# Group divisible designs, GBRDSDS and generalized weighing matrices 

Dinesh G. Sarvate<br>Jennifer Seberry<br>University of Wollongong, jennie@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers
Part of the Physical Sciences and Mathematics Commons

## Recommended Citation

Sarvate, Dinesh G. and Seberry, Jennifer: Group divisible designs, GBRDSDS and generalized weighing matrices 1998.
https://ro.uow.edu.au/infopapers/1154

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

## Group divisible designs, GBRDSDS and generalized weighing matrices

Abstract<br>We give new constructions for regular group divisible designs, pairwise balanced designs, generalized Bhaskar Rao supplementary difference sets and generalized weighing matrices. In particular if $p$ is a prime power and $q$ divides $p-1$ we show the following exist;<br>(i) GDD $\left(2\left(p^{2}+p+1\right), 2\left(p^{2}+p+1\right), r p^{2}, 2 p^{2}, \lambda 1=p^{2} \lambda, \lambda 2=\left(p^{2}-p\right) r, m=p^{2}+p+1, n=2\right), r+1,2$;<br>(ii) $\operatorname{GDD}\left(\mathrm{q}(\mathrm{p}+1), \mathrm{q}(\mathrm{p}+1), \mathrm{p}(\mathrm{q}-1), \mathrm{p}(\mathrm{q}-1), \lambda 1=(\mathrm{q}-1)(\mathrm{q}-2), \lambda_{2}=(\mathrm{p}-1)(\mathrm{q}-1)^{2} / \mathrm{q}, \mathrm{m}=\mathrm{q}, \mathrm{n}=\mathrm{p}+1\right)$;<br>(iii) $\operatorname{PBD}(21,10 ; K), K=\{3,6,7\}$ and $\operatorname{PDB}(78,38 ; K), K=\{6,9,45\}$;<br>(iv) $G W\left(v k, k^{2} ; E A(k)\right)$ whenever a $(v, k, \lambda)$-difference set exists and $k$ is a prime power;<br>(v) $\operatorname{PBIBD}\left(\mathrm{vk}^{2}, \mathrm{vk}^{2}, \mathrm{k}^{2}, \mathrm{k}^{2} ; \lambda_{1}=0, \lambda_{2}=\lambda, \lambda_{3}=\mathrm{k}\right)$ whenever a $(\mathrm{v}, \mathrm{k}, \lambda)$-difference set exists and k is a prime power;<br>(vi) we give a GW $\left(21 ; 9 ; Z_{3}\right)$.

## Disciplines

Physical Sciences and Mathematics

## Publication Details

Dinesh Sarvate and Jennifer Seberry, Group divisible designs, GBRDSDS and generalized weighing matrices, Utilitas Mathematica, 54, (1998), 157-174.

# GROUP DIVISIBLE DESIGNS, GBRSDS AND GENERALIZED WEIGHING MATRICES 

Dinesh G. Sarvate<br>Department of Mathematics<br>College of Charleston<br>Charleston, S.C. 29424<br>U.S.A.

Jennifer Seberry*<br>Department of Computer Science<br>and University of Wollongong<br>Wollongong, NSW, 2500<br>Australia

June 11, 1998


#### Abstract

We give new constructions for regular group divisible designs, pairwise balanced designs, generalized Bhaskar Rao supplementary difference sets and generalized weighing matrices. In particular if $p$ is a prime power and $q$ divides $p-1$ we show the following exist: (i) $G D D\left(2\left(p^{2}+p+1\right), 2\left(p^{2}+p+1\right), r p^{2}, 2 p^{2}, \lambda_{1}=p^{2} \lambda, \lambda_{2}=\left(p^{2}-p\right) r, m=p^{2}+p+1\right.$, $n=2), r=1,2$; (ii) $G D D\left(q(p+1), q(p+1), p(q-1), p(q-1), \lambda_{1}=(q-1)(q-2), \lambda_{2}=(p-1)(q-1)^{2} / q\right.$, $m=q, n=p+1$ ); (iii) $P B D(21,10 ; K), K=\{3,6,7\}$ and $P B D(78,38 ; K), K=\{6,9,45\}$; (iv) $G W\left(v k, k^{2} ; E A(k)\right)$ whenever a $(v, k, \lambda)$-difference set exists and $k$ is a prime power; (v) $\operatorname{PBIBD}\left(v k^{2}, v k^{2}, k^{2}, k^{2} ; \lambda_{1}=0, \lambda_{2}=\lambda, \lambda_{3}=k\right)$ whenever a $(v, k, \lambda)$-difference set exists and k is a prime power; (vi) we give a $G W\left(21 ; 9 ; Z_{3}\right)$.

The $G D D$ obtained are not found in W.H. Clatworthy, Tables of Two-Associate-Class, Partially Balanced Designs, NBS, US Department of Commerce, 1971.


## 1 INTRODUCTION

In this paper we set out to explore the usefulness of Bhaskar Rao designs and generalized matrices in the construction of $G D D$ and found them to be very rich indeed.
A design is a pair $(X, B)$ where $X$ is a finite set of elements and $B$ is a collection of (not necessarily distinct) subsets $B_{i}$ (called blocks) of $X$.
A balanced incomplete block design, $\operatorname{BIBD}(v, b, r, k, \lambda)$, is an arrangement of $v$ elements into $b$ blocks such that:
(i) each element appears in exactly $r$ blocks;
(ii) each block contains exactly $k(<v)$ elements; and
(iii) each pair of distinct elements appear together in exactly $\lambda$ blocks.

[^0]As $r(k-1)=\lambda(v-1)$ and $v r=b k$ are well known necessary conditions for the existence of a $B I B D(v, b, r, k, \lambda)$ we denote this design by $\operatorname{BIBD}(v, k, \lambda)$.
Let $v$ and $\lambda$ be positive integers and $K$ a set of positive integers.
An arrangement of the elements of a set $X$ into blocks is a pairwise balanced design, $P B D(v ; K ; \lambda)$, if:
(i) $X$ contains exactly $v$ elements;
(ii) if a block contains $k$ elements then $k$ belongs to $K$;
(iii) each pair of distinct elements appear together in exactly $\lambda$ blocks.

A pairwise balanced design $\operatorname{PBD}(v ;\{k\} ; \lambda)$, that is where $K=\{k\}$ consists of exactly one integer, is a $\operatorname{BIBD}(v, k, \lambda)$. It is well known that a $\operatorname{PBD}(v-1 ;\{k, k-1\} ; \lambda)$ can be obtained from the $\operatorname{BIBD}(v, b, r, k, \lambda)$.
For the definition of a partially balanced incomplete block design with $m$ associate classes (PBIBD $(m)$ ) see Raghavarao [34] or Street and Street [53].
A generalized Bhaskar Rao design, $W$ is defined as follows. Let $W$ be a $v \times b$ matrix with entries from $G \bigcup\{0\}$ where $G=\left\{h_{1}=e, h_{2}, \ldots, h_{g}\right\}$ is a finite group of order $g$. $W$ is then expressed as a sum $W=h_{1} A_{1}+\cdots+h_{g} A_{g}$, where $A_{1}, \ldots, A_{g}$ are $v \times b(0,1)$ matrices such that the Hadamard product $A_{i} \star A_{j}=0$ for any $i \neq j$.
Denote by $W^{+}$the transpose of $h_{1}^{-1} A_{1}+\cdots+h_{g}^{-1} A_{g}$ and let $N=A_{1}+\cdots+A_{g}$. In this paper we are concerned with the special case where $W$, denoted by $G B R D(v, b, r, k, \lambda ; G)$, satisfies
(i) $W W^{+}=\operatorname{re} I+\frac{\lambda}{g}\left(h_{1}+\cdots+h_{g}\right)(J-I)$, and
(ii) $N N^{T}=(r-\lambda) I+\lambda J$.

