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Abstract

Three of the most important criteria for cryptographically strong Boolean functions are
the balancedness� the nonlinearity and the propagation criterion� The main contribution of
this paper is to reveal a number of interesting properties of balancedness and nonlinearity� and
to study systematic methods for constructing Boolean functions satisfying some or all of the
three criteria� We show that concatenating� splitting� modifying and multiplying �in the sense
of Kronecker� sequences can yield balanced Boolean functions with a very high nonlinearity�
In particular� we show that balanced Boolean functions obtained by modifying and multi�
plying sequences achieve a nonlinearity higher than that attainable by any previously known
construction method� We also present methods for constructing balanced Boolean functions
that are highly nonlinear and satisfy the strict avalanche criterion �SAC�� Furthermore we
present methods for constructing highly nonlinear balanced Boolean functions satisfying the
propagation criterion with respect to all but one or three vectors� A technique is developed
to transform the vectors where the propagation criterion is not satis�ed in such a way that
the functions constructed satisfy the propagation criterion of high degree while preserving the
balancedness and nonlinearity of the functions� The algebraic degrees of functions constructed
are also discussed� together with examples illustrating the various constructions�
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� Introduction

A Boolean function of n input coordinates is said to satisfy the propagation criterion with respect to
a non�zero vector if complementing input coordinates according to the vector results in the output
of the function being complemented ��� of the time over all possible input vectors� and to satisfy
the propagation criterion of degree k if complementing k or less input coordinates results in the
output of the function being complemented ��� of the time over all possible input vectors� Another
important criterion� the strict avalanche criterion �SAC	� coincides with the propagation criterion
of degree �� It is well known that bent functions possess the highest nonlinearity and satisfy the
propagation criterion with respect to all non�zero vectors 
Dil��
� However two drawbacks of bent
functions prohibit their direct applications in practice� The �rst drawback is that they are not
balanced� and the second drawback is that they exist only when the number of input coordinates is
even� Cryptographic applications� such as the design of strong substitution boxes �S�boxes	� often
require that when input coordinates of a Boolean function are selected independently� at random�
the output of the function must behave as a uniformly distributed random variable 
KD��� AT��a
�
In other words� the function has to be balanced� Some practical applications need Boolean functions
with an odd number of input coordinates� On the other hand� the nonlinearity of Boolean functions
measures the ability of a cryptographic system using the functions to resist against being expressed
as a set of linear equations�
This paper is concerned properties and constructions of nonlinearly balanced functions� We

present a number of methods for constructing highly nonlinear balanced functions� These include
concatenating� splitting� modifying and multiplying �in the sense of Kronecker	 sequences� It is in�
teresting to note that balanced functions obtained by modifying and multiplying sequences achieve
a nonlinearity higher than that attainable by any previously known construction method� We also
initiate the research into the systematic construction of highly nonlinear balanced functions satis�
fying the SAC or the propagation criterion� We present simple methods for constructing balanced
functions satisfying the SAC� When n � �k � �� where n is the number of input coordinates� the
nonlinearity of functions constructed is at least ��k � �k� and when n � �k� it is at least ��k�� � �k�
Furthermore we present methods for constructing balanced functions satisfying the high degree

propagation criterion� More precisely� when n � �k � �� we construct balanced functions that
satisfy the propagation criterion with respect to all but one non�zero vectors� and when n � �k�
functions we construct are balanced and also satisfy the propagation criterion with respect to all
but three non�zero vectors� We also show that the vectors where the propagation criterion is not
satis�ed can be transformed into other vectors� As a consequence� we obtain balanced functions
satisfying the propagation criterion of degree �k when n � �k��� and balanced functions satisfying
the propagation criterion of degree �k

� when n � �k� The nonlinearity of functions constructed is
at least ��k � �k when n � �k � �� and ��k�� � �k when n � �k�
The organization of the rest part of the paper is as follows� in Section � we introduce notations

and de�nitions used in this paper� In Section � we prove results on the nonlinearity and balancedness
of functions including those obtained by concatenating or splitting bent sequences� In Section �� we
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show methods for constructing highly nonlinear balanced functions by modifying and multiplying
sequences� Our construction methods for highly nonlinear balanced functions satisfying the SAC
are presented in Section �� while methods for highly nonlinear balanced functions satisfying the high
degree propagation criterion are presented in Section �� Each method is illustrated by constructing
a concrete function with the cryptographic properties� The paper is closed by a discussion of future
work in Section ��

� Preliminaries

We consider functions from Vn to GF ��	 �or simply functions on Vn	� where Vn is the vector space
of n tuples of elements from GF ��	� These functions are also called Boolean functions� Note that
functions on Vn can be represented by polynomials of n coordinates� We are particularly interested
in the algebraic normal form representation in which a function is viewed as the sum of products of
coordinates� The algebraic degree of a function is the number of coordinates in the longest product
when the function is represented in the algebraic normal form� To distinguish between a vector of
coordinates and an individual coordinate� the former will be strictly denoted by x� y or z� while the
latter strictly by xi� yi� zi� u or v� where i is an index�
Let f be a function on Vn� The �����	�sequence de�ned by ����	

f����� ���	f����� � � �� ���	f���n���	
is called the sequence of f � and the ��� �	�sequence de�ned by �f���	� f ���	� � � �� f���n��		 is called
the truth table of f � where �i� � �� i �� �

n��� denotes the vector in Vn whose integer representation
is i� A ��� �	�sequence ������	�sequence	 is said balanced if it contains an equal number of zeros
and ones �ones and minus ones	� A function is balanced if its sequence is balanced�
Obviously if �a�� � � � � a�n��	 and �b�� � � � � b�n��	 are the sequences of functions f� and f� on Vn

respectively� then �a�b�� � � � � a�n��b�n��	 is the sequence of f�x	 � g�x	� where x � �x�� x�� � � � � xn	�
In particular� ��a�� � � � � a�n��	 � ��a�� � � � ��a�n��	 is the sequence of �� f��x	�
An a�ne function f on Vn is a function that takes the form of f�x	 � a�x��� � ��anxn�c� where

aj� c � GF ��	� j � �� �� � � � � n� Furthermore f is called a linear function if c � �� The sequence
of an a�ne �or linear	 function is called an a�ne �or linear� sequence� The Hamming weight of a
��� �	�sequence �or vector	 �� denoted by W ��	� is the number of ones in �� The Hamming distance
between two sequences � and � of the same length� denoted by d��� �	� is the number of positions
where the two sequences di�er� Given two functions f and g on Vn� the Hamming distance between
them is de�ned as d�f� g	 � d��f � �g	� where �f and �g are the truth tables of f and g respectively�
The nonlinearity of f � denoted by Nf � is the minimal Hamming distance between f and all a�ne
functions on Vn� i�e�� Nf � mini����������n���� d�f� �i	 where ��� ��� � � �� ��n���� denote the a�ne
functions on Vn�
The following notation will be used in this paper� Let � � �a�� � � � � an	 and � � �b�� � � � � bn	

be two sequences �or vectors	� the scalar product of � and �� denoted by h�� �i� is de�ned as the
sum of the component�wise multiplications� In particular� when � and � are from Vn� h�� �i �
a�b�� � � �� anbn� where the addition and the multiplication are over GF ��	� and when � and � are
�����	�sequences� h���i � a�b�� � � ��anbn� where the addition and the multiplication are over the
reals�
The Kronecker product of an m� n matrix A and an s� t matrix B� denoted by A�B� is an
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ms� nt matrix de�ned by

A�B �

�
�����
a��B a��B � � � a�nB

a��B a��B � � � a�nB
���

��� � � �
���

am�B am�B � � � amnB

�
�����

where aij is the element in the ith row and the jth column of A� In particular� the Kronecker
product of a sequence � of length m and a sequence � of length n is a sequence of length mn

de�ned by �� � � �a�b� a�b� � � � � amb	� where ai is the ith element in ��
A �����	�matrix H of order n is called a Hadamard matrix if HH t � nIn� where H t is the

transpose of H and In is the identity matrix of order n� It is well known that the order of a
Hadamard matrix is �� � or divisible by � 
WSW��� SY��
� A special kind of Hadamard matrix�
called Sylvester�Hadamard matrix or Walsh�Hadamard matrix� will be relevant to this paper� A
Sylvester�Hadamard matrix of order �n� denoted by Hn� is generated by the following recursive
relation

H� � �� Hn �

�
� �
� ��

�
�Hn��� n � �� �� � � �

Note that Hn can be represented as Hn � Hs �Ht for any s and t with s� t � n�
Sylvester�Hadamard matrices are closely related to linear functions� as is shown in the following

lemma� For completeness� the proof of the lemma is also presented�

Lemma � Write Hn �

�
�����

	�
	�
���

	�n��

�
����� where 	i is a row of Hn� Then 	i is the sequence of hi � h�i� xi�

a linear function� where �i is a vector in Vn whose integer representation is i and x � �x�� � � � � xn	�
Conversely the sequence of any linear function on Vn is a row of Hn�

Proof� We prove the �rst half of the lemma by induction on n� Let n � �� Then H� �

�
� �
� ��

�
�

The �rst row of H�� 	� � ��� �	� is the sequence of h��� xi� while the second row of H�� 	� � �����	�
is the sequence of h��x	 � h��� xi� where x � �x�� x�	� �� � ��� �	 and �� � ��� �	�
Now suppose the �rst half of the lemma is true for n � �� �� � � � � k � �� Since Hk � H� �Hk���

each row of Hk can be expressed as 
 � 	 where 
 � ��� �	 or �����	� and 	 is a row of Hk��� By
the assumption 	 is the sequence of a linear function hk���x	 � h�� xi for some � � Vk��� where
x � �x�� � � � � xk��	� Thus 
 � 	 is the sequence of a linear function on Vk de�ned by hk�y	 � h�� yi�
where y � �y�� � � � � yk	� � � ��� �	 if 
 � ��� �	 and � � ��� �	 otherwise� Thus the �rst half is also
true for n � k�
The second half follows from the above discussion as well as the fact that Hn has �n rows and

that there are exactly �n linear functions on Vn� ut

�From Lemma � the rows of Hn comprise the sequences of all linear functions on Vn� Conse�
quently the rows of �Hn comprise the sequences of all a�ne functions on Vn�
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The following notation is very useful in obtaining the functional representation of a concatenated
sequence� Let 
 � �i�� i�� � � � � ip	 be a vector in Vp� Then D� is a function on Vp de�ned by

D��y�� y�� � � � � yp	 � �y� � i� � �	 � � � �yp � ip � �	�

Using this notation one can readily prove

Lemma � Let f�� f�� � � �� f�p�� be functions on Vq� Let �i the sequence of fi� i � �� �� � � � � �
p � ��

and let � be the concatenation of ��� ��� � � �� ��p��� namely� � � ���� ��� � � � � ��p��	� Then � is the
sequence of the following function on Vp	q

f�y� x	 �
�p��M
i��

D�i�y	fi�x	

where y � �y�� � � � � yp	� x � �x�� � � � � xq	 and �i is the vector in Vp whose integer representation is i�

As a special case� if ��� �� are the sequences of functions f�� f� on Vn� then � � ���� ��	 is the
sequence of the following function g on Vn	�

g�u�x�� � � � � xn	 � ��� u	f��x�� � � � � xn	� uf��x�� � � � � xn	�

We now introduce the concept of bent functions�

De�nition � A function f on Vn is called a bent function if

��
n
�

X
x�Vn

���	f�x��h��xi � ��

for all � � Vn� Here f�x	 � h�� xi is regarded as a real�valued function� The sequence of a bent
function is called a bent sequence�

�From the de�nition we can see that bent functions on Vn exist only when n is even� It was
Rothaus who �rst introduced and studied bent functions in ����s� although his pioneering work was
not published in the open literature until some ten years later 
Rot��
� Other issues related to bent
functions� such as properties� constructions and counting� can be found in 
AT��a� KS��� LC���
OSW��� YH��
� Kumar� Scholtz and Welch 
KSW��
 de�ned and studied bent functions from
Zn
q to Zq� where q is a positive integer� Applications of bent functions to digital communications�
coding theory and cryptography can be found in such as 
AT��b� DT��� LC��� Los��� MS��� MS���
Nyb��� OSW��
�
The following result can be found in an excellent survey of bent functions by Dillon 
Dil��
�

Lemma � Let f be a function on Vn� and let � be the sequence of f � Then the following four
statements are equivalent�

�i� f is bent�

�ii� h�� 	i � ��
�

�
n for any a�ne sequence 	 of length �n�

�iii� f�x	� f�x� �	 is balanced for any non�zero vector � � Vn�
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�iv� f�x	� h��xi assumes the value one �n�� � �
�

�
n�� times for any � � Vn�

By �iv	 of Lemma �� if f is a bent function on Vn� then f�x	 � h�x	 is also a bent function
for any a�ne function h on Vn� This property will be employed in constructing highly nonlinear
balanced functions to be described in Sections � and ��
In 
Web��� WT��
� Webster and Tavares �rst introduced the notion of strict avalanche criterion

�SAC��

De�nition � A function f on Vn is said to satisfy the SAC if complementing any single input
coordinate results in the output of f being complemented half the times over all input vectors�
namely� f�x	� f�x� �	 is a balanced function for any vector � � Vn whose Hamming weight is 	�

The SAC has been generalized in two di�erent directions� the propagation criterion 
AT��a�
PLL	��
 and the high order SAC 
For��
� �Note that in 
AT��a
 the former is called the high order
SAC�� while the latter the high order SAC��	 A combination of the two generalizations has also
been studied in 
PLL	��� PGV��
� In this paper we are concerned with the propagation criterion
whose formal de�nition follows�

De�nition � Let f be a function on Vn� We say that f satis
es

	� the propagation criterion with respect to a non�zero vector � in Vn if f�x	 � f�x � �	 is a
balanced function�

�� the propagation criterion of degree k if it satis
es the propagation criterion with respect to all
� � Vn with � ��W ��	 �� k�

Note that the SAC is equivalent to the propagation criterion of degree �� Also note that the per�
fect nonlinearity studied by Meier and Sta�elbach 
MS��
 is equivalent to the propagation criterion
of degree n�
Now it becomes clear that when n is even� only bent functions ful�ll the propagation criterion of

the maximal degree n� Another property of bent functions is that they possess the highest possible
nonlinearity� This will be discussed in more detail in the next section� However� since bent functions
are not balanced and exist only for even n� they can not be directly employed in many practical
applications� Constructing highly nonlinear balanced functions is the main topic to be treated in
the following sections� Methods for constructing functions with additional properties� such as the
SAC or the high degree propagation criterion� will also be presented�

� Properties of Balancedness and Nonlinearity

This section presents a number of results related to balancedness and nonlinearity� These include
upper bounds for nonlinearity and properties of concatenated and split sequences�
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��� Upper Bounds of Nonlinearity

First we prove a lemma that is very useful in calculating the nonlinearity of a function�

Lemma � Let f and g be functions on Vn whose sequences are �f and �g respectively� Then the
distance between f and g can be calculated by d�f� g	 � �n�� � �

�
h�f � �gi�

Proof� h�f � �gi �
P

f�x��g�x� � �
P

f�x���g�x� � � �
n � �

P
f�x���g�x� � � �

n � �d�f� g	� This proves the
lemma� ut

Recall that Hn is a �n � �n matrix� Denote by 	i the ith row of Hn� where i � �� �� � � � � �n � ��
For each 	i� de�ne 	i	�n � �	i� Since 	�� 	�� � � �� 	�n�� are linear sequences of length �n� f	�� � � ��
	�n��� 	�n� � � �� 	�n����g comprise all the a�ne sequences of length �

n� For convenience� the a�ne
function corresponding to the sequence 	i is denoted by �i� Now let f be a function on Vn whose
sequence is �� We are interested in determining the upper bound of the distance between f and all
the a�ne functions on Vn�
Using Parseval�s equation �Page ���� 
MS��
	� we have

�n��X
i��

h�� 	ii
� � ��n� ��	

Consequently there exists an integer � �� i� �� �
n�� such that h�� 	i�i

� � h�� 	i�	�ni
� �� �

n� By noting

the fact that h�� 	i�i � �h�� 	i�	�ni� we have either h�� 	i�i �� �
�

�
n or h�� 	i�	�ni �� �

�

�
n� Without loss of

generality assume that h�� 	i�i �� �
�

�
n� Then by Lemma �� d�f� �i�	 � �

n��� �
�
h�� 	i�i �� �

n����
�

�
n���

This proves the following lemma which gives the upper bound of the nonlinearity of a function on
Vn�

Lemma � For any function f on Vn� the nonlinearity Nf of f satis
es Nf
�� �

n�� � �
�

�
n���

It is well�known that the maximum nonlinearity of functions on Vn coincides with the covering
radius of the �rst order binary Reed�Muller code R��� n	 of length �n �see 
CKHFMS��
	� Many
results on the covering radius of R��� n	 have direct implications on the nonlinearity of functions�
In particular� Lemma � can be viewed as a translation of the upper bound on the covering radius
of R��� n	 
CKHFMS��
�
Let n be even� f be a bent function on Vn and � be the sequence of f � By Lemma �� we have

h�� 	ii � ��
�

�
n for any a�ne sequence 	i� i � �� �� � � � ��n	���� By Lemma �� d�f� �i	 � �n����

�

�
n��

for any �i� i � �� �� � � � � �n	���� Finally by the de�nition of nonlinearity we have Nf � �n����
�

�
n���

Thus bent functions attain the upper bound for the nonlinearities of functions on Vn shown in
Lemma ��
Conversely� if the nonlinearity of a function f on Vn attains the upper bound �n�� � �

�

�
n��� we

can show that h�� 	ii � ��
�

�
n for all i � �� �� � � � ��n	� � �� which implies that f is bent� Suppose

that it is not the case� Then h�� 	ii �� ��
�

�
n for some i� � �� i �� �

n	� � �� Note that for any
� �� i �� �

n � �� h�� 	ii � �h�� 	i	�ni� and hence h�� 	ii� � h�� 	i	�ni�� Thus from the Parseval�s
equation ��	� there exist i� and i�� � �� i�� i�� �� �

n��� such that h�� 	i�i
� � �n and h�� 	i�i

� � �n� This

implies that either h�� 	i�i � �
�

�
n or h�� 	i�	�ni � �

�

�
n� and hence either d�f� �i�	 � �

n�� � �
�

�
n�� or

d�f� �i�	�n	 � �
n����

�

�
n�� �see also Lemma ��	 As a consequence we have Nf � �n����

�

�
n��� This

contradicts the assumption that f attains the maximum nonlinearity �n�� � �
�

�
n��� Consequently

we have the following result �see also 
MS��
	�

�



Corollary � A function on Vn attains the upper bound for nonlinearities� �n����
�

�
n��� if and only

if it is bent�

�From Corollary �� balanced functions can not attain the upper bound for nonlinearities� namely
�n�� � �

�

�
n��� A slightly improved upper bound for the nonlinearities of balanced functions can be

obtained by noting the fact that a balanced function assumes the value one an even number of
times�

Lemma � Let � and � be ��� �	�sequences of length �t� If both W ��	 and W ��	 are even� then
d��� �	 is even�

Proof� Write � � �a�� � � � � a�t	 and � � �b�� � � � � b�t	� Denote by n� the number of pairs �ai� bi	 �
��� �	� by n� the number of pairs �ai� bi	 � ��� �	� by n� the number of pairs �ai� bi	 � ��� �	� and by
n� the number of pairs �ai� bi	 � ��� �	� Hence n� � n�� n� � n�� n� � n� and n� � n� are all even�
Consequently� �n� � n� � n� � �n� � n�	 � �n� � n�	 is even� This proves that d��� �	 � n� � n� is
even� ut

Corollary � Let f be a balanced function on Vn �n �� ��� Then the nonlinearity Nf of f is given
by

Nf
��

	
�n�� � �

�

�
n�� � �� n even

bb�n�� � �
�

�
n��cc� n odd

where bbxcc denotes the maximum even integer less than or equal to x�

Proof� Note that the length of the sequence of a function is even� Also note that the truth table of
f contains an even number of ones and that all a�ne sequences contain an even number of ones� By
Lemma �� Nf � mini����������n���� d�f��i	� where ��� ��� � � �� ��n���� denote the a�ne functions on

Vn� must be even� On the other hand� since f is not bent� by corollary � we have Nf � �n����
�

�
n���

This proves the corollary� ut

For V�� there are six balanced sequences� namely

���� �� �� �	�������� ����	����������� �	

all of which are linear� Therefore there are no nonlinearly balanced functions on V��

��� Concatenating Sequences

The following lemma gives the lower bound of the nonlinearity of a function obtained by concate�
nating the sequences of two functions�

Lemma 	 Let f� and f� be functions on Vn� and let g be a function on Vn	� de
ned by

g�u� x�� � � � � xn	 � �� � u	f��x�� � � � � xn	� uf��x�� � � � � xn	� ��	

Suppose that �� and ��� the sequences of f� and f� respectively� satisfy h��� 	i �� P� and h��� 	i �� P�

for any a�ne sequence 	 of length �n� where P� and P� are positive integers� Then the nonlinearity
of g satis
es Ng

�� �
n � �

�
�P� � P�	�

�



Proof� Note that � � ���� ��	 is the sequence of g� Let 
 be an arbitrary a�ne function on Vn	� and
let L be the sequence of 
� Then L must take the form of L � �	��		 where 	 is an a�ne sequence
of length �n� Note that h�� Li � h��� 	i � h��� 	i and thus jh�� Lij �� P� � P�� On the other hand� by
Lemma � we have d�g� 
	 � �n� �

�
h�� Li� �From these discussions we have d�g� 
	 �� �

n� �
�
�P��P�	�

Since 
 is arbitrary we have Ng
�� �

n � �
�
�P� � P�	� and this completes the proof� ut

As bent functions do not exist on V�k	�� an interesting question is what functions on V�k	� are
highly nonlinear� The following result� as a special case of Lemma �� shows that such functions can
be obtained by concatenating bent sequences� This construction has also been discovered by Meier
and Sta�elbach in 
MS��
�

Corollary � In the construction ���� if both f� and f� are bent functions on V�k� then Ng
�� �

�k��k�

Proof� In the proof of Lemma �� let P� � P� � �k� ut

A similar result can be obtained when sequences of four functions are concatenated�

Lemma 
 Let f�� f�� f� and f� be functions on Vn whose sequences are ��� ��� �� and �� respectively�
Assume that h�i� 	i �� Pi for each � �� i �� � and for each a�ne sequence 	 of length �n� where each
Pi is a positive integer� Let g be a function on Vn	� de
ned by

g�y� x	 �
�M

i��

D�i�y	fi�x	 ��	

where y � �y�� y�	� x � �x�� � � � � xn	 and �i is a vector in V� whose integer representation is i� Then
Ng

�� �
n	� � �

�
�P� � P� � P� � P�	� In particular� when n is even and f�� f�� f� and f� are all bent

functions on Vn� Ng
�� �

n	� � �
�

�
n	��

Proof� The proof is similar to that for Lemma �� and hence is omitted� ut

Lemma � can be further generalized� Let f�� f�� � � �� f�t�� be functions on Vn� Denote by �i the
sequence of fi� Assume that h�i� 	i �� Pi for each � �� i �� �

t � � and for each a�ne sequence 	 of
length �n� where each Pi is a positive integer� Let g be a function on Vn	t de�ned by

g�y� x	 �
�t��M
i��

D�i�y	fi�x	 ��	

where y � �y�� � � � � yt	� x � �x�� � � � � xn	 and �i is a vector in Vt whose integer representation is i�
Then Ng

�� �
n	t�� � �

�

P�t��
i�� Pi� In particular� when n is even and fi� i � �� � � � � �t � �� are all bent

functions on Vn� Ng
�� �

n	t�� � �
�

�
n	t���

By selecting proper starting functions in ��	� ��	 and ��	� the resulting functions can be balanced�
For instance� in ��	� if both f� and f� are balanced� or the number of times f� assumes the value
one is equal to that f� assumes the value zero� the resulting function g is balanced�

�



��� Splitting Sequences

We have discussed the concatenation of sequences of functions including bent functions� The fol�
lowing lemma deals with the other direction� namely splitting bent sequences�

Lemma � Let f�x�� x�� � � � � x�k	 be a bent function on V�k� �� be the sequence of f ��� x�� � � � � x�k	�
and �� be the sequence of f��� x�� � � � � x�k	� Then for any a�ne sequence 	 of length ��k��� we have
��k �� h��� 	i �� �

k and ��k �� h��� 	i �� �
k�

Proof� We only give a proof for ��k �� h��� 	i �� �
k� The other half can be proved in the same

way� Since f�x�� x�� � � � � x�k	 � �� � x�	f��� x�� � � � � x�k	 � x�f ��� x�� � � � � x�k	� � � ���� ��	 is the
sequence of f�x�� x�� � � � � x�k	� Let L � �	� 		 and L� � �	��		� By Lemma �� both L and L� are
a�ne sequences of length ��k�
Suppose that ��k �� h��� 	i �� �

k is not true� Without loss of generality assume that h��� 	i � �k�
There are two cases that have to be considered� h��� 	i � � and h��� 	i � �� In the �rst case we
have h�� Li �� h��� 	i � h��� 	i � �k� and in the second case we have h�� L�i �� h��� 	i � h����	i �
h��� 	i � ���	h��� 	i � �k� both of which contradict the fact that h�� Li � ��k �see also �ii	 of
Lemma �	� This completes the proof� ut

A consequence of Lemma � is that the nonlinearity of f ��� x�� � � � � x�k	 and f��� x�� � � � � x�k	 is
at least ��k�� � �k��� It is interesting to note that concatenating and splitting bent sequences both
achieve the same nonlinearity�
Splitting bent sequences can also result in balanced functions� Let 	i be the ith row of Hk where

i � �� �� � � � � �k � �� Note that 	� is an all�one sequence while 	�� 	�� � � �� 	�k�� are all balanced
sequences� The concatenation of the rows� �	�� 	�� � � � � 	�k��	� is a bent sequence 
AT��a
� Denote by
f�x�� x�� � � � � x�k	 the function corresponding to the bent sequence� Let � be the second half of the
bent sequence� namely� � � �	�k��� 	�k��	�� � � � � 	�k��	� Then � is the sequence of f��� x�� � � � � x�k	�
Since all 	i� i � �k����k����� � � � � �k��� are balanced� f��� x�� � � � � x�k	 is a balanced function� The
nonlinearity of the function is at least ��k�� � �k���
By permuting f	�k��� 	�k��	�� � � � � 	�k��g� we obtain a new balanced sequence �

� � �	��k��� 	
�
�k��	�� � � � � 	

�
�k��

that has the same nonlinearity as that of �� Now let ��� � �e�k��	
�
�k��� e�k��	�	

