472 

--+ 

HNF 0 
[ 

2 

LHNF ~ 

o 0 
2 0 
o 2 
o 0 

Remark 1 Chou and Collins' method 

~ ] = SM(A) 

1472 
o 

An extension and improvement of Kannan and Bachem's method 
has been developed in [3]. In this method, starting with a given 
square nonsingular matrix A E nnxn we apply preconditioning in 
order to ensure that all its principal minors are nonsingular. In the 
sequel, the n X n identity matrix is adjoined to the bottom of A, 
and the new matrix is called A. Since A is of rank n, there exists a 
nonsingular submatrix A* of A consisting of r linearly independent 
rows of A and n - r rows of the n X n identity matrix. The main idea 
of the algorithm is the transformation of A* into a pseudo-Hermite 
matrix by applying a sequence of unimodular transformations to 
A. A square nonsingular matrix is a pseudo-Hermite matrix or in 
a pseudo-Hermite form, if it is lower triangular and the absolute 
value of any off-diagonal element is less than the absolute value of 
the diagonal element to its right. The transformation of A* into a 
pseudo-Hermite matri~ enables the derivation of very good bounds, 
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of order n + rllogj3(lmaxai,jl + l)J,maXai,j =I 0, on the lengths of 
the coefficients pertaining to A. 

o 

3.3 The new method (Simplify and Divide method). 

In order to perform efficiently the row operations and reduce as much 
as possible the number of GCD operations required on the one hand 
and the size of the elements produced on the other, the following 
new technique is proposed. 

Let A E znxn be a given matrix. We apply to this matrix the 
following procedure: 

Fori=1,2, ... ,n 
STEP 1: Make the GCD of A(i: n,i: n) 

appear in the (i, i) position of A 
STEP 2: Eliminate the entries of the vector 

(ai+l,i,ai+2,i, ... ,an,i)t 

After the termination of the above procedure the original matrix 
A will have been transformed to an upper triangular form. The 
diagonal elements of this form are actually the diagonal elements of 
the SNF of A. In the implementation of the above technique the 
problem of ensuring the GCD exists as an element is encountered. 

Theorem 4 Let A = [aij] be an integer matrix. Suppose y=gcd of 
all elements of A. Then y occurs in a matrix which is obtained from 

A by using elementary row and column operations. 

Proof. Let A = [r:.l,r:.2, ... ,r:.n]t E nnxn be a given matrix with 
y = GCD(A) =I rij Vi,j. We want to modify the matrix A to 
A' - [ I I I I ]t .c h' h . d . . t h - Ll,'" ,Li,'" ,1:.Jc, ... ,Ln lor w IC an III ex J eXlS s suc 
as y = rij or rkj' Let gcd(A) is y. Divide all the elements of A by y 
forming A'. Put y outside into the invariant. Now if ±1 appears in 
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the matrix we are through. Otherwise we know that the gcd of A' 
is 1 (otherwise we wouldn't have had gcd(A)=y.) We check to see if 
any row has two elements with gcd =1. If two elements have gcd=1 
we use the Euclid process to get zero in one of these columns and 1 
in the other. If not, every element in every row has a row gcd Yi for 
the ith row. If for some i, Yi = 1 we check if the greatest common 
divisors of the elements of the ith row are coprime. If two greatest 
common divisors of specific elements are coprime we use the Euclid 
process to make these greatest common divisors to appear and then 
to get zero in one of these columns and 1 in the other. We now check 
to see if any column has two elements with gcd =1 If two elements in 
a column have gcd = 1 use Euclid process to get zero in one of those 
rows and zero in the other. If not, every element in every column has 
a column gcd Cj for the jth column. If for some j, Cj = 1 we check if 
the greatest common divisors of the elements of the jth column are 
coprime. If two greatest common divisors of specific elements are 
coprime we use the Euclid process to make these greatest common 
divisors to appear and then to get zero in one of these rows and 1 in 
the other. If none of the above cases holds,we select randomly two 
rows i,j and two columns k, m. This means the gcd of the matrix 
can only occur across the contents of a rectangle for we have 

Suppose gcd(YjCk, YiCm) = 1 (it must occur somewhere as gcd(A') = 
1. If it is not straightforward, by performing elementary operations 
we can always get gcd(ack' bcm ) = 1 ). Use Euclid process to get 

Suppose we have gcd( Ck, bcm ) = 1 so ACk + Bbcm = 1. Further 
suppose gcd( Ck, acm ) i- 1 , for if it were 1 we could use the Euclid 
process to get a 1 and a 0 in the first row by using elementary column 
operations 

Add A times the first column to the second and B times the 
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second row to the first obtaining 

[ 
q aCm + ACk + Bbcm = aCm + 1 1 
o bCm 

Now if gcd(q,acm ) i- 1 then gcd(Ck,acm + 1) = 1 and we use 
the Euclid process to obtain 1 and 0 in the first row. 

