
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information
Sciences

1996

Replicating the Kuperee authentication server for increased security and Replicating the Kuperee authentication server for increased security and

reliability reliability

Thomas Hardjono

Follow this and additional works at: https://ro.uow.edu.au/infopapers

 Part of the Physical Sciences and Mathematics Commons

Recommended Citation Recommended Citation
Hardjono, Thomas: Replicating the Kuperee authentication server for increased security and reliability
1996.
https://ro.uow.edu.au/infopapers/1133

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online

https://core.ac.uk/display/37005535?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F1133&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F1133&utm_medium=PDF&utm_campaign=PDFCoverPages

Replicating the Kuperee authentication server for increased security and Replicating the Kuperee authentication server for increased security and
reliability reliability

Abstract Abstract
The current work proposes a new scheme for the replication of authentication services in Kuperee based
on a public key cryptosystem, in response to the two main shortcomings of the traditional single server
solutions, namely those of low availability and high security risks. The work represents further
developments in the Kuperee authentication system. The Kuperee server is presented in its simplified
design to aid the presentation of the replication scheme. The replication approach is based on the sharing
of session public keys, together with a threshold or secret sharing scheme. However, unlike previous
approaches, in the current work the object to be shared-out is instead a session secret key which is not
directly available to the (untrusted) Client. The scheme gains advantages deriving from the use of public
key cryptology, as well as from the manner in which the secret is shared-out. A comparison with the
notable work of Gong (1993) is also presented.

Disciplines Disciplines
Physical Sciences and Mathematics

Publication Details Publication Details
Hardjono T and Seberry J, Replicating the Kuperee authentication server for increased security and
reliability, ACISP'96, LNCS 1172, Springer-Verlag, Berlin, 1996 14-26.

This conference paper is available at Research Online: https://ro.uow.edu.au/infopapers/1133

https://ro.uow.edu.au/infopapers/1133

Replicating the K uperee Authentication Server
for Increased Security and Reliability

(Extended Abstract)

Thomas Hardjonol,2 and Jennifer Seberryl

1 Centre for Computer Security Research, University of Wollongong,
Wollongong, NSW 2522, Australia

2 Department of Computing and Information Systems,
University of Western Sydney - Macarthur, NSW 2560, Australia

The current work proposes a new scheme for the replication of authentication
services in Kuperee based on a public key cryptosystem, in response to the two
main shortcomings of the traditional single server solutions, namely those of low
availability and high security risks. The work represents further developments
in the Kuperee authentication system. The Kuperee server is presented in its
simplified design to aid the presentation of the replication scheme. The repli­
cation approach is based on the sharing of session pub'ic keys, together with a
threshold or secret sharing scheme. However, unlike previous approaches, in the
current work the object to be shared-out is instead a session secret key which
is not directly available to the (untrusted) Client. The scheme gains advantages
deriving from the use of public key cryptology, as well as from the manner in
which the secret is shared-out. A comparison with the notable work of Gong
(1993) is also presented.

1 INTRODUCTION

Developments of networks and nodes in terms of size and number in the world to­
day has made the issue of security is a pressing one. Expansion of these networks,
such as the Internet, has brought various possibilities for electronic commerce.,
In such electronic-based activities a certain level of assurance must be provided,
both for the users and the service-providers. This, in turn, has brought into the
foreground the security issues related to such networks. These issues include the
authenticity of users, the non-repudiation of a user's transactions, integrity and
privacy of information traveling within the network, and a host of other issues.

Authentication of users and service-providers within a network is an impor­
tant foundation stone for other security-related services, independent of whether
these are provided by the network or by specific service-providers in the network.
The variety of authentication systems and protocols, together with the fact that
the encipherment of data must often accompany auther,tication events, point to
the higher layers (eg. in the OSIjISO stack or the TCP JIP stack) as being the
best location to provide such security-related services.

The current work proposes a new scheme for the replication of authentica­
tion services based on a public key cryptosystem, in response to the two main

15

shortcomings of the traditional single server solutions, namely those of low avail­
ability and high security risks. The work represents further developments in the
Kuperee authentication system which was earlier presented in [1].

