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Abstract 

An introduction to binary sequences, combi­
natorial designs and how they are related to 
communication theory and computer security 
is given. An exhaustive search algorithm for 
normal sequences is presented. This is the first 
time that the lengths n = 24 and n = 25 
have been searched through completely. No 
sequences of length 24 are found. It turns out 
that all the normal sequences of length 25 can 
be derived from Turyn sequences. This con­
struction is subject to a new theorem that is 
given here. 

Key words: Hadamard matrices, normal 
sequences, near-Yang sequences, Turyn se­
quences, exhaustive search algorithm. 

1 Introduction 

We start with a definition: 

Definition 1 
(Nonperiodic Autocorrelation Function) 

Let X = {{Xll"",Xln},{X21"",X2n}, 
. . . , ... , { Xml , ... , xmn}} be a family of m se­
quences of elements 1, 0 and -1 and length 
n. The nonperiodic autocorrelation function 
of the family of sequences X, denoted by N x, 
is a function defined by 

Nx(s) = 
'Supported by the ARC grants A49131885 and 

A9130102, The University of Wollongong and the Cen­
tre for Computer Security Research 
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n-, 
L(XliXl,i+, + X2iX2.i+s + ... + XmiXm.i+.), 

i=l 

where s can range from 0 to n - 1. 

Initially people were interested in single se­
quence (that is m would be equal to 1 in the 
above definition) such as Barker sequences. A 
crucial criterion was the autocorrelation func­
tion being zero or one for each possible shift 
(s 2: 1) and being a comparatively large num­
ber when not shifted (s = 0). We observe that 
for s = 0 the autocorrelation function always 
returns the total number of nonzero elements 
in the sequence(s). Barker sequences were use­
ful to measure long distances such as from the 
earth to the moon or to an aircraft. A single 
sequence was sent out to the remote object and 
overlapped with the reflected sequence. The 
autocorrelation function was then calculated. 
When the returned value increased from one 
or zero to a large number it was known that 
the sequences were no longer shifted against 
each other. Therefore, assuming that the ve­
locity of the signal sent out was known, the 
distance to the object could be easily worked 
out . 

Later the search turned to sets of sequences 
(m > 1) such as Golay, base and normal 
sequences. Golay sequences are two binary 
sequences with zero autocorrelation function 
(from now on we shall denote the nonperiodic 
zero autocorrelation function being zero for 
s = 1, ... , n - 1 by zero autocorrelation func­
tion). Golay sequences could be used in spec-



trometry to cancel out all but one frequency of for s = 1, ... , n - 1. Furthermore, their struc­
light and in sonar using a distance, say a sub- ture has to satisfy certain symmetry condi­
marine, between transmitters. Base sequences tions. 
are four ternary sequences Xl, X 2, X 3, X 4 with 
X 1 ,X2 having entries 1, -1 and X 3 , X 4 both Ifn is odd their structure is: 
starting with 1, -1 and both ending with p ze-
ros (p = 0, ... , n - 1). Turyn sequences are a 
special set of base sequences with certain sym- A {I, al, a2,.··, am, -am, ... , -a2, -al, -I} 
metries imposed on the sequences. A formal B = {1,bl,b2, ... ,bm,-bm, ... ,-b2,-bl,1} 

definition is given in the text below. Near- C {CO,CI, ... ,Cm-I,Cm,Cm_I, ... ,CI,CO} 

Yang sequences are a more generalized form D = {d d d d d d d} 0, I,···, m-I, m, m-I,···, I, ° 
of normal sequences. 

We give the formal definitions of normal se- where n = 2m + 1. 
quences and of Turyn sequences. If n is even their structure is: 

Definition 2 (Normal Sequences) 
A triple (Fj G, H) of sequences is said to be a 
set of normal sequences of length n, denoted 
by N Sen), if the following conditions are sat­
isfied: 

(i) F = Uk) is a sequence of length n with 
entries 1, -1. 

(ii) G = (gk) and H = (hk) are sequences of 
length n with entries 0,1, -1, such that 
G + H = (gk + hk) is a (1, -1) sequence 
of length n. 