We now use a similar procedure where the gcd is not one for each 
pair. Suppose gcd(Ck,acm) = a, gcd(a, b) = f3 and gcd(ck,bcm ) = ,. 
Write a = Al Ck + BI acm, f3 = A 2a + B 2b and, = A3Ck + B3bcm. 
Add A3 times the first column to the second and B3 times the second 
row to the first obtaining 

[ 
COk aCm +, 1 

bCm . 

Now suppose gcd( Ck, acm) i- 1 and gcd( Ck, bCm) i- 1. Since Ck 
divided every element of its column we use elementary row operations 
to ensure q is the only non-zero element in its column. Rearrange 
rows so we have 

Ck bIcm dIcn 

o b2cm d2cn 

o b3cm d3cn 

We now continue supposing the gcd of no pair of diagonal elements 
is 1, nor the gcd of pairs of elements in any row or column. Sup­
pose gcd(b2 , b3 , .•. , bn ) = f3. Then we use the Euclidean process, 
elementary row operations and rearrangement of rows to obtain 

Ck f3lcm eIcn ftcp 

0 f3cm e2Cn h cp 

0 0 e3Cn h cp 

0 0 e4Cn f4cp 
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where f31 < f3. Let I = gcd( e3, e4,· .. , en) and 11 < I, 12 < I. Then 
proceeding as before we obtain 

Ck f31 Cm 11 Cn bl Cr 

o f3cm 12Cn b2Cr 

o 0 I~ ~~ 
o 0 0 b4Cr 

o o o 
D 

The following examples demonstrates the use of the above The­
orem. 

Example 5: Make the gcd of the following matrix to appear 
among its entries. 

A= 
[ 

3150 
4410 
11025 
7350 

170170 
190190 
293930 
248710 

868434 2485830] 
1036518 2803170 
1397046 3213390 
1108002 3063930 

Since gcd(A)= 1, how can we make 1 to appear? We find the 
gcd's of the rows and columns of the matrix. We have: Yl = 
2, Y2 = 2, Y3 = 1, Y4 = 2 ,Cl = 105, C2 = 70, C3 = 42, C4 = 30. 
Since Y3 = 1 we check if the gcd's of the elements of the third 
row are coprime. If two gcd's of specific elements are coprime we 
can use the Euclid process to make these gcd's to appear and then 
to get zero in one of these columns and 1 in the other. We re­
mark that: gcd(a3ba32)= 35, gcd(a3ba33)= 21, gcd(a31,a34)= 15, 
gcd( a32, a33)= 14, gcd( a32, a34)= 10, gcd( a33, a34)= 6, and gcd ( gcd 
(a3b a33), gcd(a32' a34))= 1. Thus, we will make 21 and 10 to appear 
in the third row by using the Euclidean process. Finally we get the 
matrix A' equal to: 

[ 

-0.034726566 

109 * -0.035349762 
0.000000021 

-0.013071198 

-6.66225415 0.003284988 
-7.71117077 0.003343956 
0.000000010 0.000000147 
-3.67395673 0.001236564 
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5.85576986 

0.000000020 
2.78995834 



Since 21 and 10 appeared in the final matrix, by applying again the 
Euclid process we will make 1 to appear among the entries of the 
matrix. D 

Example 6: Make the gcd of the following matrix to appear among 
its entries. 

A = [1
6
0 165 ] 

Since gcd(A)= 1, how can we make 1 to appear? We find the gcd's of 
the rows and columns of the matrix. We have: Yl = 6, Y2 = 5, Cl = 
2, C2 = 3. The gcd of the matrix will occur across the contents of the 
rectangle: 

[
6,26,3] 
5·2 5·3 

If we subtract the second row from the first we get: 

for which gcd(2,3) = 1. By using the Euclid process we get: 

and since gcd(2,3) = 1, after the application of Euclid process the 
gcd will appear in the matrix. D 

A crucial step in reducing the size of the elements produced at inter­
mediate steps for each value of i is the division of the current matrix 
A( i : n, i : n) by its present GCD 9i. 