The choice of a public-key cryptosystem in Kuperee is largely motivated by
conviction that as the needs of authentication increases with the expansion of
networks, public-key techniques may offer better solutions to the problem of
authentication in large-scale networks, compared to the approaches based ex­
clusively on shared-key (symmetric) cryptosystems. This use of a public key,
specifically that of [2], distinguishes Kuperee from other systems and provides
it with more flexibility in tailoring the protocol steps following the particular
demands. The use of the cryptosystems of [2] allows Kuperee to act either as
an Authenticating Authority or as a Certifying Authority, or as a simultaneous
combination of both. This ability is important in situations in which a special
session key must be provided by an authority trusted by two communicating par­
ties, eventhough both parties are already in possession of each other's (publicly
available) public-key which have been generated and proclaimed by the parties
respectively.

The earlier design of Kuperee suffered from a number of deficiencies which
were noticeable soon after the design was published in [1]. The design was also
unreasonably complicated. These problems prompted for Kuperee's simplifica­
tion, reported in [3]. Some known deficiencies of the original design 01 [1] have
again been confirmed recently in [4].

Kuperee, like other authentication systems - such as Kerberos [5, 6, 7] - was
originally based on the use of a single authenti(ation server to cater for clients in
a given domain [1]. Although this traditional single-server approach has practi­
cal advantages, two of its more important shortcomings concerns the availability
and performance of the server and the security of the server itself [8]. First, since
entities in the distributed system rely on the server for their authentication op­
erations, the server easily becomes a source of contention or bottleneck. The
temporary unavailability of the server can lead to a degradation in the overall
performance of the distributed system. Secondly, the fact that the server may
hold cryptographic (secret) keys belonging to entities in the distributed system
makes it the best point of attack for intruders wishing to compromise the dis­
tributed system. An attacker that successfully compromises the server has access
to the (secret) keys of the entities under the server's jurisdiction. The attacker
can then carry-out various active and passive attacks on the unsuspecting enti­
ties.

The use of a threshold scheme [9, 10J among a collection of security servers ne­
cessitates a client to consult a minimum oft out of M (t ~ M) honest servers be­
fore the authentication process succeeds or services are granted. This approach,
besides increasing the overall security of the distributed system, also reduces the
bottleneck present in the previous single-server solutions. An attacker wishing
to compromise the cryptographic keys employed within the distributed system
must compromise at least t of the M servers, something considerably harder
than a single server. The problem of bottlenecks is eased by the existence of

16

multiple servers, only a subset of which is required by the clients for an instance
of authentication.

In the next section the background of Kuperee for the sharing of session
keys will -be presented. This is followed by the new scheme for the replication
of authentication services in Kuperee in Section 3. Section 4 offers some com­
parisons with an existing approach, while Section 5 clo<;es the paper with some
remarks and conclusions. Readers wishing more specific details on the public key
cryptosystem employed in Kuperee are directed to the Appendix.

2 AUTHENTICATION IN KUPEREE

In the authentication system the entities that interact with the Authentica­
tion Server are called principals [5]. The term can be used for Users, Clients or
Servers. Commonly, a user directs a Client (eg. a program) on a machine to
request a service provided by a another server (or another Client) on a remote
machine.

There are a number of ways that the Kuperee server can be employed, ei­
ther as an authentication server or as a certification server, or both [3]. In this
current work we first employ Kuperee specifically as an authentication server,
mimicking the actions of the Needham-Schroeder protocol [11, 12] within the
Kerberos authentication system [5, 7]. That is, Kuperee will be used to deliver
a pair of session keys to the principals that require secure and authentic com­
munications. This is then followed by the description of a protocol in which the
public-keys within Kuperee are used directly by the principals, thereby making
Kuperee rather as a certification authority in the system.

In brief, the interactions within the authentication service consists of the
Client requesting the Key Distribution Center (KDC) for a ticket-granting ticket
to be submitted by the Client to the Ticket Granting :,erver (TGS). The TGS
then authenticates the Client and issues the Client with a service ticket which
has a shorter lifetime compared to the ticket-granting ticket. On presentation
by the Client, the service ticket is used by the service-provider to authenticate
the Client, since the service-provider places trust on the TGS (Figure 1). These
two stages are also referred to as the credential-initialization and client-server
authentication protocols respectively in [13].