(iii) 

9j + 9n-j+l o (mod 2) 
j = 1, ... ,[%] ° (mod 2) 

(iv) NF{s) + No{s) + NH(s) = 0, 
s=l, ... ,n-1. 

It can be shown that the quasi-symmetry of 
the sequences, that is, condition (iii) is implied 
by all the other conditions. A proof is given 
in [Gysin93] or [lKKSYY91]. 

The second definition arose from the work of 
C.H. Yang [lYang82], [2Yang83], [3Yang83] 
and [4Yang89]. 

Definition 3 (Turyn Sequences) 
A quadruple A, B, C and D of sequences with 
entries {1, -1} oflength n + 1, n + 1, n, n are 
called Turyn sequences, denoted by TS{2n + 
1), if they have zero autocorrelation function. 
That is, if NA(s)+NB(s)+Nc(s)+ND(s) = 0 
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A = 
B = 
C = 
D = 

{I, aI, a2, ... ,am, am+l, am, ... , a2, at, I} 

{I, bl , b2 , ••• , bm , bm +l , bm , ... , b2 , bl , -I} 

{CQ,Cl, ... ,Cm,-Cm, ... ,-Cl,-CO} 

{do, d l , •.• , dm , -dm , ... , -d l , -do} 

where n = 2m. 

Many sequences can be constructed from each 
other. Golay sequences, for example, are al­
ways normal sequences by definition. But 
there is also a special method concerning the 
symmetric and skew-symmetric part of the 
Golay sequences which also leads to normal 
sequences. We can get base sequences directly 
from normal sequences. Turyn sequences lead 
to special sets of normal sequences as shown 
below. 

On the other hand, the sequences are also 
strongly related to other combinatorial designs 
such as orthogonal designs, Hadamard matri­
ces, difference sets and bent functions. Some 
combinatorial designs can be gained from the 
sequences in a straightforward manner, oth­
ers are subject to quite sophisticated theo­
rems. Hadamard matrices are studied widely 
and they can also be used in communica­
tion theory. Bent functions play an impor­
tant role in the design of Substitution Boxes 
which are of great importance to many cryp­
tographic algorithms such as DES (Data En­
cryption Standard), LOKI and GOST. These 
functions are also useful in hashing algorithms 
such as HAVAL which produce digital finger­
prints of messages. 



2 New Normal Sequences 
Derived from Turyn Se­
quences 

The following theorem is well known and a 
proof is given in [Gysin93]. 

Theorem 1 
Let A, B be sequences of length n with entries 
1,0, -1, where A is skew (ak = -an-k+d and 
B is symmetric (bk = bn-k+d and a[~l = 0 
for odd n. Let A + B and A - B be 1,0,-1 
sequences of length n and let C = A + B. Then 
Nc(s) = NA(s) + NB(S), S = 1, ... ,n-1. 

[IKKSYY91] construct normal sequences from 
Turyn sequences: 

Theorem 2 [lKKSYY91] 

{o, co, bl , ... , Cm, bm+l , -Cm, ... , bl , -co, o} 

Hz = {I, 0, ... ,0, -I}. 

We define 

G- Hz = {O,D,bl, ... ,O,bm+I,D, ... ,bl,O,O}. 

We note that 

G2 = G+H. 

N ow by using Theorem 1: 

NG2 (s) = N(;(s) + NH(S), S = 1, ... , n - 1 
(1) 

and 

NG(s) = N(;(s) + NH2(S), S = 1, ... , n - 1. 
(2) 

Let A, B, C, D be Turyn sequences TS(2n + 
1). Let We write (2) as 

F = Ale= {al,cI,az,cZ, ... ,an,cn,an+l} 

G BIOn = {b l , 0, bz , D, ... , bn , 0, bn+l } 

H = On+dD = {D,dl,O,dz , ... ,0,dn,0} 

where On and On+l are sequences of nand 
n + 1 zeros. 

Then F, G, H are normal sequences of length 
2n + 1. 

NH2(S) = NG(s) - N(;(s), s = 1, ... , n - 1 
(3) 

and add (1) and (3) to obtain 

NG2 (s) + NH2(S) = NG(s) + NH(S). 