It can be seen that the second condition requires that $N$ be the incidence matrix of a $B \operatorname{IBD}(v, b, r, k, \lambda)$ and thus we can use the shorter notation $\operatorname{GBRD}(v, k, \lambda ; G)$ for a generalized Bhaskar Rao design. A $G B R D\left(v, k, \lambda ; Z_{2}\right)$ is also referred to as a $B R D(v, k, \lambda)$.
A $G B R D(v, k, \lambda ; G)$ with $v=b$ is a symmetric $G B R D$ or generalized weighing matrix, but a generalized weighing matrix, $W=G W(v, k ; G)$ is also used for any square matrix satisfying $W W^{+}=\operatorname{ke} I$ where $h_{1}+\cdots+h_{g}=0$ is used (as in the $g$ th roots of unity). If $W$ has no 0 entries the $G B R D$ is also known as a generalized Hadamard matrix $(G H)$.
A group divisible design, $G D D\left(v, b, r, k, \lambda_{1}, \lambda_{2}, m, n\right)$, on $v$ points is a triple $(X, S, A)$ where
(i) $X$ is a set (of points), where $|X|=v$,
(ii) $S$ is a class of non-empty subsets $X$ (called groups), of size $n$, which partitions $X$, and $|S|=n$,
(iii) $A$ is a class of subsets of $X$ (called blocks), each containing at least two points, and $|A|=b$,
(iv) each pair of distinct points $\{x, y\}$ where $x$ and $y$ are from the same group is contained in precisely $\lambda_{1}$ blocks.
(v) each pair of distinct points $\{x, y\}$ where $x$ and $y$ are not from the same group is contained in precisely $\lambda_{2}$ blocks.

In general, the number of elements in a group is denoted by $n$.
Bhaskar Rao designs with elements $0, \pm 1$ have been studied by a number of authors including Bhaskar Rao [3, 4], Seberry [42, 44], Singh [48], Sinha [49], Street [51], Street and Rodger [52] and Vyas [54]. Bhaskar Rao [3] used these designs to construct partially balanced designs and this was improved by Street and Rodger [52] and Seberry [44]. Another technique for studying partially balanced designs has involved looking at generalized orthogonal matrices which have elements from elementary abelian groups and the element 0 . Matrices with group elements as entries have been studied by Berman [1, 2], Butson [5, 6], Delsarte and Goethals [13], Drake [16], Rajkundlia [35], Seberry [40, 41], Shrikhande [47] and Street [50].
Generalized Hadamard matrices has been studied by Street [50], Seberry [40, 41], Dawson [8], and de Launey [9, 10].
Bhaskar Rao designs over elementary abelian groups other than $Z_{2}$ have been studied by Lam and Seberry [26] and Seberry [45]. de Launey, Sarvate and Seberry [12] considered Bhaskar Rao designs over $Z_{4}$ which is an abelian (but not elementary) group. Some Bhaskar Rao designs over the non-abelian groups $S_{3}$ and $Q_{4}$ have been studied by Gibbons and Mathon [20].
Palmer and Seberry [33] study generalized Bhaskar Rao designs over the non-abelian groups $S_{3}, D_{4}, Q_{4}, D_{6}$ and over the small abelian group $Z_{2} \times Z_{4}$. Seberry [46] completed the study of groups of order 8 .
We use the following notation for initial blocks of a $G B R D$. We say $\left(a_{\alpha}, b_{\beta}, \ldots, c_{\gamma}\right)$ is an initial block, when the Latin letters are developed $\bmod v$ and the Greek subscripts are the elements of the group, which will be placed in the incidence matrix in the position indicated by the Latin letter. For example in the $(i, b-1+i)$ th position we place $\beta$ and so on.
We form the difference table of an initial block $\left(a_{\alpha}, b_{\beta}, \ldots, c_{\gamma}\right)$ by placing in the position headed by $x_{\delta}$ and by row $y_{\eta}$ the element $(x-y)_{\delta \eta^{-1}}$ where $(x-y)$ is $\bmod v$ and $\delta \eta^{-1}$ is in the group.
By the term totality of elements we mean that repetitions remain: hence the set union of $\{1,2,3,4,5,6\} \cup\{3,4,7,8\}=\{1,2,3,4,5,6,7,8\}$ while the totality of elements in the two sets $\{1,2,3,4,5,6\} \&\{3,4,7,8\}=\{1,2,3,3,4,4,5,6,7,8\}$. The symbol \& is sometimes written as $\biguplus$.
A set of initial blocks will be said to form a $G B R$ difference set (if there is one initial block) or $G B R$ supplementary difference sets (if more than one) if in the totality of elements

$$
(x-y)_{\delta \eta^{-1}} \quad(\bmod v, G)
$$

each non-zero element $a_{g}, a(\bmod v), g \in G$, occurs $\lambda /|G|$ times.
Examples of the use of these $G B R$ supplementary difference sets ( $G B R S D S$ ) are given in Seberry [42].

## 2 GROUP DIVISIBLE DESIGNS

Let $B$ be the incidence matrix of a $B I B D(v, b, r, k, \lambda)$. Let $A$ be the matrix formed from a $G B R D(V, B, R, j, t v ; G)$, where $|G|=v$, by replacing each zero of the $G B R D$ by the $v \times v$ zero matrix and each group element of the $G B R D$ by the right regular permutation matrix representation from the group $E A(v)$.
Then $A$ is a $G D D\left(v V, v B, R, j, \lambda_{1}=0, \lambda_{2}=t, m=V, n=v\right)$.

Lemma 1 Suppose there exists a $B I B D(v, b, r, k, \lambda), Y$, and a $G B R D(V, B, R, j, t v ; G), A$, with $|G|=v$. Then there exists a $G D D\left(v V, b B, r R, j k, \lambda_{1}=R \lambda, \lambda_{2}=t r k, m=V, n=v\right)$.

Proof. Let $C=A \times Y$, where the group element $g_{i}$ of $G$ with matrix representation $G_{i}$ is replaced by $G_{i} Y$ and zero by the $v \times b$ zero matrix. Then all the parameters of $C$ except $\lambda_{1}$ and $\lambda_{2}$ are immediate. The inner product of any two rows of $Y$ is $\lambda$ and $G_{i} Y$ also has inner product of rows $\lambda . G_{i} Y^{\prime}$ s occur $R$ times in each row of $C$ so $\lambda_{1}=R \lambda$.
The inner product of rows of the $G B R D$ gives t copies of the group so the contribution to the inner product of rows of different $G D D$ groups is

$$
\left.\underset{g_{i}, g_{j} \in G}{\&} \begin{array}{l}
t G_{i} Y Y^{T} G_{j}^{-1}= \\
g_{i}, g_{j} \in G
\end{array} \&_{i} t G_{i}(r-\lambda) I+\lambda J\right) G_{j}^{-1}=t(r-\lambda+\lambda v) J .
$$

Hence $\lambda_{2}=t r k$. Another way to check that $\lambda_{2}=t r k$ is to observe that we will have as inner product

$$
t\left(G_{1}+\cdots+G_{v}\right) Y Y^{T}=t(J)((r-\lambda) I+\lambda J)=t(r-\lambda) J+t(\lambda v) J
$$

Now use $\lambda(v-1)=r(k-1)$ to get the result.