2.1 Kuperee: Notations

In the public key cryptosystem of [2] a secret key is chosen randomly and uni­
formly from the integers in [1, p - 1], where the prime p is public and is used to
generate the multiplicative group GF(p)* of the finite field GF(p). The genera­
tor of this multiplicative group is denoted as 9 and it is a publicly known value.
This usage of 9 and p is inspired by notable works of [14] and [15]. The corre­
sponding public key is then produced by using the secret key as the exponent of
9 modulo p. (In the remainder of this paper all exponentiations are assumed to
be done over the underlying groups).

17

:a .. .
co-located

Fig.!. Authentication in Kuperee following Kerberos

The KDC, the Client, the TGS and the Service provider (ie. destination
server) have the secret-public key pairs (Xkdc, Ykdc ::: gXkdC), (Xc, Yc ::: gXc)
(Xtg.,Ytg• :::gx •••), and (X.,Y. :::gx.) respectively.

The operation "n K" means that the contents within the braces "n" are
enciphered or deciphered using the key f(. Thus, assuming that Yc is the public­
key of the Client, the operation "nyc" signifies encryption using the publicly
known key Yc of the Client using the modified encryption algorithm of [2]. The
operation provides both confidentiality and integrity. All encrypted messages
implicitly includes a nonce.

An important aspect of the protocol is that although a ticket is shown to be
encrypted using the public-key of the targeted receiver, the sender's secret-key
participates in the encryption. That is, there is always sender authentication
built into every instance of encryption. In Kuperee, sender authentication and
message secrecy are treated as inseparable in l single step. Hence, the receiver
knows the identity of the sender and can verify the cryptogram as coming from
the (alleged) sender, due to the fact that the receiver must use the sender's
public-key in order to decipher the cryptogram.

2.2 Kuperee: Sharing of a Session Secret-Public Key Pair

Kuperee mimics Kerberos in that a session secret-public key pair is shared among
the KDC-TGS-Client, while another is shared among the TGS-Client-Server.
The session key pair is discarded after one instance of authentication.

Here, we assume that the KDC knows the public-key of all principals in the
domain. The TGS knows the public key of the KDC and all Clients, while the
Client knows the public-key of the TGS and the KDC. The KDC is assumed

18

to have the highest level of trust equivalent to one holding private keys of the
principals. This is necessary as the KDC will also function as a certification
authority for the public keys of the entities in the domain. A Client wishing to
communicate to another Client may request from the KDC a certified copy of
the public key belonging to the second client (and vice versa).

In the following, each session secret-public key pair is denoted by (k, K == gle),
and their subscripts indicates which principals employ the key pair. For clarity,
the session keys are shown next to the ticket, rather than within the ticket.

1. Client -+ KDC: c, tgs, Nc
2. KDC -+ Client: {Kc,tg.,tgs,Nc, Nkdc}yc' {kc,tg., Nkdc,c,lijetime}y,gl

The KDC first generates the session key pair (kc,tg.,I(c,tg.) to be used be­
tween the Client and the TGS.
The session "public" key Kc,tg. is delivered to the Client, enciphered under
the Client's public-key. The session "secret" key k"tg. is given to the TGS
(via the client) encrypted under the TGS's public-key.

3. Client -+ TGS: {Ac,s, Nkdc}K ,{kctg.,Nkdc,c,lijetime}y, N~ c.'g. I '9.

The Client uses the session key Kc,tg. obtained from the KDC to encipher
the authenticator Ac = (c, timestamp) [5, 7] destined for the TGS.

Here the key kc,tg. is not used directly in the manner of public keys. The
TGS uses the session key kc,tg. to compute another key rtg. ,c as:

r = (Y)X,g.+kc"g.
tgs,c - c

The Client can recover the key as

rtg"c == (Yig• Kc,tg.)xC

since Yi g• is public.
Note that the Client cannot fabricate {kc,.,Ntg.,c,lijetime}y. without be·
ing detected by the recipient Server. This is because in deciphering it, the
Server will use keys X. and Yt g• simultaneously. Only these two keys can
succeed. In order to fabricate it, the Client would need to know X tg• which
is known only to the TGS.