<-ind1-l-+ 
Thus we can finally compute the following SNF for A: diag{ 1, ... ,1 

<-ind2 -ind1-+ <-ind3 -ind2 -+ <-n-indn+l-+ 
},91*{ 1, ... ,1 },91*92*{ 1, ... ,1 }, .. ·,91* .. ·*9n*{ 1, ... ,1 
}} The vectors fact = (91,92, ... ,9n)t and ind = (ind1, ... ,indn)t 
form the factors and their indicies for the SNF of A. Next we de­
scribe the numerical algorithm for this technique. 

Algorithm SDM 
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Given a matrix A E znxn the following procedure computes its 
SNF, SM(A). We suppose that all is the GCD of all ai,j, i,j = 
1,2, ... , n. 

function SM = SMITH(A) 
n:= rows(A) SM:= [ ] fact:= [ ] ind:=[ ] 
for i = 1,2, ... ,n-1 

Perform Gauss operations on the matrix 
A:= Aa such as A(2 : n - i + 1, i) = 0 
SM := [SM, lalll] 
A := A(2 : n - i + 1,2: n - i + 1) 
g:= GCD(aij), i,j = 1,2, ... , n - i + 1 
if 9 i- 1 

A:= A/g 
fact:= [fact, g] 
ind:= lind, i + 1] 

end 

if lanl i- 1 
make GCD appear in the (1,1) position of A 
by performing elementary row/column operations 

end 
SM = [SM, Ianni] 

Algorithm 3.6 

In order to develop a convenient method to produce 1 (which 
forms the GCD) in the (1,1) position of each submatrix of A, the 
following technique can be applied: 

if aik = 1 for some i, k 
Interchange rows 1, i and column 1, k of A 

else if 
two specific entries of columns or rows of A 
differ by 1, perform a direct subtraction of 
them and move the GCD to the (1,1) position by 
interchanging 
else 

Make the GCD appear by using the 
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end 
end 

procedure MakeToDivide 
Move the GCD into (1,1) position 
by interchanging. 

Algorithm 3.7 

Implementation of the algorithm 
For a given matrix A E znxn the algorithm requires in its im­

plementation the following three operations: Gaussian elimination, 
GCD determination and GCD appearance. Gaussian elimination of 
specific entries is a process requiring O( n3 ) operations. Let us sup­
pose that M is the maximum value of the matrix entries produced 
through the steps of the elimination. Determination of the GCD 
of a matrix is a process requiring OC n2lnM) computations; since 
the Euclidean algorithm for the determination of the GCD of two 
numbers a, b with 1 S; a, b S; M requires 0.8427661nM + 0.06 com­
putations (see [12]). Finally, when the procedure MakeToDivide is 
needed, an extra O(log2M) operations will be spent. In total we 
see that the whole process requires O( n3 + n2lnM) computations. 
In trying to give an upper bound to the number of computations 
required, we need to know the size of the elements produced in the 
matrix. Unfortunately, since the algorithm is concerned only with 
integer arithmetic and only determinantal operations are allowed, 
we cannot apply any kind of scaling which can reduce and bound 
the elements of the matrix. Also, since pivoting is not used in the 
Gaussian process, as the GCD must be always be kept in the (1,1) 
position of the matrix, we cannot guarantee the size of the elements 
produced after several steps of Gaussian repetition. A drawback of 
the SDM method is that we cannot always specify the required row 
operations in order to ensure the gcd( ai,j, ak,j) = gcd( A). 

3.4 The phenomenon of "entry explosion" 

During the execution of algorithms derived from row operation meth­
ods the following two important numerical problems appear: 
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1. Since no pivoting is used in Gaussian elimination or in other 
similar techniques, the size of the emergent error matrix cannot 
be bounded exactly. 

2. We cannot reduce by scaling the size of the matrices computed 
at each step of the methods. 

Due to these problems all row operation methods for computing 
the SNF of integer matrices suffer from the problem of coefficient 
growth or entry exposion or expression swell. Therefore, when 
the SNF of matrices of large order is required, large coefficients are 
expected to appear during the intermediate steps. Theoretically, the 
only method which does not face the problems of coefficient growth 
is the compound matrix method since the internal determinantal 
computations are performed in a stable manner. 

In order to keep entries small heuristic techniques can be used. 
These techniques are time-consuming and not fully effective but in 
some cases can be rather useful. In the sequel we describe some of 
these techniques. 

1. A column reduction technique 
In the new Simplify and Divide method, the procedure NORM­

COL helps to keep the elements of the matrices within reasonable 
ranges. Also the division of the matrix by its GCD provides a re­
markable reduction in the size of the emerging elements. 