For odd n, the proof works exactly the same 
except that sequences which were skew are 
now symmetric and vice versa. 0 

to Therefore, if there is any triple F2 , G2 and 
H 2 derived from Turyn sequences according to 
Theorem 3 is an NS(2n+ 1), there is always a 

We found the following new method 
construct normal sequences from Turyn se­
quences: 

Theorem 3 
Let F, G, H be normal sequences NS(2n + 
1) derived from Turyn sequences according to 
Theorem 2. Then the following sequences 

F2 = F 
Gz {0,g2 + hZ,g3 + h3, ... ,g2n + h2n ,D} 
Hz = {gl,D, ... ,D,gZn+d 

are normal sequences of length 2n + 1. 

Proof. We prove that G and H have the 
same autocorrelation function as G2 and H 2 . 

We have to distinguish two cases, one for even 
n and one for odd n. 

For even n, the sequences involved have a 
structure as follows: 

G {l,O,bl, ... ,O,bm+I,D, ... ,bl,O,-l} 

H = {O, Co, D, ... , Cm, D, -Cm, ... , D, -co, DJ 
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triple satisfying the structure of F, G and H 
as in Theorem 2 and vice versa. 

3 The Algorithm 

We briefly outline the problem and the al­
gorithm. A full description of the algorithm 
together with the program-code is given in 
[Gysin93]. 

The Problem 

Given a set of sequences, it is easy to test if 
they are normal sequences or not. The prob­
lem is to search for normal sequences. We note 
that the search-space grows exponentially in 
some manner according to the definition of 
the search-space itself. While the search for 
smaller lengths n is only a matter of seconds, 



finding longer sequences can take months of 
CPU-Time. This is because one always faces 
the problem of the combinatorial explosion. 

A first simple algorithm may be implemented 
in the following manner. Treat each sequence 
as a binary or ternary number. Given a length 
n run through all the 2n x 3n x 3n possible com­
binations of the numbers. Decode each com­
bination of numbers into sequences and check 
if normal sequences are obtained. 

Needless to say that this first algorithm runs 
out of CPU-Time very soon. For lengths n 2: 
12 CPU-Time invested exceeded one day. 

A better Definition of the Search­
Space 

By looking at Condition (ii) and (iii) from Def­
inition 2 we first observe that we can redefine 
the search-space. Let us examine triples of se­
quences which "look" like normal sequences. 
That is, they fulfill Condition (i) to (iii) from 
Definition 2, but they may not have zero au­
tocorrelation function. This drastically cuts 
down the search-space. 

Moving through the Search-Space 

By looking at the autocorrelation function we 
see that for s = n - 1 the equation is 

fdn + glgn + h1hn = 0, 

and for s = n - 2 

Note that these equations are only influenced 
by the outermost pairs of elements of the se­
quences. The innermost pairs make no contri­
bution to these equations at all. 

The search is now performed in the following 
way. 

1. First, try to find all possible combinations 
iI, In, gl, gn, hI and hn which fulfill the 
"last" equation, that is, for s = n - 1. 

2. Move to the next equation, s = n - 2, and 
try for each previous successful combina­
tion iI, In, gl, gn, hI, hn to find all the 
new combinations 12, In-I, g2, gn-I, h2, 
hn - 1 which satisfy this new equation. 
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3. Continue until all the elements of each se­
quence are determined. That is, the par­
tial sequences F part , G part and Hpart be­
come complete sequences F, G and H. 

4. Test the remaining equations from the au­
tocorrelation function for each combina­
tion in order to find all possible normal 
sequences F, G and H. 

We observe: 

• The search is performed from the outer­
most to the innermost triple of pairs of 
elements. 

• If we add a new triple of pairs, we have 32 
possibilities to do so for normal sequences 
(in accordance with the new search-space 
described above). 

• The combinations of the first triple of 
pairs, that is, iI, In, gI, gn, hI and hn 
which satisfy the last equation do not de­
pend on n. For a large enough n, the same 
could be said for the next equation and 
so on. (Consider for example the last two 
equations from the autocorrelation func­
tion for n = 20 and n = 21: they are ex­
actly the same, and therefore the triples 
of pairs which fulfill these equations are 
also the same.) 