The Client uses the session key Kc,. to encipher the authenticator Ac. The
Server deciphers it using the matching secret session key kc ,. obtained from
within the ticket.

6. Server -+ Client: {C,S,N~/h
C,I

19

If required, the Server may respond to the Client's request of proving the
Server's identity. This can be done by the Server using the session key kC,3

to create r3 ,c as:
r"c == (yc)X.+k c

••

which is recoverable by the Client as:

r3 ,c == (KC ,3 y,)XC

since only the Client knows Xc'

2 rG:0e m el
.......... _ _0 ·

5

6

Fig. 2. Authentication in Kuperee using several TGSs

3 REPLICATING KUPEREE

In this section we extend the proposed protocol of the previous section based on
a session secret-public key pair for the purpose of authentication using replicated
TGSs. The replication approach is based on the use of secret-sharing schemes
(or threshold schemes) [9,10] to achieve a minimum consensus of honest TGSs.
In the current work we do not present any secret-sharing scheme, although the
practical scheme of [16] is currently under proposal for Kuperee.

Previous solutions - such as that in [8] - employ a thresholding function to
split a parameter (eg. symmetric key) into a number of shares, t out of M of
which is required at least to recover the origin.ll parameter.

In the current work we also employ a thresholding function to achieve the
same basic effect. However, in this case the parameter to be shared-out consists

20

of a session secret key which is not directly available to the Client. This con­
forms with the underlying motivation that there should be a hierarchy of trust
assignment in the systems, with the KDC being the mO'lt trusted and the Client
the least. It is therefore preferable for the Client to hold the public half of the
session key-pair, with the Server keeping the secret half.

The current approach is divided into two basic phases. The first is carried-out
by the KDC in a continuous manner, where the KDC generates and distributes
the keys and the shares to the multiple TGSs. The second phase is invoked
whenever a Client requires access to the Server.

3.1 Share Generation and Distribution Phase

In this phase the KDC generates a set of session key pairs (secret and public)
and associates an identity number with each pair. The secret session key is then
broken into a number of shares. These shares, together with the share identity
and the session public-key are then distributed to the TGSs in the system.

More specifically, given the session key pair (kc,., [{c,,) and given M of TGSs
in the system, the KDC generates an identity I Dc,. associated with the session
key pair and splits the session secret-key into M pieces PC"l' pc,." ... , pc,. M'

where PC'" = thresht.M(kc,., i) for some threshold function thresht.MO [8].
The KDC then distributes the parameters

(I Dc,., [{c", PC"l)
(I Dc,., [{c,., pc,.,)

to the TGS1 , TGS2 , ... TGSM respectively. Each TGS securely holds a database
containing these parameters, each entry of which is used for one authentication
instance only.

This process is a continuous one, with the KDC ensuring that a ready supply
of session key pairs are available for the TGSs.

3.2 Authentication Phase

In this phase the authentication over several TGSs occurs, initiated by the Client.
The procedure is similar to the traditional single TGS approach, with the addi­
tion of one step between the TGSs and the Server (see Figure 2).

1. Client -+ KDC: c, tgs, Nc

Here the Client approaches the KDC in the usual manner with a request to
access the TGS.

2. KDC -+ Client:
{I Dc,., [{c,tg., tgs, Nc, Nkdc}yc' {I Dc,., kc,tg., Nkdc, c, lifetime }y, •• ;

21

The KDC provides the Client with a session public key I<c,tg3 in the ordinary
manner together with an identity I DC,3 to be presented later by the Client
to the TGSs. The KDC also provides a ticket destined for the TGSs which
contains the session secret key kC,tg3 with its corresponding identity I DC,3'

3. Client -> TCSi:
{Ac, s, Nkdc} Kc , •• ,' {ID c,3, kC,tg3' Nkdc, c, lifetime }y'.';' N~;

Here the Client obtains the session public .cey I<c,tg3 from the previous step
and uses it to deliver an authenticator to at least t out of the M TGSs.
The Client also forwards the ticket it received from the KDC to each of the
TGSs.