Example 1 Let the $Y=S B I B D(3,2,1)$ and $A$ be the $G B R D\left(6,6,6 ; Z_{3}\right)$. Then the Lemma gives us $G D D\left(18,18,12,12, \lambda_{1}=6, \lambda_{2}=8, m=6, n=3\right)$ which is given below and which is not found in Clatworthy's tables [7].

Example 2 Let A be formed from the $\operatorname{GBRD}\left(7,21,9,3,3 ; Z_{3}\right)=D$ which may be written as:
$D=\left[\begin{array}{ccccccc|cccccccc|ccccccc}0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & \omega & 0 & \omega^{2} & 0 & 0 & 0 & 1 & \omega^{2} & 0 & w & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & \omega & 0 & \omega^{2} & 0 & 0 & 0 & 1 & \omega^{2} & 0 & w & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & \omega & 0 & \omega^{2} & 0 & 0 & 0 & 1 & \omega^{2} & 0 & w \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & \omega^{2} & 0 & 0 & 0 & 1 & \omega & 0 & w & 0 & 0 & 0 & 1 & \omega^{2} & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & \omega^{2} & 0 & 0 & 0 & 1 & \omega & 0 & w & 0 & 0 & 0 & 1 & \omega^{2} \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & \omega & 0 & \omega^{2} & 0 & 0 & 0 & 1 & \omega^{2} & 0 & w & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & \omega & 0 & \omega^{2} & 0 & 0 & 0 & 1 & \omega^{2} & 0 & w & 0 & 0 & 0\end{array}\right]$
Let $B=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right], \quad T=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right], \quad$ and $\quad \mathbf{O}=\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.
We form $C$ from $A$ by replacing 0 by $\mathbf{O}$ and $\omega^{i}$ by $T^{i} B$. Then $C$ is a $G D D\left(21,63,18,6, \lambda_{1}=\right.$ $\left.9, \lambda_{2}=4, m=7, n=3\right)$.

Corollary $2 A G B R D\left(p^{2}+p+1, p^{2}+p+1, p^{2}, p^{2}, p^{2}-p ; Z_{2}\right)$ always exists for $p$ a prime power so a $G D D\left(2\left(p^{2}+p+1\right), 2\left(p^{2}+p+1\right), r p^{2}, k p^{2}, \lambda_{1}=p^{2} \lambda, \lambda_{2}=\left(p^{2}-p\right) r\right)$ exists where $(k, r, \lambda)=(2,2,2)$ or $(1,1,0)$.

Corollary $3 A G B R D\left(p+1, p, p-1 ; Z_{q}\right)$ exists for every prime power $p$, if $q$ divides $p-1$. An $S B I B D(q, q-1, q-2)$ exists. Hence there exists a $G D D(q(p+1), q(p+1), p(q-1)$, $\left.p(q-1), \lambda_{1}=(q-1)(q-2), \lambda_{2}=(p-1)(q-1)^{2} / q, m=p+1, n=q\right)$.

Corollary 4 If a $G B R D(V, B, R, j, t v ; E A(v))$ exists then a $G D D(v V, v B, R(v-1), j(v-$ 1), $\left.\lambda_{1}=R(v-2), \lambda_{2}=t(v-1)^{2}, m=V, n=v\right)$ exists.

Proof. An $S B I B D(v, v-1, v-2)$ always exists.

Example 2 (continued). There exists a $G H\left(3 t, Z_{3}\right)=H, 3 t>7$, and write $S B I B D(7,3,1)=$ $S$. Take seven rows of $H$ and replace its elements by 0 and $T^{i}$ to give,

$$
H^{\prime}=G D D\left(21,9 t, 3 t, 7, \lambda_{1}=0, \lambda_{2}=t, m=7, n=3\right)
$$

Replace the zeros and ones of $S$ by the $3 \times 1$ matrix of zeros and ones respectively to form,

$$
S^{\prime}=G D D\left(21,7,3,9, \lambda_{1}=3, \lambda_{2}=1, m=7, n=3\right)
$$

We note $L=I_{7} \times J_{3,1}$ is a $G D D\left(21,7,1,3, \lambda_{1}=1, \lambda_{3}=0, m=7, n=3\right)$.
Then

$$
C_{1}=\left[C: H^{\prime}(t=3): H^{\prime}(t=4): S^{\prime}\right]
$$

is a $P B D(21,12 ; K)$, where $K=\{6,7,9\}$, and

$$
C_{2}=\left[C: H^{\prime}(t=6): L\right]
$$

is a $P B D(21,10 ; K)$, where $K=\{6,7,3\}$.

Table 1 gives some GDD on 21 varieties which exist.

| $v$ | $k$ | $m$ | $n$ | $\lambda_{1}$ | $\lambda_{2}$ | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| 21 | 12 | 7 | 3 | 4 | 2 | from $S B I B D(7,4,2)$ |
| 21 | 7 | 7 | 3 | 0 | $t$ | $\left(\right.$ a $G H\left(3 t, Z_{3}\right)$ exists, $\left.3 t>7\right)$ |
| 21 | 18 | 7 | 3 | 6 | 5 | $(J-I)_{7} \times J_{3,1}$ |
| 21 | 3 | 7 | 3 | 1 | 0 | $I_{7} \times J_{3,1}$ |
| 21 | 9 | 7 | 3 | 3 | 1 | from $S B I B D(7,3,1)$ |
| 21 | $k$ | 7 | 3 | $r$ | $\lambda$ | from $B I B D(7, b, r, k, \lambda)$ |
| 21 | $K$ | 7 | 3 | 0 | $\Delta$ | from $G B R D\left(7, B, R, K, 3 \Delta ; Z_{3}\right)$ |

Table 1

Remark 1 The $G D D$ s with $\lambda_{1}=r$ in Table 1 and in Table 2 can be constructed from a $B I B D$ and are singular but we have listed these parameters for easy reference so as to be able to apply them in the following Lemma and the Table 2 parameters in Lemma 6 .
Clatworthy's tables [7] give $R 188$ with $v=b=21, k=r=8, m=7, n=3, \lambda_{1}=7, \lambda_{2}=1$ but no $G D D$ with $v=b=21$, and the designs of Table 1 appear to be new.

Lemma 5 Combinations from Table 1 can be used to give $P B D(21, \mu ; K)$ for many $\mu$ and $k_{i} \in K$.

Glynn [21] has found a $G W\left(13,9,6 ; S_{3}\right)$ which is circulant with the following first row:
 $e=(15)$.