�
�k��	�� � � � � e�k��	

�
�k��	�

where each ei is independently selected from f����g� ��� is also a balanced sequence with the same
nonlinearity� The total number of balanced sequences obtained by permuting and changing signs is
��

k��

� �k���� These sequences are all di�erent from one another but have the same nonlinearity�

��� An Invariance Property

Next we examine properties of functions with respect to the a�ne transformation of coordinates�
Let f be a function on Vn� A a nondegenerate matrix of order n with entries from GF ��	� and b a
vector in Vn� Then f��x	 � f�xA� b	 de�nes a new function on Vn� where x � �x�� x�� � � � � xn	� It
is obvious that the algebraic degree of f � is the same as that of f �
On the other hand� since A is nondegenerate� xA� b is an one�to�one mapping on Vn� Hence

the truth table of f� contains exactly the same number of ones as that of f � This indicates that
the balancedness of a function is preserved under the a�ne transformation of coordinates�
Now let � be an a�ne function on Vn and let ���x	 � ��xA � b	� It is easy to verify that

d�f� �	 � d�f �� ��	� Since A is nondegenerate� �� will run through all a�ne functions on Vn while

��



� runs through all a�ne functions on Vn� This proves that the nonlinearity of f
� is the same as

that of f �
Finally we consider the propagation characteristics under the a�ne transformation of coordi�

nates� Let � be a nonzero vector in Vn� f��x	� f ��x� �	 is balanced if and only if

f�xA� b	� f��x� �	A� b	 � f �xA� b	� f ��xA� b	� �A	

� f �y	� f�y � �	

is balanced� where y � xA� b and � � �A� Since A is nondegenerate and � is a nonzero vector� �
is a nonzero vector� In addition� y � xA�b will run through Vn while x runs through Vn� Therefore
the number of vectors in Vn where the propagation criterion is satis�ed remains unchanged under
the a�ne transformation� To summarize the discussions� we have

Lemma �� The algebraic degree� the Hamming weight of the truth table� the nonlinearity� and
the number of vectors with respect to which the propagation criterion is satis
ed� of a function are
invariant under the a�ne transformation of coordinates�

� Highly Nonlinear Balanced Functions

Note that a bent sequence on V�k contains �
�k�� � �k�� ones and ��k�� � �k�� zeros� or vice versa�

As is observed by Meier and Sta�elbach 
MS��
� changing �k�� positions in a bent sequence yields
a balanced function having a nonlinearity of at least ��k�� � �k� This nonlinearity is the same as
that obtained by concatenating four bent sequences of length ��k�� �see Lemma �	�
As the maximum nonlinearity of functions on Vn coincides with the covering radius of the �rst

order binary Reed�Muller code R��� n	 of length �n 
CKHFMS��
� using a result of 
PW��
� we can
construct unbalanced functions on V�k	�� k �� �� whose nonlinearity is at least �

�k � ��

��

�k� a higher

value than ��k � �k achieved by the construction in Corollary �� One might tempt to think that
modifying the sequences in 
PW��
 would result in balanced functions with a higher nonlinearity
than that obtained by concatenating or splitting bent sequences� We �nd that it is not the case�
We take V�� for an example� The Hamming weight of the sequences on V��� which have the largest
nonlinearity of ������ is ������ Changing �� positions makes them balanced� The nonlinearity of
the resulting functions is ������ smaller than ����� achieved by concatenating two bent sequences
of length ��� �see Corollary �	�
In the following we show how to modify bent sequences of length ��k constructed from Hadamard

matrices in such a way that the resulting functions are balanced and have a much higher nonlin�
earity than that attainable by concatenating four bent sequences� This result� in conjunction with
sequences in 
PW��
� allows us to construct balanced functions on V�k	��� k �� �� that have a higher
nonlinearity than that achieved by concatenating or splitting bent sequences�

��� On V�k

Note that an even number n �� � can be expressed as n � �t or n � �t � �� where t �� �� As the
�rst step towards our goal� we prove

Lemma �� For any integer t �� � there exists

��



�i� a balanced function f on V�t such that Nf
�� �

�t�� � ��t�� � �t�

�ii� a balanced function f on V�t	� such that Ng
�� �

�t	� � ��t � �t�

Proof� �i	 Let 	i be the ith row of H�t where i � �� �� � � � � ��t � �� Then � � �	�� 	�� � � � � 	��t��	 is a
bent sequence of length ��t�
Note that except for 	� � ��� �� � � � � �	� all other 	i �i � �� � � � � ��t � �	 are balanced sequences of

length ��t� Therefore replacing the all�one �or ��at�	 leading sequence 	� with a balanced sequence
renders � balanced� The crucial idea here is to select a replacement with a high nonlinearity� since
the nonlinearity of the resulting function depends largely on that of the replacement�
The replacement we select is 	�� � �e�� e�� e�� � � � � e�t��	� where ei is the ith row of Ht� Note that

the leading sequence in 	�� is e� but not e� � ��� �� � � � ��	� 	
�
� is a balanced sequence of length �

�t�
since all ei� i � �� � � � � �t � �� are balanced sequences of length �t� Replacing 	� by 	

�
�� we get a

balanced sequence �� � �	��� 	�� � � � � 	��t��	�
Denote by f� the function corresponding to the sequence ��� and consider the nonlinearity of

f�� Let � be an arbitrary a�ne function on V�t� and let L be the sequence of �� By Lemma �� L is
a row of �H�t� Since H�t � H�t�H�t� L can be expressed as L � �	i� 	j � where 	i and 	j are two
row of H�t� Assume that 	i � �a�� a�� � � � � a��t��	� Then L � ��a�	j � a�	j � � � � � a��t��	j	� A property
of a Hadamard matrix is that its rows are mutually orthogonal� Hence h	p� 	qi � � for p �� q� Thus

jh��� Lij �� jh	��� 	jij� jh	j � 	jij �� jh	��� 	jij� �
�t�

We proceed to estimate jh	��� 	jij� Note that H�t � Ht �Ht� 	j can be expressed as 	j � eu � ev�
where eu and ev are rows of Ht� Write eu � �b�� � � � � b�t��	� Then 	j � �b�ev� � � � � b�t��ev	� Similarly
to the discussion for jh��� Lij� we have

jh	��� 	jij ��


��
�

�jhe�� e�ij � �t	�� if v � ��
jhev� evij � �t� if v � �� � � � � �t�
�� if v � �

Thus h	��� 	jij �� �
t	� and hence jh��� Lij �� �

t	� � ��t�
By Lemma �� d�f �� �	 �� �

�t�� � �
�h�

�� Li �� �
�t�� � ��t�� � �t� Since � is arbitrary� Nf�

��
��t�� � ��t�� � �t�
�ii	 Now consider the case of V�t	�� Let 	i� i � �� �� � � � � ��t	�� �� be the ith row of H�t	�� Then

� � �	�� 	�� � � � � 	��t����	 is a bent sequence of length �
�t	��

The replacement for the all�one leading sequence 	� � ��� �� � � � � �	 � V�t	� is the following
balanced sequence 	�� � �e�t� e�t	�� � � � � e�t����	� the concatenation of the �

tth� the ��t � �	th� � � ��
and the ��t	���	th rows ofHt	�� Let �� � �	��� 	�� � � � � 	��t����	� and let f

� the function corresponding
to the balanced sequence�
Similarly to the case of V�t� let � be a a�ne function on V�t	� and let L be its sequence� L can

be expressed as L � �	i � 	j where 	i and 	j are rows of H�t	�� Hence

jh���Lij �� jh	��� 	jij � jh	j � 	jij �� jh	��� 	jij� �
�t	�

Since 	�� is obtained by splitting the bent sequence �e�� e�� � � � � e�t����	� where ei is a row of Ht	��
by Lemma �� we have jh	��� 	jij �� �

t	�� �From this it follows that jh��� Lij �� �
t	� � ��t	� and

Nf�
�� �

�t	� � ��t � �t� ut

��



With the above result as a basis� we consider an iterative procedure to further improve the
nonlinearity of a function constructed� Note that an even number n �� � can be expressed as
n � �m� m �� �� or n � �

s��t� �	� s �� � and t �� ��
Consider the case when n � �m� m �� �� We start with the bent sequence obtained by con�

catenating the rows of H�m��� The sequence consists of �
�m�� sequences of length ��

m��

� Now we
replace the all�one leading sequence with a bent sequence of the same length� which is obtained
by concatenating the rows of H�m�� � The length of the new leading sequence becomes �

�m�� � It
is replaced by another bent sequence of the same length� This replacing process is continued until
the length of the all�one leading sequence is �� � �� To �nish the procedure� we replace the leading
sequence ��� �� �� �	 with ����������	� The last replacement makes the entire sequence balanced�
By induction on s � �� �� �� � � �� it can be proved that the nonlinearity of the function obtained is
at least

��
m�� �

�

�
���

m��

� ��
m��

� � � �� ��
�

� � � ��	�

The modifying procedure for the case of n � �s��t � �	� s �� � and t �� �� is the same as that
for the case of n � �m� m �� �� except for the last replacement� In this case� the replacing process
is continued until the length of the all�one leading sequence is ��t	�� The last leading sequence is
replaced by 	�� � �e�t� e�t	�� � � � � e�t����	� the second half of the bent sequence �e�� e�� � � � � e�t����	�
where each ei is a row of Ht	�� Again by induction on s � �� �� �� � � �� it can be proved that the
nonlinearity of the resulting function is at least