At least one of the TGSs must respond to the Client by delivering the ses­
sion public key I<c,3 to the Client. Note that in fact the key used is rtg3;,c
computed as:

If the TGS happens to be dishonest (or has been subverted by an attacker)
and delivers a false key, then the authentication process will fail in the en­
suing steps.

4b. TCSi -> Server: {Pc,3;,Ntg3,c,/ifetime}y,

Each of the t TGSs also deliver to the Server a ticket with the share Pc 3

required by the Server to recover the session secret key k C ,3' ' ,

5. Client -> Server: {Ac,N~',Ntg'}K
c,'

The Client then uses the session public key I<C,3 to send the Client's authen­
ticator to the Server.

6. Server -> Client: {c, s, N~'h
c,'

As in the single TGS case, the Server uses key kC ,3 which it now holds (from
merging the shares) to compute the actual enciphering key r3 ,c as:

r.,c == (yc)X,+k c
,.

4 COMPARISON WITH OTHER APPROACHES

The notion of secret sharing schemes have been in use for sometime in a number
of different application [17]. However, in the context of authentication in dis­
tributed systems and network security the first notable effort was given by Gong
in [8]. It is therefore useful to compare the current proposed scheme for Kuperee
with that given in [8].

One of the main underlying differences between the proposed scheme and
Gong's scheme in [8] is the use of symmetric (shared-key) cryptosystem in [8] ..
This has impact on the system on a number of points:

22

Key management. In [8] the Client and the TGSs (ie. Authentication Servers
in [8]) must share a key on a one-to-one basis. This is established by com­
puting the key Ka; - shared between the Client A and the TGS i - using a
hash function h as Ka; = h(Ka, TGS i) where Ka is the master key known
only to the Client A and TGS i is the unique identity of the i-th TGS.
In our case the overhead in the key management of these shared keys does
not exist as the public keys of the Client and the TGSs are readily available
in the public domain.

Role of the TGSs. A more pronounced difference lies in the role of the TGSs
in Kuperee and in the scheme of [8]. In the replication scheme of Kuperee
the TGSs act as a storage point for the shares derived from the session secret
key. The session secret key is chosen by the most trusted entity, namely the
KDC, and it is only ever directly available to one other entity, which is the
Server, at the successful completion of the authentication process. It is the
KDC that performs the share generation and distribution.
In the scheme of [8] the TGSs (ie. Authentication Servers) act more as an
intermediary in the exchange of two secret parameters x and y between the
Client A and the Client B (or the Server B). That is, the TGSs collectively
take the role of an exchange point. These two parameters x and yare then
used by the two parties to compute a common key KAB via some secure
one-way function 9 (ie. Client A sends x to B via the TGSs; B sends y to A
via the TGSs; each computes KAB = g(x,y». Thus, the TGSs (ie. Authen­
tication Servers in [8]) do not actually store any shares for longer than the
completion of the key exchange period.

- Selection of participating TGSs. In the scheme of [8] it is essential that the
communicating parties Client A and Client B (or Server B) choose the same
set of t TGSs. This stems from the fact that the t number of TGSs act as
a common exchange point. Thus, if Client B chooses a slightly different set
of t TGSs, with some TGS not being in Client A's chosen set, then these
non-intersecting set of TGSs will not have the parameter x from Client A.
Similarly, the TGSs selected by Client A which are not in the set chosen by
Client B will not carry the parameter y from Client B.
The solution to this dilemma is for both Client A ar d Client B (or Server B)
to select all the TGSs when delivering the paramete::s x and y initially. That
is, all the TGSs become the exchange point, receiving copies of parameters
x and y. After this has occurred, each of the parties can proceed to select
any t of the TGSs.
In the replication scheme of Kuperee the above problem does not exist since
all the TGSs are already acting as storage points and are in possession of
all the shares respectively. The parties can select any t of the TGSs with no
impact on the scheme.

Other differences between the two schemes derive largely from the use of a
public key cryptosystem in Kuperee versus a private key (shared key) cryptosys-

23

tern in [8]. The use of a public key cryptosystem simplifies key management in
the domain since any new public-key can be broad casted by the certification
authority. Principal-to-principal secure communications can also be established
much more readily without the aid of any trusted third party, albeit with the
risk being fully burdened by the two communicating parties (eg. in the case that
one of the two turns-out to be a masquerading attacker).