Example 7 Using Lemma 1 with the $\operatorname{SBIBD}(6,5,4)$ we get

$$
C=G D D\left(78,78,45,45, \lambda_{1}=36, \lambda_{2}=20, m=13, n=6\right)
$$

| No. | $v$ | $k$ | $m$ | $n$ | $\lambda_{1}$ | $\lambda_{2}$ | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| $B_{1}$ | 78 | 54 | 13 | 6 | 9 | 6 | from $S B I B D(13,9,6)$ |
| $B_{2}$ | 78 | 45 | 13 | 6 | 36 | 20 | above |
| $B_{3}$ | 78 | 13 | 13 | 6 | 0 | $t$ | (if a $G H(6 t, G)$ exists $\|G\|=b$, |
|  |  |  |  |  |  |  | $6 t>13:$ none are known), |
| $B_{4}$ | 78 | 72 | 13 | 6 | 12 | 11 | $(J-I) 13 \times J_{6,1}$ |
| $B_{5}$ | 78 | 6 | 13 | 6 | 1 | 0 | $I_{13} \times J_{6,1}$ |
| $B_{6}$ | 78 | 24 | 13 | 6 | 4 | 1 | from $S B I B D(13,4,1)$ |
| $B_{7}$ | 78 | $k$ | 13 | 6 | $r$ | $\lambda$ | from $B I B D(13, b, r, k, \lambda)$ |
| $B_{8}$ | 78 | $K$ | 13 | 6 | 0 | $\Delta$ | from $G B R D\left(13, B, R, K, 6 \Delta ; S_{3}\right)$ |
| $B_{9}$ | 78 | 9 | 13 | 6 | 0 | 6 | from $G W\left(13,9,6 ; S_{3}\right)$ |

Table 2

Table 2 gives some $G D D$ on 78 varieties which exist.
We note that a $\operatorname{PBD}(78,38, K)$ with $K=\{6,9,45\}$ can be formed by taking
[B2:2 copies B5:3 copies B9].
Clatworthy's tables list $R 201$ which has $v=b=78, r=k=9, m=13, n=6$ but all the other designs in Table 2 appear to be new.

Lemma 6 Combinations from Table 2 can be used to give $P B D(78, \mu ; K)$ for many $\mu$ and $K$.

## 3 GENERALIZED SUPPLEMENTARY DIFFERENCE SETS

We slightly extend a Lemma of de Launey and Seberry [11, Lemma 6.1.1] to get a new result.
Theorem 7 Suppose there exist $n-\{v ; k ; \lambda\}$ supplementary difference sets and a square $G B R D$ $(k, j, t g ; G), Y=\left(y_{s u}\right)$, where $|G|=g$. Then there exist $n k-\{v ; j ; t \lambda g ; G\}-G B R S D S$.

Proof. Let the $n-\{v ; k ; \lambda\} S D S, D_{i}, i=1, \ldots, n$, have elements $d_{1}^{i}, d_{2}^{i}, \ldots, d_{k}^{i}$.
Using the $G B R D\left(y_{s u}\right)$ we form $n k G B R S D S$ by choosing the initial blocks

$$
d_{1_{y_{1 u}}}^{i}, d_{2_{y_{2 u}}}^{i}, \ldots, d_{k_{y_{k u}}}^{i}, i=1,2, \ldots, n ; u=1,2, \ldots, k
$$

where if $y_{s u}$ is 0 , then we remove $d_{s_{y_{s u}}}^{i}$ from the block (see Example 8).
These blocks are developed modulo $v$ so that in a block, developed from an initial block with $y_{a u}$ in position $(1, a)$, position $(1+b, a+b)$ is also $y_{a u}$. Note that $1+b$ and $a+b$ are both reduced modulo $v$.

Because the initial sets, $D_{i}$, had each element $1,2, \ldots, v-1$ occurring as the solution of the equation

$$
d_{a}^{i}-d_{b}^{i}, \quad i \in\{1, \ldots, n\}, a, b \in\{1, \ldots, k\}
$$

exactly $\lambda$ times, the new design will have

$$
g_{a j} g_{b j}^{-1}, j=1, \ldots, k, a, b \in\{1, \ldots, k\}
$$

occurring $\lambda t g$ times. Hence we have the starting blocks of an $n k-\{v ; j ; t \lambda g ; G\}-G B R S D S$.

Corollary 8 Let $p \equiv 1(\bmod 4)$ be a prime power. Then there exist $2-\left\{p ; \frac{1}{2}(p-1) ; \frac{1}{2}(p-3)\right\}$ $S D S$. Suppose there exists a $\operatorname{GBRD}((p-1) / 2, k, t g ; G)$ where $|G|=g$. Then there exist $(p-1)-\{p ; k ; \operatorname{tg}(p-3) / 2 ; G\}-G B R S D S$.

Example 8 We use the $\operatorname{GBRD}\left(5,5,4,4,3 ; Z_{3}\right)$
$Y=\left(y_{i u}\right)=\left[\begin{array}{ccccc}0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & \omega & \omega^{2} \\ 1 & 1 & 0 & \omega^{2} & \omega \\ 1 & \omega & \omega^{2} & 0 & 1 \\ 1 & \omega^{2} & \omega & 1 & 0\end{array}\right]$ written as $\left[\begin{array}{ccccc}\star & 0 & 0 & 0 & 0 \\ 0 & \star & 0 & 1 & 2 \\ 0 & 0 & \star & 2 & 1 \\ 0 & 1 & 2 & \star & 0 \\ 0 & 2 & 1 & 0 & \star\end{array}\right]$.
Attaching $\star$ to an element is the same as multiplying it by zero in multiplicative notation and so removes that element from the starting block.
Now there are $3-\{7 ; 5 ; 10\} S D S$ namely $\{0,1,2,3,4\},\{0,1,2,4,5\}$ and $\{0,1,2,3,5\}$. So we make 15 starting blocks

$$
\begin{array}{lllll}
\left\{1_{0}, 2_{0}, 3_{0}, 4_{0}\right\}, & \left\{0_{0}, 2_{0}, 3_{1}, 4_{2}\right\}, & \left\{0_{0}, 1_{0}, 3_{2}, 4_{1}\right\}, & \left\{0_{0}, 1_{1}, 2_{2}, 4_{0}\right\}, & \left\{0_{0}, 1_{2}, 2_{1}, 3_{0}\right\}, \\
\left\{1_{0}, 2_{0}, 4_{0}, 5_{0}\right\}, & \left\{0_{0}, 2_{0}, 4_{1}, 5_{2}\right\}, & \left\{0_{0}, 1_{0}, 4_{2}, 5_{1}\right\}, & \left\{0_{0}, 1_{1}, 2_{2}, 5_{0}\right\}, & \left\{0_{0}, 1_{2}, 2_{1}, 4_{0}\right\}, \\
\left\{1_{0}, 2_{0}, 3_{0}, 5_{0}\right\}, & \left\{0_{0}, 2_{0}, 3_{1}, 5_{2}\right\}, & \left\{0_{0}, 1_{0}, 3_{2}, 5_{1}\right\}, & \left\{0_{0}, 1_{1}, 2_{2}, 5_{0}\right\}, & \left\{0_{0}, 1_{2}, 2_{1}, 3_{0}\right\},
\end{array}
$$

which give a $15-\left\{7 ; 4 ; 30 ; Z_{3}\right\}-G B R S D S$.
Applying the same method to the ( $11,5,2$ )-difference set $\{1,3,4,5,9\}$ gives 5 starting blocks, $D_{i}^{1}, i=1, \ldots, 5$, namely $\left\{3_{0}, 4_{0}, 5_{0}, 9_{0}\right\},\left\{1_{0}, 4_{0}, 5_{1}, 9_{2}\right\}$, $\left\{1_{0}, 3_{0}, 5_{2}, 9_{1}\right\},\left\{1_{0}, 3_{1}, 4_{2}, 9_{0}\right\}$ and $\left\{1_{0}, 3_{2}, 4_{1}, 5_{0}\right\}$ which give a $5-\left\{11 ; 4 ; 6 ; Z_{3}\right\}-G B R S D S$. (Note: superscript 1 in $D_{i}^{1}$ is not necessary in this example.)