In order to reduce the sizes of the matrix elements achieved after 
each Gaussian iteration we apply the following determinantal scaling 
to the matrix. 

Procedure NORMCOL 

Let A = L~I,f2' ... ,fnl E nmxn be a given matrix. The follow­
ing algorithm produces a scalar matrix As satisfying the property 

IIAsll ~ IIAII 
Reorder the columns of A such that 

Ilflll ~ IIf211 ~ ... ~ Ilfnll 
As:= A 
norma:= IIAII 
norms:= IIAsl1 
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while norms < = norma 
norma:= norms 
for k = n, n - 1, ... ,2 

if sign(clk) = sign(clk_l) 
{;.k := {;.k - {;.k-l 

else 

~:= ~+~-l 
Reorder the columns of A so that 

II{;.lll :S 11{;.211 :S ... :S II{;.n II 
As:= A 
norms:= IIAsl1 

Algorithm 3.8 

Implementation of the algorithm 
A major difficulty connected with the above algorithm is deciding 

when to apply it. Practical experience showed that if the algorithm 
was applied just once or twice at critical times the entries did not 
exhibit further explosion. 

2. Rosser-type techniques 
In [3] the following technique was proved to restrain coefficient 

growth very well in the early stages of the algorithm. Although the 
growth becomes fast in the final stage of Chou and Collins' algorithm 
it is still quite moderate compared to that in some other algorithms. 

Proced ure ROSSER 

Let A = [{;.l,f2, ... ,{;.n] E znxn be a given matrix. The following 
algorithm implements Rosser's technique. We assume that ai,j 2': 0 
(otherwise multiplication by -1 in the corresponding column can 
take place). 

Reorder the columns of A such that 
Cl,l 2': Cl,2,··. 2': Cl,n 

while cl,2 =I- 0 
A(:, 1) = A(:, 1) - l cl,d Cl,2J A(:, 2) 
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end 

Sort A(:,1),A(:,2), ... ,A(:,n) into descending order 
according to their leading elements 

Algorithm 3.9 

Implementation of the algorithm 
At the end of the above algorithm the first row of the matrix will 

be of the form c, 0, ... ,0, where c = gcd( C1,1, C1,2, • .. , C1,n). Since C1,1 

and c1,2 are the largest and the second largest elements in the first 
row of A, the integer l C1,I/ C1,2J computed in the above algorithm 
is usually small so the part A(2 : n,:) of the matrix will contain 
uniformly small elements, especially when n is large, while other 
methods will find a A(2 : n,:) with some large elements and the rest 
quite small, including many zeros and ones. 

3.5 Numerical Results 

The Simplify and Divide method was programmed on a IBM - com­
patible 486/33 computer using MATLAB. This machine has f3 = 2, 
word length 32 bits and floating point relative accuracy provided 
from MATLAB of 1.0 * 10-16 . In the remainder of the paper we 
present some representative examples. At the end of each exam­
ple the total number of floating point required operations and the 
execution time required are estimated using appropriate MATLAB 
functions. More examples and the MATLAB code of the algorithm 
are available from the authors. 

Example 7: Let A be the integer matrix of Example 2. We 
compute its SNF according to SDM algorithm. 

By procedure NORMCOL the original matrix is reduced to: 
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-9 6 -2 6 

[

-1 3 5 12] 

Al = 4 2 3 2 ,factor = {2} 

8 9 4 4 

SNF of a perturbed original matrix. 
STEP 1: By Gauss and simplification transformations 
the matrix is modified to the form: 

STEP 2: Repeating the Gaussian transformations we obtain: 

[ 

-1 3 5 12] [-1 3 ~ o -1 5 14 0 -1 
o 0 -18 14 Make 0 0 
o 0 -5 -37 ToAppear 0 0 

~ -2~:] 
-3 -1 

STEP 3: After the final Gaussian operations we have: 

[ 

-1 3 5 
o -1 5 
o 0 1 
o 0 0 

12] 14 
-245 
-736 

SM(A) = 2 * diag{l, 1, 1, 736} 

flops: 337, time: 0.17sec. 
o 

Example 8: To construct a Hadamard matrix of order 12, we ob­
serve that 12 = 11 + 1. The quadratic elements of GF(l1) are 1, 3, 
4, 5 and 9. Let Q be the circulant matrix of order 11 with first row 
(0 - + - - - + + + - +), where -,+ represents -1,1 respectively. 
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Then the matrix 

H = [~~ ~ 1 + 112 

is a Hadamard matrix of order 12, where ~T = (1, 1, ... , 1) is the 1 
X 11 vector of l's. 