The last statement is very important. It tells 
us that we can store triples of pairs and use 
them again for larger lengths n, and therefore 
the time-consuming testing of the autocorre­
lation function only has to be performed once. 

Storing, Compressing and 
Reusing Triples 

Each triple of pairs of elements is assigned a 
number (from 0 to 31) and consecutive triples 
of pairs of elements that passed the corre­
sponding equations from the autocorrelation 
functions are stored in a file. Further com­
pression can be done by the observation that 
due to the nature of the tree-search algorithm, 
many successful configurations start with the 
same triple of pairs of elements. Therefore, we 
only store the triples of elements which have 
changed since the last configuration. 



Example: 

Uncompressed triples Compressed triples 

17832 
17834 
17 8 3 10 
17842 
178439 
1923 1 

17832 "end" 
4 "end" 
10 "end" 
42 "end" 
29 "end" 
192 3 1 "end" 

These triples the can be reused to start the 
search for longer lengths n as the equations 
from the autocorrelation function are the same 
assuming that the elements do not overlap 
each other. 

The Search-Tree and 
Branches of the Tree 

Cutting 

The triples of pairs of elements represent a 
search-tree with branching factor 32. Each 
node of the search tree corresponds to one 
triple of pairs of elements of the sequences. 
At each node one equation from the autocor­
relation function is considered. Downwards 
steps are performed when the corresponding 
equation from the autocorrelation function is 
fulfilled for this particular configuration. If 
a certain triple of pairs fails its correspond­
ing equation from the autocorrelation func­
tion, the next node on the same level of the 
search-tree is considered. If there are no more 
nodes on the same level, an upwards step is 
performed. If the algorithm reaches the bot­
tom of the tree (that is a leaf of the tree is 
examined), all the remaining equations from 

4 Computational Results 

We were able to carry out the search up to 
length n = 25. The lengths 24 and 25 have 
been searched through exhaustively for the 
first time. 

For length n = 24 no sequences were found. 
The algorithm found 24 sets of inequivalent 
normal sequences of length 25 in approxi­
mately 2500 hours CPU-time on a Sun Sparc-
4 computer. We considered two triples of se­
quences to be equivalent if one triple of se­
quences can be changed into the other triple 
of sequences by reversing and/or negating one 
or more sequences of the triple. We found that 
all of the normal sequences of length 25 can be 
derived from 12 inequivalent sets of Turyn se­
quences using Theorem 2 and 3. An example 
is given in the following table: 

+-+-++-++++--++-+---+++++ 
G1 = 

0+0+0+0+0-0+0-0+0-0-0-0-0 
H1 = 

+0+0+0-0-0+0-0+0-0-0+0+0-
F2 = 

+-+-++-++++--++-+---+++++ 

0+++++-+--++--++----+-+-0 
H2 = 

+00000000000000000000000 - . 

The Turyn sequences constructing these nor­
mal sequences would be: 

A +++-++-++-+++ 
B +++--+-+--++-
C = --+++-+---++ 
D = ++++-+-+----. 

the autocorrelation function are tested. Ifpos­
itive, the configuration under consideration is 
a triple of normal sequences. 5 Summary and Conclu-

Testing an equation from the autocorrelation 
function at each step means cutting branches 
of the tree when appropriate. In fact, there 
are further cutting mechanisms. These are de­
scribed in [Gysin93]. 
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. 
Slons 

We presented a tree-search algorithm for 
searching for normal sequences. The algo­
rithm is quite simple and straightforward to 
implement. Previously calculated results can 
be reused for the search for longer lengths n. 



We were able to carry out the search up to 
length n = 25. The last two lengths were new 
and results were previously unknown. Length 
25 leaded to a new theorem. The tree-search 
algorithm is not only limited to normal se­
quences: it can be adapted for many groups 
of sequences. Although this algorithm is very 
fast we still have to deal with the problem of 
the combinatorial explosion. 
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