Corollary 9 Let $p \equiv 3(\bmod 4)$ be a prime power. Suppose there exists a $G B R D(v, b, r, k, t p ;$ $G),|G|=p$. Then there exist a $G D D\left(v p, b p, \frac{1}{2} r(p-1), \frac{1}{2} k(p-1), \lambda_{1}=\frac{1}{4} r(p-3), \lambda_{2}=\right.$ $\left.\frac{1}{4} t(p-1)^{2}, m=v, n=p\right)$ and a $G D D\left(v p, b p, \frac{1}{2} r(p+1), \frac{1}{2} k(p+1), \lambda_{1}=\frac{1}{4} r(p+1), \lambda_{2}=\right.$ $\left.\frac{1}{4}(p+1)^{2}, m=v, n=p\right)$.

Proof. Use the ( $\left.p, \frac{1}{2}(p-1), \frac{1}{4}(p-3)\right)$-difference set in the theorem or the ( $p, \frac{1}{2}(p+1), \frac{1}{4}(p+1)$ ) difference set.

Corollary 10 Let $p \equiv 3(\bmod 4)$ and $p+1$ both be prime powers. Then there exist a $G D D\left(p(p+2), p(p+2), \frac{1}{2}\left(p^{2}-1\right), \frac{1}{2}\left(p^{2}-1\right), \lambda_{1}=\frac{1}{4}(p+1)(p-3), \lambda_{2}=\frac{1}{4}(p-1)^{2}, m=\right.$ $p+2, n=p)$ and an $\operatorname{SBIBD}\left(p(p+2), \frac{1}{2}(p+1)^{2}, \frac{1}{4}(p+1)^{2}\right)$.

Proof. Use the previous corollary and the $G B R D\left(p+2, p+1, p ; Z_{p}\right)$.
Example 9 Over $G F\left(2^{3}\right)$ with the primitive equation $\gamma^{3}=\gamma+1$ we have

$$
\gamma, \gamma^{2}, \gamma^{3}=\gamma+1, \gamma^{4}=\gamma^{2}+\gamma, \gamma^{5}=\gamma^{3}=\gamma+1, \gamma^{6}=\gamma^{2}+1, \gamma^{7}=1
$$

and choosing $m_{00}=m_{i i}=0, m_{0 i}=m_{i 0}=1, i=1, \ldots, 8$ and $m_{i j}=a^{k}$ if $\gamma^{k}=\gamma^{j}+\gamma^{i}$

|  |  | 0 | 1 | $\gamma$ | $\gamma^{2}$ | $\gamma^{3}$ | $\gamma^{4}$ | $\gamma^{5}$ | $\gamma^{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | $a$ | $a^{2}$ | $a^{3}$ | $a^{4}$ | $a^{5}$ | $a^{6}$ |
| 1 | 1 | 1 | 0 | $a^{3}$ | $a^{2}$ | $a$ | $a^{5}$ | $a^{4}$ | $a^{2}$ |
| $\gamma$ | 1 | $a$ | $a^{3}$ | 0 | $a^{4}$ | 1 | $a^{2}$ | $a^{6}$ | $a^{5}$ |
| $\gamma^{2}$ | 1 | $a^{2}$ | $a^{2}$ | $a^{4}$ | 0 | $a^{5}$ | $a$ | $a^{3}$ | 1 |
| $\gamma^{3}$ | 1 | $a^{3}$ | $a$ | 1 | $a^{5}$ | 0 | $a^{6}$ | $a^{2}$ | $a^{4}$ |
| $\gamma^{4}$ | 1 | $a^{4}$ | $a^{2}$ | $a^{2}$ | $a$ | $a^{6}$ | 0 | 1 | $a^{3}$ |
| $\gamma^{5}$ | 1 | $a^{5}$ | $a^{4}$ | $a^{6}$ | $a^{3}$ | $a^{2}$ | 1 | 0 | $a$ |
| $\gamma^{6}$ | 1 | $a^{6}$ | $a^{2}$ | $a^{5}$ | 1 | $a^{4}$ | $a^{3}$ | $a$ | 0 |

We map $0 \rightarrow 0_{7}, a^{i} \rightarrow T^{i} B$. If $B$ is an $\operatorname{SBIBD}(7, k, \lambda)$ the new matrix has order 63 , row and column sum $8 k, \lambda_{1}=8 \lambda$ and $\lambda_{2}=k^{2}$. So we have an $\operatorname{SBIBD}(63,63,32,32,16)$ or a $G D D\left(63,63,24,24 ; \lambda_{1}=8, \lambda_{2}=9, m=9, n=7\right)$.
In general this construction takes a $G B R D(p+1, p, p-1)$ where $p$ is a prime power and an $\operatorname{SBIBD}(p-1, k, \lambda)$ and makes a $G D D\left(p^{2}-1, p^{2}-1, p k, p k, \lambda_{1}=p \lambda, \lambda_{2}=k^{2}\right)$.

Corollary 11 Let $p \equiv 3(\bmod 4)$ and $q=p-1$ both be prime powers. Then there exists a $G D D\left(p\left(q^{2}+q+1\right), p^{2}\left(q^{2}+q+1\right), \frac{1}{2} p^{2}(p-1), \frac{1}{2} p(p-1) ; \lambda_{1}=\frac{1}{4} p^{2}(p-3), \lambda_{2}=\frac{1}{4}(p-1)^{2}\right)$ and $a G D D\left(p\left(q^{2}+q+1\right), p^{2}\left(q^{2}+q+1\right), \frac{1}{2} p^{2}(p+1), \frac{1}{2} p(p-1) ; \lambda_{1}=\frac{1}{4} p^{2}(p+1), \lambda_{2}=\frac{1}{4}(p+1)^{2}\right.$, $\left.m=q^{2}+q+1, n=p\right)$.

Proof. Use the $p-\left\{q^{2}+q+1 ; q+1 ; q+1 ; G\right\}-G B R S D S,|G|=p$, to make a $G B R D\left(q^{2}+q+\right.$ $\left.1, p\left(q^{2}+q+1\right), p^{2}, p, p ; G\right)$. Then use the $S B I B D\left(p, \frac{1}{2}(p-1), \frac{1}{4}(p-3)\right)$ and $S B I B D\left(p, \frac{1}{2}(p+\right.$ 1), $\frac{1}{4}(p+1)$ ) to obtain the second GDD of the enunciation.

For example, we know that there exist a difference set for $\operatorname{SBIBD}(7,3,1)$ and a $\operatorname{GBRD}\left(3,3,3 ; Z_{3}\right)$. We apply Theorem 7 to get $3-\left\{7,3,3 ; Z_{3}\right\}-G B R S D S$.
Now we use Lemma 1 and the trivial $B I B D(3,1,0)=I_{3}$ to obtain a $G D D(21,63,9,3 ; 0,1)$ and Lemma 1 and the $\operatorname{BIBD}(3,2,1)$ to obtain a $G D D(21,63,9,3 ; 9,4)$.