��
s��t	���� �

�

�
���

s����t	�� � ��
s����t	�� � � � �� ����t	�� � ��t	� � �t	�	�

We have completed the proof for the following

Theorem � For any even number n �� �� there exists a balanced function f� on Vn whose nonlin�
earity is

Nf�
��

	
��

m�� � �
�
���

m��

� ��
m��

� � � �� ��
�

� � � ��	� n � �m�

��
s��t	���� � �

�
���

s����t	�� � ��
s����t	�� � � � �� ����t	�� � ��t	� � �t	�	� n � �s��t� �	�

Let � � ���� ��� � � � � ��k��	 be a sequence of length �
�k obtained by modifying a bent sequence�

Permuting and changing signs discussed in Section ��� can also be applied to �� In this way we
obtain in total ��

k

� �k� di�erent balanced functions� all of which have the same nonlinearity� Even
more functions can be obtained by observing the fact that the leading sequence �� has exactly the
same structure as the large sequence � � and hence permuting and changing signs can also be applied
to ���
The nonlinearities of balanced functions on V�� V�� V
� V��� V�� and V�� constructed by the method

shown in the proof of Theorem � are calculated in Table �� For comparison� the nonlinearities of
balanced functions constructed by concatenating four bent sequences �see Lemma �	 as well as the
upper bounds for the nonlinearities of balanced functions �see Corollary �	 are also presented�

��� On V�k�


Lemma �� Let f� be a function on Vs and f� be a function on Vt� Then f��x�� � � � � xs	�f��y�� � � � � yt	
is a balanced function on Vs	t if either f� or f� is balanced�

��



Vector Space V� V� V
 V�� V�� V��

Upper Bound � �� ��� ��� ���� ����
By Modi�cation � �� ��� ��� ���� ����
By Concatenation � �� ��� ��� ���� ����

Table �� Nonlinearities of Balanced Functions

Proof� Let g�x�� � � � � xs� y�� � � � � yt	 � f��x�� � � � � xs	 � f��y�� � � � � yt	� Without loss of generality�
suppose that f� is balanced� Then for any vector �a�� � � � � at	 � Vt�

g�x�� � � � � xs� a�� � � � � at	 � f��x�� � � � � xs	� f��a�� � � � � at	

is a balanced function on Vs� �From this it immediately follows that g is a balanced function on
Vs	t� ut

Let �� be the sequence of f� on Vs and �� be the sequence of f� on Vt� Then it is easy to verify
that the Kronecker product �� � �� is the sequence of f��x�� � � � � xs	� f��y�� � � � � yt	�

Lemma �� Let f� be a function on Vs and f� be a function on Vt� Let g be a function on Vs	t

de
ned by

g�x�� � � � � xs� y�� � � � � ys	 � f��x�� � � � � xs	� f��y�� � � � � yt	�

Suppose that �� and ��� the sequences of f� and f� respectively� satisfy h��� 	i �� P� and h��� 	i �� P�

for any a�ne sequence 	 of length �n� where P� and P� are positive integers� Then the nonlinearity
of g satis
es Ng

�� �
s	t�� � �

�P� � P��

Proof� Note that � � �� � �� is the sequence of g� Let � be an arbitrary a�ne function on Vs	t

and let 	 be the sequence of �� Then 	 can be expressed as 	 � �	� � 	� where 	� is a row of Hs

and 	� is a row of Ht� Since

h�� 	i � h�� � ����	� � 	�i � �h��� 	�ih��� 	�i

we have
jh�� 	ij � jh��� 	�ij � jh��� 	�ij �� P� � P�

and by Lemma �

d�g� �	 �� �
s	t�� �

�

�
P� � P�

By the arbitrariness of �� Ng
�� �

s	t�� � �
�
P� � P�� ut

Let �� be a balanced sequence of length ��k that is constructed using the method in the proof
of Theorem �� where k �� �� Let �� be a sequence of length �

�� obtained by the method of 
PW��
�
Note that the nonlinearity of �� is ������ and there are ����� such sequences� Denote by f� the
function corresponding to �� and by f� the function corresponding to ��� Let

f �x�� � � � � x�k� x�k	�� � � � � x�k	��	 � f��x�� � � � � x�k	� f��x�k	�� � � � � x�k	��	 ��	

Then

��



Theorem � The function f de
ned by ��� is a balanced function on V�k	��� k �� �� whose nonlin�
earity is at least

Nf
��

	
��

m	�� � ������
m��

� ��
m��

� � � �� ��
�

� � � ��	� �k � �m�

��
s��t	��	�� � ������

s����t	�� � ��
s����t	�� � � � �� ����t	�� � ��t	� � �t	�	� �k � �s��t� �	�

Proof� Let � � ��� ��� Then � is the sequence of f � Let 	 be an arbitrary a�ne sequence of length
��k	��� Then 	 � �	� � 	�� where 	� is a linear sequence of length ��k and 	� is a linear sequence of
length ���� Thus

h��� 	�i ��

	
��

m��

� ��
m��

� � � �� ��
�

� � � ��� �k � �m�

��
s����t	�� � ��

s����t	�� � � � �� ����t	�� � ��t	� � �t	�� �k � �s��t� �	�

and
h��� 	�i �� � � ��

�� � �����	 � ���

By Lemma ��� the theorem is true� ut

The nonlinearity of a function on V�k	�� constructed in this section is larger than that obtained
by concatenating or splitting bent sequences for all k �� ��

� Constructing Highly Nonlinear balanced Functions Sat�

isfying SAC

This section presents methods for constructing balanced functions with a high nonlinearity and
satisfying the SAC� The algebraic degrees of the functions are discussed�

��� On V�k�


Let k �� �� f a bent function and h a non�constant a�ne function� both on V�k� Note that f �x	�h�x	
is also bent� Without loss of generality we suppose that the number of times that f�x	 assumes the
value zero di�ers from that of f�x	� h�x	� �Otherwise we can replace h�x	 by h�x	� � and hence
f�x	� h�x	 by f�x	� h�x	� ��	 Let g be a function on V�k	� de�ned by

g�u� x�� � � � � x�k	

� ��� u	f�x�� � � � � x�k	� u�f �x�� � � � � x�k	� h�x�� � � � � x�k		

� f�x�� � � � � x�k	� uh�x�� � � � � x�k	� ��	

Lemma �� The function g de
ned by �
� is a balanced function on V�k	��

Proof� By Lemma � the sequence of g is the concatenation of the sequences of f �x	 and f�x	�h�x	�
Recall that a bent function on V�k assumes the value one ��k��� �k�� times� Therefore the number
of times that g assumes the value one is ���k�� � �k��	 � ���k�� � �k��	 � ��k� ut

The following lemma is a direct consequence of Corollary ��

��



Lemma �� Ng
�� �

�k � �k where g is de
ned by �
��

Lemma �� The function g de
ned by �
� satis
es the SAC�

Proof� Let � � �b� a�� � � � � a�k	 be an arbitrary vector in V�k	� with W ��	 � �� Also let � �
�a�� � � � � a�k	� z � �u� x�� � � � � x�k	 and x � �x�� � � � � x�k	� We show that g�z	 � g�z � �	 � f �x	 �
f�x� �	� u�h�x	� h�x� �		� bh�x� �	 is balanced by considering the following two cases�
Case �� b � � and henceW ��	 � �� Then g�z	�g�z��	 � f�x	�f�x��	�u�h�x	�h�x��		�

Since h is an a�ne function� h�x	 � h�x � �	 � c where c is a constant from GF ��	� Thus
g�z	� g�z��	 � f�x	�f �x��	� cu� By �iii	 of Lemma �� f�x	�f�x��	 is a balanced function
on V�k and hence by Lemma ��� g�z	� g�z � �	 is a balanced function on V�k	��
Case �� b � � and hence W ��	 � �� i�e� � � ��� �� � � � � �	� Then g�z	� g�z � �	 � h�x	� Since

h�x	 is a non�constant a�ne function on V�k� h�x	 and hence g�z	� g�z � �	 are balanced� ut

Summarizing Lemmas ��� �� and �� we have

Theorem � For k �� �� g de
ned by �
� is a balanced function on V�k	� having Ng
�� �

�k � �k and
satisfying the SAC�

��� On V�k

Let k �� � and f a bent function on V�k��� And let h�� h� and h� be non�constant a�ne functions
on V�k�� such that hi�x	 � hj�x	 is non�constant for any i �� j� Such a�ne functions exist for all
k �� �� Let x � �x�� � � � � x�k��	� Note that each f�x	� hj�x	 is also bent�
Without loss of generality we suppose both f�x	 and f�x	�h��x	 assume the value one ��k���

�k�� times while both f �x	�h��x	 and f�x	�h��x	 assume the value one ��k��� �k�� times� This
assumption is reasonable because f�x	 � hj�x	 assumes the value one ��k�� � �k�� times if and
only if f �x	� hj�x	 � � assumes the value one ��k�� � �k�� times� In addition hj�x	 � � is also a
non�constant a�ne function� This allows us to choose either f�x	 � hj�x	 or f�x	 � hj�x	 � � so
that the assumption is satis�ed� Let g be a function on V�k de�ned by

g�u� v� x�� � � � � x�k��	

� �� � u	��� v	f�x	� ��� u	v�f�x	� h��x		�

u��� v	�f�x	� h��x		� uv�f�x	� h��x		

� f �x	� vh��x	� uh��x	� uv�h��x	� h��x	� h��x		� ��	

Lemma �	 g de
ned by ��� is a balanced function on V�k�

Proof� Note that the sequence of g is the concatenation of the sequences of f�x	� f�x	 � h��x	�
f�x	� h��x	 and f�x	� h��x	� and that f�x	 and f�x	� h��x	 assume the value one ��k�� � �k��

times while f �x	�h��x	 and f �x	�h��x	 assume the value one ��k����k�� times� Thus g assumes
the value one ��k�� times and hence is a balanced function on V�k� ut

Lemma �
 Ng
�� �

�k�� � �k where g is de
ned by ����

��



Proof� It follows from Corollary �� ut

Lemma �� The function g de
ned by ��� satis
es the SAC�

Proof� Let � � �b� c� a�� � � � � a�k��	 be any vector in V�k with W ��	 � �� Write � � �a�� � � � � a�k��	�
z � �u� v� x�� � � � � x�k��	 and x � �x�� � � � � x�k��	� Note that g�z��	 � f�x��	� �v� c	h��x��	�
�u� b	h��x��	� �u� b	�v� c	�h��x��	� h��x��	� h��x��		� Consider the balancedness of
g�z	� g�z � �	 in the following three cases�
Case �� b � �� c � � and hence W ��	 � �� i�e� � � ��� �� � � � � �	� In this case� g�z	� g�z � �	 �

h��x	 � v�h��x	 � h��x	 � h��x		 will be h��x	 when v � � and h��x	 � h��x	 when v � �� Both
h��x	 and h��x	 � h��x	 are non�constant a�ne functions on V�k�� and hence g�z	 � g�z � �	 is a
balanced function on V�k�
Case �� b � �� c � � and hence W ��	 � �� i�e� � � ��� �� � � � � �	� The proof of the balancedness

of g�z	� g�z � �	 is similar to Case ��
Case �� b � �� c � � and hence W ��	 � �� Since hj is an a�ne function� hj�x	�hj�x��	 � aj

where aj is a constant from GF ��	� Hence g�z	� g�z� �	 � f�x	� f �x��	� va��ua��uv�a��
a� � a�	� By �iii	 of Lemma �� f�x	 � f �x � �	 is a balanced function on V�k�� and hence by
Lemma ��� g�z	� g�z� �	 is a balanced function on V�k� This proves that g satis�es the SAC� ut

Summarizing Lemmas ��� �� and �� we have

Theorem � For k �� �� g de
ned by ��� is a balanced function on V�k having Ng
�� �

�k�� � �k and
satisfying the SAC�

��� Remarks

We have shown that a function on Vn constructed according to ��	 and ��	 satisfy the propagation
criterion with respect to all the n vectors whose Hamming weight is �� In fact there are many more
vectors where the propagation criterion is satis�ed�
Let x � �x�� � � � � x�k	� z � �u�x	� and let g be a function constructed according to ��	� Let

� � �b��	 where b � GF ��	 and � � V�k� Then g�z	�g�z��	 � f�x	�f�x��	�bh�x��	�uh��	�
Consider the following three cases�
Case �� b � � and W ��	 �� �� In this case� g�z	 � g�z � �	 is balanced for all ��k � � non�zero

vectors � � V�k�
Case �� b � � and W ��	 � �� g�z	� g�z � �	 is balanced for � � ��� �� �� � � � � �	�
Case �� b � � and W ��	 �� �� g�z	� g�z � �	 is balanced if h��	 �� �� The number of vectors

� � V�k such that h��	 �� � is ��k��� g�z	� g�z� �	 can not be balanced for any � � V�k such that
h��	 � �� �Otherwise it would imply that g is bent�	
Consequently� the total number of vectors such that g constructed by ��	 satis�es the propagation

criterion is ��k � ��k���
For a function g on V�k constructed according to ��	� a similar discussion reveals that the total

number of vectors in V�k where the propagation criterion is satis�ed is at least ��k�� � ��
The algebraic degree is also a nonlinearity criterion and it becomes important in certain prac�

tical applications where linear approximation of a nonlinear function needs to be avoided� In our

��



constructions ��	 and ��	� the algebraic degree of a resulting function g is the same as that of the
starting bent function f �
The simplest bent function on V�k is the following quadratic function�

f�x�� x�� � � � � x�k	 � x�xk	� � x�xk	� � � � � � xkx�k�

Bent functions with higher algebraic degrees exist and there are many methods for constructing such
functions 
Dil��
� The following is a method discovered by Dillon and Maiorana 
Dil��� KSW��

for constructing a bent function f on V�k�

f�x	 � hx�� ��x��	i � r�x��	

where x � �x�� x��	� x� � �x�� � � � � xk	� x�� � �xk	�� � � � � x�k	� r is an arbitrary function on Vk and
� � ����x��	� ���x��	� � � � � �k�x��		 is a permutation on the vector space Vk� Due to the arbitrariness
of r� the algebraic degree of f can be any integer between � and k� �From these discussions it
becomes clear that functions obtained by ��	 and ��	 can achieve a wide range of algebraic degrees�
namely �� � � � � k and �� � � � � k � � respectively�

��� Examples

Example � Consider V�� As we know� f �x�� x�� x�� x�	 � x�x� � x�x� is a bent function in V��
Choose the non�constant a�ne function h�x�� x�� x�� x�	 � � � x� � x� � x� � x�� Note that
f�x�� x�� x�� x�	 assumes the value one �

�������� � � times and f�x�� x�� x�� x�	�h�x�� x�� x�� x�	 as�
sumes the value one ��������� � �� times� Set g�u�x�� x�� x�� x�	 � f�x�� x�� x�� x�	�uh�x�� x�� x�� x�	 �
x�x��x�x��u���x��x��x��x�	� By Theorem �� g is a balanced function with Ng

�� �
���� � ��

and satisfying the SAC� On the other hand� by Corollary � the nonlinearity of balanced functions on
V� is bounded from the above by bb�� � ���

�

� cc � bb������� � � �cc � ��� Therefore the nonlinearity
of g attains the upper bound for balanced functions on V��

Example � Consider V�� Choose f�x�� x�� x�� x�	 � x�x��x�x�� a bent function in V�� Also choose
a�ne functions h��x�� x�� x�� x�	 � x�� h��x�� x�� x�� x�	 � � � x�� h��x�� x�� x�� x�	 � � � x�� Note
both f�x�� x�� x�� x�	 and f�x�� x�� x�� x�	 � h��x�� x�� x�� x�	 assume the value one ���� � ���� � �
times while both f�x�� x�� x�� x�	� h��x�� x�� x�� x�	 and f �x�� x�� x�� x�	� h��x�� x�� x�� x�	 assume
the value one ��������� � �� times� Set g�u� v� x�� x�� x�� x�	 � f�x�� x�� x�� x�	�vh��x�� x�� x�� x�	�
uh��x�� x�� x�� x�	 � uv�h��x�� x�� x�� x�	 � h��x�� x�� x�� x�	 � h��x�� x�� x�� x�		� By Theorem �� g
is a balanced function with Ng

�� �
� � �� � �� and satisfying the SAC� The nonlinearity of g is

comparable to �� � ��� � � ��� the upper bound for the nonlinearities of balanced functions on V�
�see Corollary �	�

Recently Zheng� Pieprzyk and Seberry 
ZPS��
 constructed a very e�cient one way hashing
algorithm using boolean functions constructed by the method given in Theorem �� These functions
have further cryptographically useful properties�

� Constructing Highly Nonlinear balanced Functions Sat�

isfying High Degree Propagation Criterion

Another interesting topic is to study methods for constructing functions that are balanced and
possess good propagation characteristics� In 
PGV��
� it was suggested that a function f on Vn

��



which has a zero point in its Walsh spectrum be modi�ed into a balanced function by adding a
suitable linear function h on Vn� As h has to be found by exhaustive search over all the linear
functions on Vn� the method is infeasible when n is large� In addition� the method is not applicable
to the functions which do not have zero points in their Walsh spectra� These functions include ��	
bent functions� and ��	 highly nonlinear functions obtained by complementing a single position in
bent sequences�
This section presents two methods for systematically constructing highly nonlinear balanced

functions satisfying the propagation criterion� For odd n� we construct balanced functions that
satisfy the propagation criterion with respect to all non�zero vectors except � � ��� �� � � � � �	� And
for even n� we construct balanced functions that satisfy the propagation criterion with respect to
all but three non�zero vectors� The three vectors where the propagation criterion is not satis�ed are
�� � ��� �� �� � � � � �	� �� � ��� �� �� � � � ��	� and �� � �� � �� � ��� �� �� � � � � �	� The two methods both
start with bent functions� and hence are similar from a technical point of view� We also show how
�� �� and ��� can be transformed into any other non�zero vectors�

��� Basic Construction

�
�
� On V�k	�

Let f be a bent function on V�k� and let g be a function on V�k	� de�ned by

g�x�� x�� � � � � x�k	�	

� ��� x�	f �x�� � � � � x�k	�	� x��� � f�x�� � � � � x�k	�		

� x� � f�x�� � � � � x�k	�	� ��	

Lemma �� The function g de
ned in ��� satis
es the propagation criterion with respect to all
non�zero vectors � � V�k	� with � �� ��� �� � � � � �	�

Proof� Let � � �a�� a�� � � � � a�k	�	 �� ��� �� � � � � �	 and let x � �x�� x�� � � � � x�k	�	� Then g�x	 �
g�x � �	 � a� � f �x�� � � � � x�k	�	 � f�x� � a�� � � � � x�k	� � a�k	�	� Since f is a bent function�
f�x�� � � � � x�k	�	 � f�x� � a�� � � � � x�k	� � a�k	�	 is balanced for all �a�� � � � � a�k	�	 �� ��� � � � ��	 �see
�iii	 of Lemma �	� Thus g�x	�g�x��	 is balanced for all � � �a�� a�� � � � � a�k	�	 �� ��� �� � � � � �	� ut

�From Corollary �� the nonlinearity of the function g de�ned by ��	 satis�es Ng
�� �

�k � �k�
Furthermore� by Lemma ��� g is balanced� Thus we have

Corollary � The function g de
ned by ��� is balanced and satis
es the propagation criterion with
respect to all non�zero vectors � � V�k	� with � �� ��� �� � � � � �	� The nonlinearity of g satis
es
Ng

�� �
�k � �k�

�
�
� On V�k

Let f be a bent function on V�k�� and let g be a function on V�k obtained from f in the following
way�

g�x�� x�� x�� � � � � x�k	

��



� �� � x�	��� x�	f �x�� � � � � x�k	� ��� x�	x���� f �x�� � � � � x�k		

x���� x�	�� � f �x�� � � � � x�k		� x�x�f�x�� � � � � x�k	

� x� � x� � f�x�� � � � � x�k	� ��	

Lemma �� The function g de
ned in ��� satis
es the propagation criterion with respect to all but
three non�zero vectors in V�k� The three vectors where the propagation criterion is not satis
ed are
�� � ��� �� �� � � � � �	� �� � ��� �� �� � � � � �	� and �� � �� � �� � ��� �� �� � � � � �	�

Proof� Let � � �a�� a�� � � � � a�k	 be a non�zero vector in V�k di�ering from ��� �� and ��� Also let x �
�x�� � � � � x�k	� Then we have g�x	�g�x��	 � a��a��f�x�� � � � � x�k	�f�x��a�� � � � � x�k�a�k	� Since
f is a bent function on V�k�� and �a�� � � � � a�k	 �� ��� � � � � �	� f�x�� � � � � x�k	�f�x��a�� � � � � x�k�a�k	
is balanced� from which it follows that g�x	� g�x� �	 is balanced for any non�zero vector � in V�k
di�ering from ��� �� and ��� This proves the lemma� ut

Since x�� x� is balanced on V�� g is balanced on V�k� On the other hand� by Lemma �� we have
Ng

�� �
�k�� � �k� Thus we have the following result�

Corollary � The function g de
ned by ��� is balanced and satis
es the propagation criterion with
respect to all non�zero vectors � � V�k with � �� �c�� c�� �� � � � � �	� where c�� c� � GF ��	� The
nonlinearity of g satis
es Ng

�� �
�k�� � �k�

��� Moving Vectors Around

Though functions constructed according to ��	 or ��	 satisfy the propagation criterion with respect
to all but one or three non�zero vectors� they only ful�ll the propagation criterion of degree zero�
Therefore these functions are not interesting in practical applications� Recall that the balancedness�
the nonlinearity and the number of vectors where the propagation criterion is satis�ed are all
invariant under an a�ne transformation of coordinates� This indicates that the degree for the
propagation criterion might be improved through a suitable a�ne transformation of coordinates�
Identifying such an a�ne transformation� however� is not an easy exercise� especially when the
dimension of the underlying vector space is large and the number of vectors where the propagation
criterion is satis�ed is small�
In this section� we show that for functions constructed according to ��	 or ��	� the vectors

where the propagation criterion is not satis�ed can be transformed into vectors having a high
Hamming weight� In this way we obtain highly nonlinear balanced functions satisfying the high
degree propagation criterion�

�
�
� On V�k	�

Theorem � For any non�zero vector �� � V�k	� �k �� ��� there exist balanced functions on V�k	�
satisfying the propagation criterion with respect to all non�zero vectors � � V�k	� with � �� ��� The
nonlinearities of the functions are at least ��k � �k�

Proof� Let f be a bent function and let g be the function constructed by ��	� �From linear algebra
we know that for any bases B� and B� of the vector space V�k	�� where B� � f�jjj � �� � � � ��k��g

��



and B� � f�jjj � �� � � � � �k � �g� there exists a unique nondegenerate matrix A of order �k � �
with entries from GF ��	 such that �jA � �j� j � �� � � � ��k � �� In particular� this is true when
�� � �� and �� � ��� �� � � � � �	� Let x � �x�� x�� � � � � xn	 and let g� be the function obtained from g

by employing linear transformation on the input coordinates of g�

g��x	 � g�xA	�

Since A is nondegenerate� by Lemma ��� g� is balanced and has the same nonlinearity as that
of g� Now we show that g� satis�es the propagation criterion with respect to all non�zero vectors
except ���
Let � be a non�zero vector in V�k	� with � �� ��� Consider the following function g��x	� g��x�

�	 � g�xA	 � g�xA� �A	 � g�y	 � g�y � �A	 where y � xA� Note that A is nondegenerate and
thus y runs through V�k	� while x runs through V�k	�� Since � �� �� we have �A �� ��� �� � � � � �	� By
Lemma ��� g�y	�g�y��A	 runs through the values zero and one an equal number of times� Hence
g��x	� g��x� �	 is balanced� Consequently� g� satis�es the propagation criterion with respect to
all non�zero vectors in V�k	� but ��� This completes the proof� ut

As a consequence of Theorem �� we obtain� by letting �� � ��� �� � � � � �	� highly nonlinear bal�
anced functions on V�k	� satisfying the propagation criterion of degree �k� This is described in the
following�

Corollary � Let f be a bent function on V�k and let g��x�� � � � � x�k	�	 � x� � f �x� � x�� x� �
x�� � � � � x�� x�k	�	� Then g� is a balanced function on V�k	� and satis
es the propagation criterion
of degree �k� The nonlinearity of g� satis
es Ng�

�� �
�k � �k�

Proof� Let ej� j � �� �� � � � � �k � �� be a vector in V�k	� whose jth coordinate is � and all other
coordinates are �� In the proof of Theorem �� we let �� � �� � ��� � � � � �	� �j � ej� j � �� � � � � �k��
and �j � ej� j � �� � � � ��k��� Then there is a unique nondegenerate matrix A of order �k�� such
that �jA � �j� j � �� � � � � �k � �� It is easy to verify that A has the following form�

A �

�
�����

��
e�
���

e�k	�

�
����� �

Thus we have g��x	 � g�xA	 � g�x�� x��x�� � � � � x��x�k	�	 � x��f �x��x�� x��x�� � � � � x��x�k	�	�
where g�x	 � x� � f�x�� � � � � x�k	�	� and x � �x�� x�� � � � � x�k	�	� By Theorem � g� satis�es the
propagation criterion with respect to all non�zero vectors in V�k	� except the all�one vector �� �
��� �� � � � � �	� Consequently g� satis�es the propagation criterion of degree �k� ut

�
�
� On V�k

Theorem � For any non�zero vectors ���� �
�
� � V�k �k �� �� with ��� �� ��� � there exist balanced

functions on V�k satisfying the propagation criterion with respect to all but three non�zero vectors
in V�k� The three vectors where the propagation criterion is not satis
ed are ��� � �

�
� and ��� � ��� �

The nonlinearities of the functions are at least ��k�� � �k�

��



Proof� The proof is essentially the same as that for Theorem �� The major di�erence lies in the
selection of bases B� � f�jjj � �� � � � � �kg and B� � f�jjj � �� � � � � �kg� By linear algebra� we
can let �� � ��� � �� � ��� � �� � ��� �� �� � � � � �	� and �� � ��� �� �� � � � � �	� By the same reasoning as
in the proof of Theorem �� we can see that g� de�ned by g��x	 � g�xA	 satis�es the propagation
criterion with respect to all but the following three non�zero vectors in V�k� ��� � �

�
� and �

�
����� � Here

x � �x�� x�� � � � � x�k	� g�x	 � x� � x� � f �x�� � � � � x�k	� and f � a bent function on V�k��� are all the
same as in ��	� and A is the unique nondegenerate matrix such that �jA � �j� j � �� � � � � �k� ut