We compute the Smith normal form of H. 

SM(H) = diag{l, 2, 2, 2, 2, 2, 6, 6, 6, 6, 6, 12} ---....-- ---....--
5 times 5 times 

flops: 3400, time: 0.22sec. 
See (10, p.410] for a theoretical formula. 

D 

Example 9: A design is a pair (X, B) where X is a finite set 
of elements and. B is a collection of (not necessarily district) su b­
sets Bi (called blocks) of X. A balanced incomplete block design, 
BIBD( v, b, r, k, A), is an arrangement of v elements into b blocks such 
that: 

(i) each element appears in exactly r blocks; 

(ii) eack block contains exactly k( < v) elements; and 

(iii) each pair of distinct elements appear together in exactly A 
blocks. 

As r( k - 1) = A( v-I) and vr = bk are well known necessary 
conditions for the existence of BIBD( v, b, r, k, A) we denote the design 
by BIBD( v, k, A). 

The incidence matrix of a (v, b, r, k, A) design is a b X v matrix 
A = (aij) defined ?y 

ai. = {I if the ith block contains the jth element, 
J 0 otherwise 

If b = v, then r = k and the design is said to be symmetric. 
This is denoted by SBIBD( v, k, A). If A is the incidence matrix of a 
SBIBD( v, k, A) then 

AT A = (k - A)1 + AJ 
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where f is the v X v indentity matrix and J is the v X v matrix every 
entry of which is 1. 

Let S be the circulant matrix of order 31 with first row: 

(1 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0) 

which is the incidence matrix of a SBIBD(31, 6, 1). Then 

STS = 5f + J 

where f is the indentity matrix of order 31, and J is the 31 X 31 
matrix with every element 1. We compute the Smith normal form 
of S: 

SM(S) = diag{l,l, ... ,l, 5,5, ... ,5, 30} 
~~ 

16 times 14 times 

fiops:60343 , time:0.61 sec. 
See[10, p.4ll] for a theoretical formula. 

4 p-adic and modular arithmetic methods 

o 

In order to avoid the phenomenon of "entry explosion" that charac­
terised the elementary row or column operations methods, modular 
techniques can be used. These techniques are fast and their main 
characteristic is the performance of calculations in prime fields Zp 
rather than Z. Next, we describe some of the methods developed. 

4.1 Gerstein's method 

Gerstein's method was developed in [6]. For a given matrix A E 
znxn the method is based on matrix equivalence over principal ideal 
domains using the technique of localization from commutative alge­
bra. 

Let R be a principal ideal domain with quotient field F:::> Rand 
let p be a fixed prime element of R. Every element x E F = F - {O} 
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can be written in the form x = pl/ Ct/ {3, Ct, (3 E R relatively prime to p 
and v E Z. The integer v is uniquely determined by x, and we write 
v = ordpx. We also define ordpO = 00, with the convention that 
00 > v for all v E Z. Now define the localization of R with respect 
to the prime ideal (p): 

de! 
R(p) = {x E F I ordpx ~ O} 

Thus R(p) is the subring of F generated by R and the inverses in F 
of all elements of R that are outside (p). An element E E R(p) is a 
unit (a p-adic unit) if and only if ordpE = O. Also, p is the only 
prime element of R(p), except for associates; hence every nonzero 
element x E R(p) has the form x = Epl/ for some p-adic unit E and 
v = ordpx ~ O. The divisibility relation Ct I (3 holds in R(p) if and 
only if ordpCt ::; ordp{3. The ring R(p) is a principal ideal domain, 
and it is a local ring with unique maximal ideal (p). Results over 
R(p) will be called local, while those over R are global results. 

Fix a complete set P of nonassociated prime elements for R; all 
primes under discussion from now on will be assumed to come from 
P, and the letter p will also denote such a prime. The next theorem 
describes the local-global principle. 

Theorem 5 Let A, B E Rnxn. Then A == B if and only if A ==p B 
for all pEP; moreover, 

S(A) = II Sp(A) 
pEP 

o 

Next we describe an algorithm for computing the SNF of a given 
matrix A = (ai,j) E Rnxn using the technique previously described. 