## 4 GENERALIZED WEIGHING MATRICES

Write $G=\left(g_{i j}\right)$ for a symmetric $G H(k, G),|G|=k$, where $G$ comprises the $k$ th roots of unity, $1, \gamma, \ldots, \gamma^{k-1}$ with the relation $1+\gamma+\gamma^{2}+\ldots+\gamma^{k-1}=0 . G$ is in normalized form so $g_{0 i}=g_{i 0}=1, i=0, \ldots, k-1$ and $g_{i j}=\gamma^{i j}$.
Let $D=\left\{d_{1}, \ldots, d_{k}\right\}$ be a $(v, k, \lambda)$-difference set. Form the $k-\{v ; k ; k \lambda\}-G B R S D S, D_{i}=$ $\left\{g_{i 1} d_{1}, g_{i 2} d_{2}, \ldots, g_{i k} d_{k}\right\}, i=1, \ldots, k$. Call the matrices developed from $D_{i}, A_{i}$. Now we form a matrix, $W$, of order $k^{2}$ by choosing the circulant matrix with first now

$$
\left[A_{1}: A_{2}: \ldots: A_{k}\right] .
$$

We claim $W$ is a generalized weighing matrix.
Theorem 12 If $k$ is a prime power and there exists a $(v, k, \lambda)$-difference set then there exists a $G W\left(v k, k^{2} ; E A(k)\right)$.

Proof. We use the normalized $G H(k, E A(k)), G=\left(g_{i j}\right)$ whose elements are the $k$ th roots of unity as above. We form $W$ as above.

There are three products to check: the inner product of row $x$ and row $x+y k, y \neq 0$; the inner product of row $x$ and row $y$ where $x, y \in S_{i}=\{i k, i k+1, \ldots, i k+k-1, i=1, \ldots, k\}$; the inner product of row $x$ and row $y$ where $x \in S_{i}, y \in S_{j}, i \neq j$.
The first row of $A_{i}$ has $a_{1, d_{j}}=g_{i j}, a_{1, n}=0$ otherwise. Hence the $x$ th row of $A_{i}$ has $a_{x, j}=$ $a_{1, j-x+1}=g_{1 m}$ if $j-x+1=d_{m}$ and $a_{x j}=0$ otherwise.
Case 1: The inner product of the $x$ th row and the $x+y k$ th row of $W$ is

$$
\begin{aligned}
\sum_{z=0}^{k-1} \sum_{j=1}^{v} a_{x, j+z k} a_{x+y k, j+z k}^{-1}, \quad y & \neq 0 \\
& =\sum_{z=0}^{k-1} \sum_{j=1}^{v} a_{1, j+z k-x+1} a_{1, j+z k-x-y k+1}^{-1}, \quad y \neq 0 \\
& =\sum_{z=0}^{k-1} \sum_{d_{m} \in D} g_{z m} g_{(z-y), m}^{-1}, \quad y \neq 0, \text { if } d_{m}=j-x+1, d_{m} \in D \\
& =0
\end{aligned}
$$

since $\sum_{d \in D} g_{z m} g_{(z-y), m}^{-1}$ is the inner product of two rows of the $G H, G$, for which $1+\gamma+\gamma^{2}+\ldots+$ $\gamma^{k-1}=0$.
Case 2: The inner product of the $x$ th row and the $y$ th row, $x, y \in S_{i}$ is

$$
\begin{aligned}
\sum_{z=0}^{k-1} \sum_{j=1}^{v} a_{x, j+z k} a_{y, j+z k}^{-1}, & y \neq x \\
& =\sum_{z=0}^{k-1} \sum_{d_{m}, d_{n} \in D} g_{z m} g_{z n}^{-1}, \quad d_{m}=j-x+1, \quad d_{n}=j-y+1, \quad d_{m}, \quad d_{n} \in D \\
& =0
\end{aligned}
$$

since $\sum_{z=0}^{k-1} g_{z m} g_{z n}^{-1}$ is the inner product of two rows of the $G H$.
Case 3: The inner product of $x$ th and $y$ th rows, $x \in S_{i}, y \in S_{j}, i \neq j$ is

$$
\begin{aligned}
& \sum_{z=0}^{k-1} \sum_{j=1}^{v} a_{x, j+z k} a_{y, j+z k}^{-1} \\
& =\sum_{z=0}^{k-1} \sum_{d_{m}, d_{n} \in D} g_{z m} g_{z+w, n}^{-1}, \quad \text { some } w \neq 0, \\
& d_{m}=j-x+1, \quad d_{n}=j-y+1, \quad d_{m}, \quad d_{n} \in D .
\end{aligned}
$$

( The $w$ reflects that where $x, y$ come from different $S_{i}$, the elements of row $y$ have all been incremented by the same fixed constant $(w)$ due to the block cyclic structure of $W$ )

$$
\begin{aligned}
& =\sum_{z=0}^{k-1} \sum_{d_{m}, d_{n} \in D} \gamma^{z m} \gamma^{-z n-w n} \\
& =\sum_{z=0}^{k-1} \sum_{d_{m}, d_{n} \in D} \gamma^{z(m-n)-w n}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{d_{m}, d_{n} \in D} \sum_{z=0}^{k-1} \gamma^{z(m-n)-w n} \\
& =0 \text { as } \sum_{z=0}^{k-1} \gamma^{z(m-n)-w n}=0
\end{aligned}
$$

Thus we have the result.
Example 10 The $G W\left(21,9 ; Z_{3}\right)$ is given. Similarly one can construct a $G W\left(55,25 ; Z_{5}\right)$.
$\left[\begin{array}{cccccccccccccccccccccc}0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & \omega & 0 & \omega^{2} & 0 & 0 & 0 & 1 & \omega^{2} & 0 & \omega & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & \omega & 0 & \omega^{2} & 0 & 0 & 0 & 1 & \omega^{2} & 0 & \omega & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & \omega & 0 & \omega^{2} & 0 & 0 & 0 & 1 & \omega^{2} & 0 & \omega \\ 1 & 0 & 0 & 0 & 1 & 1 & 0 & \omega^{2} & 0 & 0 & 0 & 1 & \omega & 0 & \omega & 0 & 0 & 0 & 1 & \omega^{2} & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & \omega^{2} & 0 & 0 & 0 & 1 & \omega & 0 & \omega & 0 & 0 & 0 & 1 & \omega^{2} \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 & \omega & 0 & \omega^{2} & 0 & 0 & 0 & 1 & \omega^{2} & 0 & \omega & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & \omega & 0 & \omega^{2} & 0 & 0 & 0 & 1 & \omega^{2} & 0 & \omega & 0 & 0 & 0 \\ & & & & & & & & & & & & & & & & & & & & \\ 0 & 1 & \omega^{2} & 0 & \omega & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & \omega & 0 & \omega^{2} & 0 & 0 \\ 0 & 0 & 1 & \omega^{2} & 0 & \omega & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & \omega & 0 & \omega^{2} & 0 \\ 0 & 0 & 0 & 1 & \omega^{2} & 0 & \omega & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & \omega & 0 & \omega^{2} \\ \omega & 0 & 0 & 0 & 1 & \omega^{2} & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & \omega^{2} & 0 & 0 & 0 & 1 & \omega & 0 \\ 0 & \omega & 0 & 0 & 0 & 1 & \omega^{2} & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & \omega^{2} & 0 & 0 & 0 & 1 & \omega \\ \omega^{2} & 0 & \omega & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & \omega & 0 & \omega^{2} & 0 & 0 & 0 & 1 \\ 1 & \omega^{2} & 0 & \omega & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & \omega & 0 & \omega^{2} & 0 & 0 & 0 \\ & & & & & & & & & & & & & & & & & & & & \\ 0 & 1 & \omega & 0 & \omega^{2} & 0 & 0 & 0 & 1 & \omega^{2} & 0 & \omega & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \omega & 0 & \omega^{2} & 0 & 0 & 0 & 1 & \omega^{2} & 0 & \omega & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & \omega & 0 & \omega^{2} & 0 & 0 & 0 & 1 & \omega^{2} & 0 & \omega & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\ \omega^{2} & 0 & 0 & 0 & 1 & \omega & 0 & \omega & 0 & 0 & 0 & 1 & \omega^{2} & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & \omega^{2} & 0 & 0 & 0 & 1 & \omega & 0 & \omega & 0 & 0 & 0 & 1 & \omega^{2} & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ \omega & 0 & \omega^{2} & 0 & 0 & 0 & 1 & \omega^{2} & 0 & \omega & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & \omega & 0 & \omega^{2} & 0 & 0 & 0 & 1 & \omega^{2} & 0 & \omega & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0\end{array}\right]$