Similarly to the case on V�k	�� we can obtain highly nonlinear balanced functions satisfying the
high degree propagation criterion� by properly selecting vectors ��� and �

�
� � Unlike the case on V�k	��

however� the degree of propagation criterion the functions can achieve is �
�
k� but not �k � �� The

construction method is described in the following corollary�

Corollary 	 Suppose that �k � �t� c where c � �� � or �� Then there exist balanced functions on
V�k that satisfy the propagation criterion of degree �t � � �when c � � or ��� or �t �when c � ���
The nonlinearities of the functions are at least ��k�� � �k�

Proof� Set c� � �� c� � � if c � � and set c� � c� �
�
�c otherwise� Let �

�
� � �a�� � � � � a�t	c	 and

��� � �b�� � � � � b�t	c	� where

aj �

	
� for j � �� � � � � �t� c��

� for j � �t� c� � �� � � � � �t� c�

bj �

	
� for j � �� � � � � t� c��

� for j � t� c� � �� � � � � �t� c�

By Theorem � there exists a balanced function g� on V�k satisfying the propagation criterion
with respect to all but three non�zero vectors in V�k� The three vectors are ��� � �

�
� and �

�
� � ��� � The

nonlinearity of g� satis�es Ng�
�� �

�k�� � �k�
Note that W ����	 � �t� c�� W ��

�
�	 � �t� c�� and W ��

�
� ����	 � �t��c� � �t� c� The minimum

among the three weights is �t�c�� Therefore� for any nonzero vector � � V�k withW ��	 �� �t�c����
we have � �� ��� � �

�
� or �

�
����� � By Theorem �� g

��x	�g��x��	 is balanced� �From this we conclude
that g� satis�es the propagation criterion of order �t � c� � �� The proof is completed by noting
that c� � � if c � � or � and c� � � if c � �� ut

��� Discussions and Examples

Comparing ��	 with ��	� one can see that the di�erence between the two constructions lies in the
selection of the a�ne functions� In ��	 a non�constant a�ne function h is selected� while in ��	 a
constant � is employed� In a sense� the two constructions complement one another� This is also
true in the case of ��	 and ��	�
Functions obtained by ��	 and ��	 can achieve a wide range of algebraic degrees� namely �� � � � � k

and �� � � � � k � � respectively� �See also the discussions in Section ����	 Recently� Detombe and
Tavares obtained� while studying the design of S�boxes� balanced quadratic functions on V�k	� that
satisfy the propagation criterion with respect to all but one vectors in V�k	�� �They called these
functions near bent functions�	 They obtained the functions by the use of the cubing technique

��



suggested by Pieprzyk 
Pie��
� Propagation characteristics of quadratic functions were also studied
extensively in 
PGV��
� However� applicability of these quadratic functions in practice is limited
by the following two facts�

�� Their algebraic degree is only ��

�� They are all equivalent in structure in the sense that they can be transformed into one another
by linear transformation of input coordinates�

In the following we provide two concrete examples to illustrate our methods for constructing
highly nonlinear balanced functions that satisfy the high degree propagation criterion�

Example � We consider balanced functions on V
� Note that f�x�� x�� x�� x�� x�� x�	 � x�x� �
x�x� � x�x� � x�x�x� is a bent function on V�� It is obtained by the use of Dillon and Maiorana�s
construction 
Dil��� KSW��
� Now let

g�x�� x�� x�� x�� x�� x�� x
	

� x� � f�x�� x�� x�� x�� x�� x
	

� x� � x�x� � x�x� � x�x
 � x�x�x
�

By Corollary �� the following function

g��x�� x�� x�� x�� x�� x�� x
	 � x� � f�x� � x�� x� � x�� x� � x�� x� � x�� x� � x�� x� � x
	

� x� � �x� � x�	�x� � x�	 � �x� � x�	�x� � x�	�

�x� � x�	�x� � x
	� �x� � x�	�x� � x�	�x� � x
	

satis�es the propagation criterion of degree �� The propagation criterion is not satis�ed only by the
all�one vector ��� �� �� �� �� �� �	�
On the other hand� assume that �� � ��� �� �� �� �� �� �	� Let ej be a vector on V
 whose jth

coordinate is � and other coordinates are �� where j � �� �� � � � � �� Let �� � �� � ��� �� �� �� �� �� �	�
�� � e�� �� � e� and �j � ej� j � �� �� �� �� And let �j � ej� j � �� � � � �� Thus f��� � � � � �
g and
f��� � � � � �
g are two bases of V
� By matrix manipulation we can �nd the following matrix

A �

�
������������

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

�
������������

that satis�es �jA � �j� j � �� � � � � �� By Theorem �

h��x�� x�� x�� x�� x�� x�� x
	

� g��x�� x�� x�� x�� x�� x�� x
	A	

� g�x�� x�� x�� x�� x� � x�� x� � x�� x
	

� x� � x�x� � x��x� � x�	� �x� � x�	x
 � x��x� � x�	x


��



is a balanced function on V
 satisfying the propagation criterion with respect to all � � V
 with
� �� ��� �� �� �� �� �� �	�
Note that Ng� � Nh�

�� �
�� �� � ��� which in fact is the maximum nonlinearity of functions on

V
 
CKHFMS��
�

Example � Consider balanced functions on V��� Note that n can be written as n � �k � �t � c�
where k � �� t � � and c � �� Again by using Dillon and Maiorana�s construction we have the
following bent function on V���

f�x�� x�� x�� x�� x
� x
� x�� x��� x��� x��	

� x�x� � x�x� � x
x
 � x�x�� � x��x�� � x�x�x
x��x���

By Corollary �

g�x�� x�� x�� x�� x�� x�� x
� x
� x�� x��	

� x� � x� � f�x�� x�� x�� x�� x
� x
� x�� x��� x��� x��	

� x� � x� � x�x� � x�x� � x
x
 � x�x�� � x��x�� � x�x�x
x��x��

is balanced and satis�es the propagation criterion with respect all non�zero vectors � � V�� with
� �� �c�� c�� �� �� �� �� �� �� �� �� �� �	� where c�� c� � GF ��	� The nonlinearity of g satis�es Ng

��
��� � �� � ����� which is comparable to ��� � �� � � � ����� the upper bound of the nonlinearity
of a balanced function on V�� �see Corollary �	�
Let ej be the vector in V��� whose the jth coordinate is � and other coordinates are all �� where

j � �� � � � � ���
Let ��� � ��� �� �� �� �� �� �� �� �� �� �� �	� �

�
� � ��� �� �� �� �� �� �� �� �� �� �� �	 and set

B� � f��� � �
�
�� e�� e�� e�� e�� e�� e
� e
� e��� e��� e��g�

B� � fe�� e�� e�� e�� e�� e�� e
� e
� e�� e��� e��� e��g�

Now let A be a matrix de�ned by

A �

�
������������������������

� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

�
������������������������

�

It is not hard to check that ���A � e�� ���A � e�� e�A � e�� e�A � e�� e�A � e�� e�A � e�� e�A � e
�
e
A � e
� e
A � e�� e��A � e��� e��A � e��� e��A � e��� Let

g��x�� x�� x�� x�� x�� x�� x
� x
� x�� x��� x��� x��	

��



� g��x�� x�� x�� x�� x�� x�� x
� x
� x�� x��� x��� x��	A	

� g�x�� x�� x� � x�� x� � x�� x� � x�� x� � x� � x�� x� � x� � x��

x� � x
 � x�� x� � x
 � x�� x� � x��� x� � x��� x� � x��	�

By Theorem � the function g� is balanced and its nonlinearity satis�es Ng
�� �

�� � �� � ����� In
addition� g� satis�es the propagation criterion with respect all but three non�zero vectors in V��� The
three non�zero vectors are ��� � ��� �� �� �� �� �� �� �� �� �� �� �	� �

�
� � ��� �� �� �� �� �� �� �� �� �� �� �	 and

��� � ��� � ��� � ��� �� �� �� �� �� �� �� �� �� �� �	� By Corollary �� g
� satis�es the propagation criterion of

degree �t� � � ��

� Concluding Remarks

We have studied properties of balancedness and nonlinearity of Boolean functions including concate�
nating� splitting� modifying and multiplying sequences� Systematic methods have been presented for
constructing highly nonlinear balanced functions satisfying the SAC or the high degree propagation
criterion� A technique has been developed that allows us to transform vectors where the propaga�
tion criterion is not satis�ed into other vectors� while preserving the nonlinearity and balancedness
of the functions� This paper has also introduced a number of interesting problems which remain
to be solved� We discuss one of them before closing the paper� For V�k	�� functions constructed
according to ��	 are optimal in the sense that they ful�ll the propagation criterion with respect
to ��k	� � � non�zero vectors� and after the a�ne transformation of coordinates� they satisfy the
propagation criterion of degree �k� For V�k� the number of non�zero vectors given by ��	 is �

�k � �
and the degree after the transformation is �k

�
� It is left as future work to examine whether there

are highly nonlinear balanced functions on V�k satisfying the propagation criterion of degree �k���
and if there are� to �nd methods for constructing such functions�
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