5 REMARKS AND CONCLUSION

In this work we have proposed a new scheme for the replication of authentica­
tion services based on a public key cryptosystem, in response to the two main
shortcomings of the traditional single server solutions. First, since entities in
the distributed system rely on the server for their authentication operations,
the server easily becomes a source of contention or bottleneck. The temporary
unavailability of the server can lead to a degradation in the overall performance
of the distributed system. Secondly, the fact j hat the server may hold crypto­
graphic (secret) keys belonging to entities in the distributed system makes it the
best point of attack for intruders wishing to compromise the distributed system.

A comparison with the notable work of Gong [8] has been presented, focus­
ing on the issues of key management, the role of the TGSs and the selection of
the TGSs by the communicating parties in the system. Although the two ap­
proaches differ in their underlying use of a public key cryptosystem in Kuperee
and a shared key (private key) cryptosystem in [8], some of the observations are
useful to illustrate the various abilities and usefulness of the two approaches in
differing environments.

Acknowledgements
We thank Anish Mathuria for indepth comments on Kuperee. This work has

been supported in part by the Australian Research Council (ARC) under the
reference number A49232172, A49130102 and A49131885, and by the University
of Wollongong Computer Security: Technical and Social Issues research program.

References

1. T. Hardjono and J. Seberry, "Authentication via multi-service tickets in the ku­
peree server," in Computer Security - ESORICS'94: Proceedings of the Third Eu­
ropean Symposium on Research in Computer ~ecurit!l (D. Gollmann, ed.), vol. 875
of LNCS, pp. 143-160, Springer-Verlag, 1994.

2. Y. Zheng and J. Seberry, "Immunizing public key cryptosystems against chosen
ciphertext attacks," IEEE Journal on Selected Areas in Communications, vol. 11,
no. 5, pp. 715-724, 1993.

3. T. Hardjono, "Kuperee simplified," Technical Report Preprint 95-5, Centre for
Computer Security Research, Computer Science Department, University of Wol­
longong, December 1994.

24

4. Y. Ding and P. Horster, "Why the kuperee authentication system fails," Operating
Systems Review, vol. 30, no. 2, pp. 42-51, 1996.

5. J. G. Steiner, C. Neuman, and J. I. Schiller, "Kerberos: an authentication service
for open network systems," in Proceedings of the 1988 USENIX Winter Conference,
(Dallas, TX), pp. 191-202, 1988.

6. S. M. Bellovin and M. Merritt, "Limitations of the Kerberos authentication sys­
tem," Computer Communications Review, vol. 20, no. 5, pp. 119-132, 1990.

7. J. T. Kohl, "The evolution of the kerberos authentication service," in Proceedings
of the Spring 1991 EurOpen Conference, (Troms!!!, Norway), 1991.

8. L. Gong, "Increasing availability and security of an authentication service," IEEE
Journal on Selected Areas in Communications, vol. 11, no. 5, pp. 657-662, 1993.

9. A. Shamir, "How to share a secret," Communications of the ACM, vol. 22, no. 11,
pp. 612-613, 1979.

10. G. R. Blakley, "Safeguarding cryptographic keys," in Proceedings of the National
Computer Conference, AFIPS Conference Proceedings, Vol. 48 , pp. 313-317, 1979.

11. R. M. Needham and M. D. Schroeder, "Using encryption for authentication in
a large network of computers," Communications of the ACM, vol. 21, no. 12,
pp. 993-999, 1978.

12. R. M. Needham and M. D. Schroeder, "Authentication revisited," Operating Sys­
tems Review, vol. 21, no. 1, p. 7, 1987.

13. T. Y. C. Woo and S. S. Lam, "Authentication for distributed systems," IEEE
Computer, vol. 25, pp. 39-52, January 1992.

14. W. Diffie and M. E. Hellman, "New directions in cryptography," IEEE Transac­
tions on Information Theory, vol. IT-22, no. 6, pp. 644· ·654, 1976.

15. T. EI Gamal, "A public key cryptosystem and a signature scheme based (In discrete
logarithms," IEEE Transactions on Information Theory, vol. IT-31, no. 4, pp. 469-
472, 1985.