Lemma 13 If $k$ is a prime power and there exists $a(v, k, \lambda)$-difference set then there exists a $\operatorname{PBIBD}\left(v k^{2}, v k^{2}, k^{2}, k^{2} ; \lambda_{1}=0, \lambda_{2}=\lambda, \lambda_{3}=k\right)$.

Proof. We replace the elements of the $G W\left(v k, k^{2} ; E A(k)\right)$ by their matrix representation as before. This gives $\lambda_{1}=0$.
The set of $x$ th and $(x+y k)$ th rows, $y=0, \ldots, k-1$ of the $G W$ give the third association which has $\lambda_{3}=k$.
The set of rows corresponding to the product of the $x$ th rows and the $y$ th rows, $x \in S_{i}, y \in S_{j}$, $i \neq j$ give the second association class with $\lambda_{2}=\lambda$.
Table 3 gives some of the generalized weighing matrices and PBIBDs parameters obtained by using Theorem 12 and Lemma 13.

Example 11 From the $G W\left(21,9 ; Z_{3}\right)$ with $\omega^{i}$ replaced by $T^{i}$ we have the classes comprising rows $3 j+1,3 j+2,3 j+3, j=0,1, \ldots, 20$ with inner product zero.
Rows $3 j+1,3 j+2,3 j+3$ with any of $21+3 j+1,21+3 j+2,21+3 j+3$ (and vice versa) and with any of $42+3 j+1,42+3 j+2,42+3 j+3, j=0,1, \ldots, 7$ (and vice versa) have inner product 3.
All other pairs of rows have inner product 1.

| Difference set $(v, k, \lambda)$ | $\begin{gathered} G W \\ \left(v k, k^{2} ; E A(k)\right) \\ \hline \end{gathered}$ | $\begin{gathered} P B I B D \\ \left(v k^{2}, v k^{2}, k^{2}, k^{2} ; 0, \lambda, k\right) \\ \hline \end{gathered}$ |
| :---: | :---: | :---: |
| $(4,3,2)$ | (12, 9; EA(3)) | (36, 36, 9, 9;0, 2, 3) |
| $(7,3,1)$ | (21, 9; EA(3)) | (63, 63, 9, 9;0, 1, 3) |
| $(5,4,3)$ | (20, 16; EA(4)) | ( $80,80,16,16 ; 0,3,4)$ |
| $(7,4,2)$ | (28,16; EA(4)) | (112, 112, 16, 16; 0, 2, 4) |
| $(13,4,1)$ | (52, 16; EA(4)) | (208, 208, 16, 16; 0, 1, 4) |
| $(6,5,4)$ | ( 30,$25 ; E A(5))$ | $(150,150,25,25 ; 0,4,5)$ |
| $(11,5,2)$ | ( 55,$25 ; E A(5))$ | (275, 275, 25, 25; 0, 2, 5) |
| $(21,5,1)$ | (105, 25; EA(5)) | (525, 525, 25, 25; 0, 1, 5) |
| $(8,7,6)$ | (56,49; EA(7)) | (392, 392, 49, 49; 0, 6, 7) |
| $(15,7,3)$ | (105, 49; EA(7)) | (735, 735, 49, 49; 0, 3, 7) |
| $(9,8,7)$ | ( 72,$64 ; E A(8))$ | (576, 576, 64, 64; 0, 7, 8) |
| $(15,8,4)$ | (120,64; EA(8)) | $(960,960,64,64 ; 0,4,8)$ |
| $(57,8,1)$ | (456,64; EA(64)) | (3648, 3648, 64, 64; $0,1,8)$ |

Table 3

So the PBIBD, $X$, satisfies $X J=J X=9$,

$$
X X^{T}=9 I_{3} \times I_{7} \times I_{3}+(J-I)_{3} \times J_{7} \times J_{3}+(J-I)_{3} \times I_{7} \times 2 J .
$$

Hence we have a $\operatorname{PBIBD}\left(63,63,9,9 ; \lambda_{1}=0, \lambda_{2}=1, \lambda_{3}=3\right)$.

Acknowledgment: We wish to thank Dr. Kishore Sinha for his helpful advice and comments.