Procedure P-ADIC 
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Compute IAI 
Factor IAI into primes 
IAI = Ep~l ... p~r, Pi are distinct 
primes in P, E is an R-unit, and ai ~ 1 for 1 :::; i:::; r 
for i = 1, ... , r 

if ai = 1 
SpJA) = diag(1, ... , 1,Pi) 

else if ai > 1 
VI = ordpal,1 

Spi(A) = (pVl + Sp(( al,lai'~-:-lai,lal'l )h~i,j~n 
end 

end 

Sp(A) = I11~i~T SpJA) 

Algorithm 3.10 

Example 10: Let A be the integer matrix of Example 2. Next we 
compute its SNF, SM(A) according to Gerstein's method. 

A = A/2 , factor={2}. 

IAI = 736 = 25 ·23 

But S23(A) = diag{1, 1, 1, 23} whereas 

[ 

-111 * * 1 
S2(A) = (1) + S2( * * * ) = diag{1, 1, 1, 25} 

. * * * 
(Since -111 is a 2-adic unit, we don't have to compute the other 

elements of the matrix). Hence we have 
SM(A) = 2 . diag{1, 1, 1,25 . 23}. 

D 
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Remark 2. Other modular methods Other modular meth­
ods ,without requiring integer factorizations, have also been devel­
oped. In [8], for a given matrix A E zmxn, the following technique 
is applied. 

1. Determine the number r of nonzero elementary factors bi,i, i = 
1, ... , r of the given matrix A. 

2. Calculate S a multiple of IE bi,i. 

3. Perform Gauss-Jordan elimination in Zs the ring of integers 
modulo S. 

Detailed comments about the implementation of the above tech­
nique can be found in [8]. 

In [10] a different modular technique is implemented. Actually, the 
original matrix A E znxn is extended by adding to its end the matrix 
det( A )In . Subsequently Gaussian elimination operations mod det( A) 
are performed. Finally, another modular technique is described in 
[7] . 

In applications to group theory the matrices ansmg are not usu­
ally square. One important method for computing the SNF of such 
matrices is the LLL algorithm [22]. 

5 Conclusions 

There is no reasonable way of expecting to find the "best" strategy 
for SNF computation. According to the nature of the specific appli­
cation one can select the method that is more suitable for a given 
matrix. For matrices with reasonable sizes (less than 100) elemen­
tary row (column) operations methods can be applied. The MAT­
LAB code of the new SDM method is available from the authors. 
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In various computational group theory, number theory and homol­
ogy theory applications, matrices with dimensions into the thou­
sands are arising. Then modular techniques must be employed for 
their SNF computation. The modular techniques described in [8] 
are built into the computer algebra language CAYLEY [2]. Other 
computer algebra packages including MAGMA, GAP, PARI, KANT 
and QUOTPIC can also handle similar computations. Finally, a 
free computer algebra system available for MACS performing com­
putation of the SNF and tested for at least 500 X 500 sparse ma­
trices can be downloaded from: http:j jwww.math.unl.eduj", bhar­
bour jfermat jfermat.html 

The following table summarizes the basic characteristics of each of 
the methods described. 

Origin: This method works on 
the given matrix applying 
the compound matrix 
definition without 
performing any row or column 
operations on the matrix 

Compound matrix method and thus it overcomes problems 
of numerical instability. 
Numerical characteristics 
• High computational complexity 
• Does not compute the 
transformation matrices 
Origin: This method is based on 
explicit calculation of the 
GCD and of a set of 
multipliers for each 

Bradley's method of the rows and columns. 
Numerical characteristics 
• Rapid coefficient growth 
• It is not a polynomial 
algorithm 
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Origin: This method transforms 
successively all the 
(i + 1) X (i + 1) principal 
minors of the matrix 
into its Hermite normal form. 

Kannan and Bachem's method Numerical characteristics 
• The number of algebraic 
operations and the number 
of digits of all 
intermediate numbers are 
bounded by polynomials in 
the length of the input data 
• The transformation matrices 
are computed 
Origin: This method transforms 
the original matrix to its 
pseudo-Hermite form. 

Chou and Collin's method Numerical characteristics 
• More effective polynomial 
time bounds compared with 
those of Kannan and Bachem's 
method are given 
• The algorithm controls the 
intermediate expression swell 
very well 
Origin: This method performs 
exclusively row operations and 
GCD evaluations on the 
original matrix 

Simplify and Divide method Numerical characteristics 
• Reduces the size of the 
coefficients by dividing with the 
GCD of the matrix 
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Origin: This method applies 
the technique of localization 

Gerstein's method from commutative algebra 
Numerical characteristics 
• Integer factorization 
techniques are employed 
• The transformation matrices 
are not com pu ted 

Table 1: Comparison of existing methods 
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