16. Y. Zheng, T. Hardjono, and J. Seberry, "Reusing shares in secret sharing schemes,"
The Computer Journal, vol. 17, pp. 199-205, March 1994.

17. G. J. Simmons, "An introduction to shared secret and/or shared control schemes
and their application," in Contemporary Cryptology (G. J. Simmons, ed.), pp. 441-
497, IEEE Press, 1992.

APPENDIX: KUPEREE ALGORITHMS
The approach in Kuperee is based on the public key cryptosystem of [2]. Here

we provide further notations for the cryptosystem and present the algorithm for
the encipherment and decipherment of tickets based on a modified version of the
original cryptosystem of [2]. The algorithms expresses only the encipherment
(decipherment) of the plaintext (ciphertext) tickets, and do not incorporate the
steps taken by the KDC, Client, TGS and the Server.

The following notation is taken directly from [2]. The cryptosystem of [2]
employs a n-bit prime p (public) and a generator 9 (public) of the multiplicative
group GF(p)* of the finite field GF(p). Here n is a security parameter whicb
is greater that 512 bits, while the prime p must be chosen such that p - 1 has
a large prime factor. Concatenation of string are denoted using the "II" symbol
and the bit-wise XOR operations of two strings is symbolized using "EEl". The
notation W[i"'il (i ::; j) is used to indicate the substrinr obtained by taking the
bits of string W from the i-th bit (w;) to the j-th bit (wi)'

25

The action of choosing an element x randomly and uniformly from set S is
denoted by XERS. G is a cryptographically strong pseudo-random string gener­
ator based on the difficulty of computing discrete logarithms in finite fields [2].
G stretches an n-bit input string into an output string whose length can be an
arbitrary polynomial in n. This generator produces O(Iog n) bits output at each
exponentiation. All messages to be encrypted are chosen from the set EP(n) ,

where pen) is an arbitrary polynomial with pen) ~ n and where padding can
be used for messages oflength less than n bits. The polynomialf = fen) specifies
the length of tags. The function h is a one-way hash function compressing input
strings into f-bit output strings.

In the process of getting an initial ticket the Clients asks the KDC to prepare
the ticket to be submitted by the Client to the TGS. The KDC generates a
session key pair by first calculating kc,tg.ER[1,p-1] followed by the calculation
}\~ t = gkc"g. c, g~ - •

The KDC then enciphers the session key Kc,tg. intended for the Client who
owns the public-key Yc by invoking Encipher (Algorithm 1) with the input pa­
rameters (p, g, r c, Kc,tg.) where rc == (Yc)XkdC+XC for some random xcER[l ,p-1].
The output of Encipher (Algorithm 1) that is sent to the Client is in the form
Cc = {CI/yc} where Yc == gXc.

Algorithm 1 Encipher(p, g, r, T)

1. z = G(r)[l ... (P(n)+l(n))].

2.t=h(T$r).
3. m = (TI/t).
4. C= z$m.
5. output (C).

end

Upon receiving the ciphertext Cc = {CI/yc} the Client attempts to decipher
the ciphertext by first computing r' == (Ytg.yc)XC and using this as input to
Decipher (Algorithm 2). More specifically, the Client inputs That is, the TGS
inputs (p, g, r', C) resulting in the output Kc,tg.'

26

Algorithm 2 Decipher(p, g, r' , C)

end

1. z' = G(r')[l ... (P(n)+i(n»]'
2. m = z' EB C.
3. T' = m[l ... P(n)].

4. t' = m[(P(n)+l) ... (P(n)+l(n»].
5. if h(T' $ r') = t' then

output (T')
else

output (0).

In general, the same procedure is followed by each principal who must com­
pute the parameter r (either directly or by selecting a random number x) and
use it as input to either Encipher (Algorithm 1) or Decipher (Algorithm 2).

Readers interested in the security of Kuperee are directed to [2] which dis­
cusses the security of the public key cryptosystem upon which Kuperee is directly
built.

	Replicating the Kuperee authentication server for increased security and reliability
	Recommended Citation

	Replicating the Kuperee authentication server for increased security and reliability
	Abstract
	Disciplines
	Publication Details

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13