## References

[1] Gerald Berman (1977), Weighing matrices and group divisible designs determined by $E G(t, p n), t>2$, Utilitas Math., 12, 183-192.
[2] Gerald Berman (1978), Families of generalised weighing matrices, Canad. J. Math., 30, 1016-1028.
[3] M. Bhaskar Rao (1966), Group divisible family of PBIB designs. J. Indian Stat. Assoc., 4, 14-28.
[4] M. Bhaskar Rao (1970), Balanced orthogonal designs and their applications in the construction of some BIB and group divisible designs. Sankhya Ser. A, 32, 439-448.
[5] A.T. Butson (1962), Generalized Hadamard matrices, Proc. Amer. Math. Soc., 13, 894898.
[6] A.T. Butson (1963), Relations among generalized Hadamard matrices, relative difference sets and maximal length recurring sequences, Canad. J. Math., 15, 42-48.
[7] Clatworthy W. H., Tables of Two-Associate-Class Partially Balanced Designs, National Bureau of Standards, US Commerce Department, 1971.
[8] Jeremy E. Dawson (1985), A construction for the generalized Hadamard matrices GH(4q, EA(q)), J. Statist. Plann. and Inference, 11, 103-110.
[9] Warwick de Launey (1984), On the non-existence of generalised Hadamard matrices, $J$. Statist. Plann. and Inference, 10, 385-396.
[10] Warwick de Launey (1986), A survey of generalised Hadamard matrices and difference matrices $D(k, \lambda ; G)$ with large $k$, Utilitas Math., 30, 5-29.
[11] Warwick de Launey and Jennifer Seberry (1984), Generalised Bhaskar Rao designs of block size four, Congressus Numerantium, 41, 229-294.
[12] Warwick de Launey, D.G. Sarvate, Jennifer Seberry (1985). Generalised Bhaskar Rao Designs with block size 3 over $Z_{4}$, Ars Combinatoria, 19A, 273-286.
[13] P. Delsarte and J.M. Goethals (1969), Tri-weight codes and generalized Hadamard matrices, Information and Control, 15, 196-206.
[14] P. Delsarte and J.M. Goethals (1971), On quadratic residue-like sequences in Abelian groups, Report R168, MBLE Research Laboratory, Brussels.
[15] A. Dey and C.K. Midha (1976), Generalised balance matrices and their applications, Utilitas Math., 10, 139-149.
[16] D.A. Drake (1979), Partial $\lambda$-geometries and generalized matrices over groups, Canad. J. Math., 31, 617-627.
[17] P. Eades (1980), On circulant ( $v, k, \lambda$ )-designs, Combinatorial Mathematics VII, Lecture Notes in Mathematics, Vol 829, Springer-Verlag, Berlin-Heidelberg-New York, 83-93.
[18] A.V. Geramita and J. Seberry (1979), Orthogonal Designs: Quadratic Forms and Hadamard Matrices, Marcel Dekker, New York.
[19] A.V. Geramita, N.J. Pullman and J. Seberry Wallis, Families of weighing matrices, Bull. Austral. Math. Soc., 10, 119-122.
[20] Peter Gibbons and Rudolf Mathon (1987), Construction Methods for Bhaskar Rao and related designs, J. Austral. Math. Soc. Ser A, 42, 5-30.
[21] D.G. Glynn (1978), Finite Projective Planes and Related Combinatorial Systems, Ph.D. Thesis, University of Adelaide, 1978.
[22] Marshall Hall Jr. (1967), Combinatorial Mathematics, Blaisdell, Waltham, Mass.
[23] H. Hanani (1961), The existence and construction of balanced incomplete block designs, Ann. Math. Stat., 32, 361-386.
[24] H. Hanani, (1975), Balanced incomplete block designs and related designs, Discrete Math., 11, 255-369.
[25] Dieter Jungnickel (1979), On difference matrices, resolvable TD's and generalized Hadamard matrices, Math. Z, 167, 49-60.
[26] Clement Lam and Jennifer Seberry (1984), Generalized Bhaskar Rao designs, J. Statist. Plann. and Inference, 10, 83-95.
[27] R.C. Mullin (1974), Normal affine resolvable designs and orthogonal matrices, Utilitas Math., 6, 195-208.
[28] R.C. Mullin (1975), A note on balanced weighting matrices, Combinatorial Mathematics III, Lecture Notes in Mathematics, Vol. 452, Springer-Verlag, Berlin-Heidelberg-New York, 28-41.
[29] R.C. Mullin and R.G. Stanton (1975), Group matrices and balanced weighing designs, Utilitas Math., 8, 303-310.
[30] R.C. Mullin and R.G. Stanton (1975), Balanced weighing matrices and group divisible designs, Utilitas Math., 8, 277-301.
[31] R.C. Mullin and R.G. Stanton (1976), Corrigenda to: Balanced weighing matrices and group divisible designs, Utilitas Math., 9, 347.
[32] William D. Palmer, (1990), Generalized Bhaskar Rao designs with two association classes, Australas. J. Combin., 1, 161-180.
[33] William D. Palmer and Jennifer Seberry, Bhaskar Rao designs over small groups, Ars Combinatoria, 26A, (1988) 125-148
[34] D. Raghavarao (1971), Construction and Combinatorial Problems in Design of Experiments, Wiley, New York.
[35] Dinesh Rajkundlia (1983), Some techniques for constructing infinite families of BIBDs, Discrete Math., 44, 61-96.
[36] G.M. Saha and A.D. Dab(1978), An infinite class of PBIB designs, Canad. J. Statist., 6, 25-32.
[37] G.M. Saha and Gauri Shankar (1976), On a Generalized Group Divisible family of association schemes and PBIB designs based on the schemes, Sankhya, 38B, 393-403.
[38] Jennifer Seberry Wallis (1972), Hadamard matrices. Part IV of Combinatorics: Room squares, sum free sets and Hadamard matrices, Lecture Notes in Mathematics, Vol 292, Springer-Verlag, Berlin-Heidelberg-New York, 273-489.
[39] Jennifer Seberry (1978), A class of group divisible designs, Ars Combinatoria, 6, 151-152.
[40] Jennifer Seberry (1979), Some remarks on generalized Hadamard matrices and theorems of Rajkundlia on SBIBDs, Combinatorial Mathematics IV, Lecture Notes in Mathematics, Vol 748, Springer Verlag, Berlin-Heidelberg-New York, 154-164.
[41] Jennifer Seberry (1980), A construction for generalized Hadamard matrices, J. Statist. Plann. and Inference, 4, 365-368.
[42] Jennifer Seberry (1982), Some families of partially balanced incomplete block designs. Combinatorial Mathematics IX, Lecture Notes in Mathematics, Vol 952, Springer, Berlin-Heidelberg-New York, 378-386.
[43] Jennifer Seberry (1982), The skew-weighing matrix conjecture, Uni. of Indore Research J. Science, 7, 1-7.
[44] Jennifer Seberry (1984), Regular group divisible designs and Bhaskar Rao designs with block size 3, J. Statist. Plann. and Inference, 10, 69-82.
[45] Jennifer Seberry (1985), Generalized Bhaskar Rao designs of block size three, J. Statist. Plann. and Inference, 11, 373-379.
[46] Jennifer Seberry (1988), Bhaskar Rao designs of block size 3 over group of order 8, University College, UNSW, Technical report CS88/4.
[47] S.S. Shrikhande (1964), Generalized Hadamard matrices and orthogonal arrays of strength 2, Canad. J. Math., 16, 736-740.
[48] S.J. Singh (1982), Some Bhaskar Rao designs and applications for $k=3, \lambda=2$, University of Indore J. Science, 7, 8-15.
[49] Kishore Sinha (1978), Partially balanced incomplete block designs and partially balanced weighing designs, Ars Combinatoria, 6, 91-96.
[50] Deborah J. Street (1979), Generalized Hadamard matrices, orthogonal arrays and Fsquares, Ars Combinatoria, 8, 131-141.
[51] Deborah J. Street (1981), Bhaskar Rao designs from cyclotomy, J. Austral. Math. Soc. Ser. A, 29, 425-430.
[52] D.J. Street and C.A. Rodger (1980), Some results on Bhaskar Rao designs, Combinatorial Mathematics VII, Lecture Notes in Mathematics, Vol 829, Springer-Verlag, Berlin-Heidelberg-New York, 238-245.
[53] Anne P. Street and Deborah J. Street, Combinatorics of Experimental Design, Oxford University Press, Oxford 1987.
[54] R. Vyas (1982), Some Bhaskar Rao Designs and applications for $k=3, \lambda=4$, University of Indore J. Science, 7, 16-25.
[55] R.M. Wilson (1974), A few more squares, Proc. Fifth South Eastern Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium XXI, Utilitas Mathematica, Winnipeg, 675-680.
[56] R.M. Wilson (1975), Construction and uses and pairwise balanced designs, Combinatorics, Edited by M. Hall Jr. and J.H. van Lint, (Mathematisch Centrum, Amsterdam), 19-42
[57] R.M. Wilson (1975), An existence theory of pairwise balanced designs III; proof of the existence conjectures, J. Combinatorial Theory Series A, 18, 71-79.


[^0]:    *Research supported by Telecom grant 7027 and ARC grant A48830241

