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Constructions of Bent Functions from Two Known Bent

Functions

Jennifer Seberry

and

Xian�Mo Zhang

Department of Computer Science

The University of Wollongong

Wollongong

NSW ����� AUSTRALIA

Abstract

A ��� ����matrix will be called a bent type matrix if each row and each column are
bent sequences� A similar description can be found in Carlisle M� Adams and Sta�ord
E� Tavares� Generating and counting binary sequences� IEEE Trans� Inform� Theory�
vol� 	
� no� �� pp� �������	� ���� in which the authors use the properties of bent
type matrices to construct a class of bent functions� In this paper we give a general
method to construct bent type matrices and show that the bent sequence obtained from
a bent type matrix is a generalized result of the Kronecker product of two known bent
sequences�
Also using two known bent sequences of length ��k�� we can construct �k � � bent
sequences of length ��k� more than in the ordinary construction� which gives construct
� bent sequences of length ��k from two known bent sequences of length length ��k���

Let Vn be the vector space of n tuples of elements from GF ���� Let �� � � Vn� Write
� � �a�� � � � � an�� � � �b�� � � � � bn�� where ai� bi � GF ���� Write h���i �

Pn
j�� ajbj for the

scalar product of � and ��

De�nition � We call the function h�x� � a�x� � � � �� anxn � c� aj � c � GF ���� an a�ne
function� in particular� h�x� will be called a linear function if c � 	�

De�nition � Let f�x� be a function from Vn to GF ��� �simply� a function on Vn�� If

��
n
�

X
x�Vn

��
�f�x��h��xi � �
�

for every � � Vn� We call f�x� a bent function on Vn�

From De�nition �� bent functions on Vn only exist for even n� Bent functions were �rst
introduced and studied by Rothaus �
�� Further properties� constructions and equivalence
bounds for bent functions can be found in ���� ���� ���� �
��� �
��� Kumar� Scholtz and
Welch ��� de�ned and studied the bent functions from Zn

q to Zq � Bent functions are useful
for digital communications� coding theory and cryptography ��� �
�� ���� ���� ���� �
	��
���� �

�� �
���






We say � � �a�� � � � � an� � � � �b�� � � � � bn� if there exists k� 
 �
� k �

� �n� such that
a� � b�� � � � � ak�� � bk�� and ak � 	� bk � 
� Hence we can order all vectors in Vn by the
relation �

�� � �� � � � � � ��n���

where
�� � �	� � � � � 	��
�� � �	� � � � � 
��

���
��n���� � �	� 
� � � � � 
��
��n�� � �
� 	� � � � � 	��

���
��n�� � �
� 
� � � � � 
��

De�nition � Let f�x� be a function from Vn to GF ���� We call ��
�f����� ��
�f�����
� � � � ��
�f���n� the sequence of f�x�� We call the sequence of f�x� a bent sequence if f�x�
is bent� A �
 � �
��sequence will be called an a�ne sequence a �linear sequence� if it is the
sequence of an a�ne function �a linear function��

De�nition � A �
� �
��matrix H of order h will be called an Hadamard matrix if HHT �
hIh�

If h is the order of an Hadamard matrix then h is 
� � or divisible by � �
��� A special kind
of Hadamard matrices de�ned as following will be relevant

De�nition � The Sylvester�Hadamard matrix � or Walsh�Hadamard matrix� of order �n�
denoted by Hn� is generated by the recursive relation

Hn �

�
Hn�� Hn��

Hn�� �Hn��

�
� n � 
� �� � � � � H� � 
�

Let f�x� be a function from Vn to GF ���� � be the sequence �regarded as a row vector� of
f�x�� Then the following three conditions are equivalent

�i� f�x� is bent�

�ii� ��
�

�
nHn�

T is a �
� �
��row vector�

�iii� for any a�ne sequence l h�� li � ��
�

�
n�

The equivalence of �i� and �ii� can be found in many references� for example� ���� �
���
Note that any a�ne sequence of length �n is a row of �Hn �see subsection ��� thus �ii�
and �iii� are equivalent�

De�nition � We call a �
� �
��matrix of order �m � �n a bent type matrix if each row is a
bent sequence of length of �n and each column is a bent sequence of length of �m�

�



For example� �
����

� � � �
� � � �
� � � �
� � � �

�
���	 �

where � and � denote 
 and �
 respectively� is a bent type matrix of order �� A similar
description can be found in ��� p� 

�
��

De�nition 	 A �
� �
��matrix of order �m� �n will be called an a�ne type matrix if each
row is an a�ne sequence of length of �n and each column is an a�ne sequence of length of
�m�

For example� �
����

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

�
���	

is an a�ne type matrix of order ���� Any Walsh�Hadamard matrix is an a�ne type matrix
�see subsection ����

De�nition 
 Let A� and A� be a�ne type matrices of order �m��n� If A� � QA�P where
Q and P are diagonal matrices of order �m and �n whose diagonals consist of �
 we say A�

and A� are equivalent�

For example

�
����
� � � �
� � � �
� � � �
� � � �

�
���	 and

�
����

� � � �
� � � �
� � � �
� � � �

�
���	 are equivalent a�ne type matrices�

De�nition � We call each of the four �
� �
��sequences of length � ��� ��� ��� ��
E��constructed� Recursively� suppose En�constructed has been de�ned for n � 
� � � � � k�
�
The �
� �
��sequence l will be said to be Ek�constructed if l � �l�� �l�� where l� is Ek���
constructed�

� Bent Type Matrices

��� Bent Type Matrices Constructed from A�ne Type Matrices

Lemma � Let b�� b�� � � � � b�n�� be a bent sequence and c�� c�� � � � � c�n�� be an a�ne sequence
then b�c�� b�c�� � � � � b�n��c�n�� is a bent sequence�

Proof� Let b�� b�� � � � � b�n�� be the sequence of a bent function f from Vn to GF ���
and c�� c�� � � � � c�n�� be the sequence of an a�ne function from Vn to GF ���� Note that





b�c�� b�c�� � � � � b�n��c�n�� is the sequence of f � g� From Property 
 ��� p� ��� f � g is
bent� This proves the lemma� �

Bent type matrices can be used to construct bent sequences� For convenience� we quote a
part of the Theorem found in ���

Theorem � Let B � �bij� be a bent type matrix of order �
m��n� Write �j � �b�j� � � � � b�mj��

j � 
� � � � � �n and �i � �bi� � � � bi�n�� j � 
� � � � � �m� Then both

���
�

�
m��Hm� � � � � �

� �

�
m��nHm�

and
���

�

�
n��Hn� � � � � �

� �

�
n��mHn�

are bent sequences of length �m�n�

Proof� The proof can be found in ��� p� 

�
�� �

Using the three equivalent conditions of bent functions in Section 
� both ��
�

�
m�jHm and

��
�

�
n�iHn are bent sequences of length �m and �n� Hence Theorem 
 gives an example that

the concatenation of some bent sequences is also bent� In general this is not true if some
extra conditions are not satis�ed� For example� each of � � ��� � � ��� � � ���
���� is bent but the concatenation of the four sequences is not bent� The conditions for
bent type matrices are restrictive� In this section we use a�ne type matrices to construct
bent type matrices�

Theorem � Let A be an a�ne type matrix of order �m��n� P be a diagonal matrix of order
�n whose diagonal is a bent sequence of length �n� say a�� a�� � � � � a�n�� and Q be a diagonal
matrix of order �m whose diagonal is a bent sequence of length �m� say b�� b�� � � � � b�m���
Then QAP is a bent type matrix of order �m � �n�

Proof� Since each row of A is an a�ne sequence� by Lemma 
� each row of AP is a bent
sequence� Note each column of AP is still an a�ne sequence� By Lemma 
� each column of
QAP is a bent sequence� Note each row of QAP is still a bent sequence� This proves the
theorem� �

To �nd the bent sequences using the special construction mentioned in Theorem 
� we �rst
construct bent type matrices using Theorem �� In particular� when the a�ne matrix A in
Theorem � consists of only ones� the bent type matrix mentioned in Theorem � yields a
bent sequence which is the Kronecker product �see �
��� of two bent sequences� ��

�

�
m�jHm

and ��
�

�
n�iHn� Thus we have reproved Theorem 
 �
�� using a di�erent method�

Corollary � Let �n denote the number of di�erent bent sequences on Vn with 	rst entries
� and 	m�n denote the number of inequivalent a�ne type matrices of order �m� �n� Then
there exist at least �m�n	m�n di�erent bent type matrices of order �m � �n�

�



Proof� We �rst note that for a �xed a�ne type matrix of order �m � �n� we can construct
at least �m�n di�erent bent type matrices of order �m� �n by using Theorem �� Otherwise
suppose B is an a�ne type matrix of order �m � �n� Q� �� Q� or P� �� P� but Q�BP� �
Q�BP� where each Qj and each Pj are the matrices mentioned in the proof of Theorem �
whose �rst entries on the diagonals are �� Thus

Q�Q�BP�P� � B� �
�

Note that both Q�Q� and P�P� are diagonal matrices whose diagonals consist of �
� Let
Q�Q� � diag�q�� � � � � q�k�� P�P� � diag�p�� � � � � p�k�� Let B� � �b�� � � � � b�k�

T be the �rst
column of B� Compare the �rst columns on each side of �
� then we have qjbjp� � bj �
j � 
� � � � � �k thus qj � p�� j � 
� � � � � �k and thus Q�Q� � �I�k according as p� � �
�
Hence Q�Q� � eI�m and P�P� � eI�n where e � �
� Since the �rst entries on the diagonals
of Q�� Q�� P�� P� are �� Q� � Q� and P� � P�� This contradicts to the assumption that
Q� �� Q� or P� �� P��
Secondly we note that if B� and B� are inequivalent a�ne type matrices of order �m � �n�
there exist no Q�� Q�� P�� P� as mentioned in Theorem � such that Q�B�P� � Q�B�P��
Otherwise we would have Q�Q�B�P�P� � B�� This contradicts the assumption that B�

and B� are inequivalent� Hence we have established the corollary� �

��� Constructing A�ne Type Matrices

Lemma � Write Hn �

�
�����

l�
l�
���

l�n��

�
����	 where li is a row of Hn� Then li is the sequence of a

linear function on Vn�

Proof� The proof can be found in �
��� �

We can now established

Theorem � An �
� �
��matrix of order �m� �n is an a�ne type matrix if and only if each
row is En�constructed and each column is Em�constructed�

Proof� Note that Hn has �n rows and there exist �n linear sequences of length �n� By
Lemma � each linear sequence is a row of Hn and thus each a�ne sequence is a row of �Hn�
By the De�nition of Hn each row of Hn and is En�constructed� Hence each a�ne sequence
is En�constructed� On the other hand� there exist �n�� En�constructed �
 �
��sequences
and �n�� a�ne sequences� Thus each En�constructed �
 �
��sequences is a�ne� �

Theorem � Let A� be an a�ne type matrix of order �m� � �n� with rank r� and A� be an
a�ne type matrix of order �m� � �n� with rank r�� Then A� �A� is an a�ne type matrix
of order �m��m� � �n��n� with rank r�r�� where � is the Kronecker product�

�



Proof� Note that each row of A� �A� is En��n� �constructed and each column of A� �A�

is Em��m� �constructed� Hence by Theorem � A� �A� is an a�ne type matrix�
Let C� be the invertible submatrix of order r� and C� be the invertible submatrix of order
r�� Hence by ���� of �
�� p� 

��� C� � C� is invertible and thus the rank of A� � A� is at
least r�r��
On the other hand� since the ranks of A� and A� are r� and r� respectively� write suppose
��� � � � � �r� for the linearly independent row vectors of A�� and ��� � � � � �r� for the linearly
independent column vectors of A�� Note that any row vector of A� is a linear combination
of ��� � � � � �r� and any row vector of A� is a linear combination of ��� � � � � �r� � Any row
vector of A� � A� can be written as � � �� where � is a row vector of A� and � is a row
vector of A�� Write � �

Pr�
j�� aj�j and � �

Pr�
j�� bj�j � where each aj and bj � GF ����

Hence

�� � �
r�X
i��

r�X
j��

aibj��i � �j��

This proves that the rank of A� �A� is at most r�r� and hence it is exactly r�r�� �

Corollary � �i� let A be an a�ne type matrix of order �m � �n with rank r and � be
the row vector of an a�ne sequence of length �s then both ��A and A�� are a�ne
type matrix of order �m � �n�s with rank r�

�ii� let � be the row vector of an a�ne sequence of length �s then both ��Hn and Hn�� are
a�ne type matrices of order �n � �n�s with rank �n� where Hn is a Walsh�Hadamard
matrix�

�iii� let � be the row vector of an a�ne sequence of length �s and � be the row vector of
an a�ne sequence of length �t then � � �T is an a�ne type matrix of order �t � �s

with rank 
�

Theorem � For any integers k� n� m� 	 �
� k �

� n �
� m� there exists at least ��k � 
��

inequivalent �under the meaning in De	nition �� a�ne type matrices of order �m� �n with
rank �k�

Proof� Write Walsh�Hadamard matrix Hk � �h� � � �h�k � where each hj is the column vector
of Hk� We �rst prove that any two �h� hj� � � � hj�k � and �h� hi� � � � hi�k � are inequivalent

if j�� � � � � j�k and i�� � � � � i�k are two di�erent rearrangements of �� � � � � �k� Otherwise if
there exist diagonal matrices as mentioned in De�nition �� say Q � diag�q�� � � � � q�k��
P � diag�p�� � � � � p�k�� then Q � �I�k � P � �I�k � since

Q�h� hj� � � � hj�k �P � �h� hi� � � � hi�k �� ���

and comparing the �rst columns on each side of ���� we have qjajp� � aj where �a�� � � � � a�k�
T �

h�� thus qj � p�� j � 
� � � � � �k and thus Q � �I�k according as p� � �
� By the same
reasoning we can prove that P � �I�k � according as q� � �
� On the other hand� there
exists an integer t� � �� t �� �k such as jt �� it and thus hjt �� hit � We note that ��� cannot
hold by comparing hjt and hit � This proves the above statement�
Let R be the matrix of order �m�k � �n�k with elements ones� By Theorem �

�



�h� hj� � � � hj�k � � R is an a�ne type matrix of order �m � �n with rank �k� Permuting

j�� � � � � j�k we obtain ��k � 
�� inequivalent matrices of this kind� �

Note that 	� � 
 in Theorem ��

Corollary � For any positive integers n and m� n �
� m� there exist at least

Pn
k����

k � 
��
inequivalent �within the meaning of De	nition �� a�ne type matrix of order �m � �n�

Proof� We note that if two matrices have di�erent ranks they are inequivalent within the
meaning of De�nition �� �

Corollary � For any positive integers n �
� m there exists at least �n�m

Pn
k����

k � 
��
di�erent bent type matrices of order �m � �n�

Proof� By Corollary  	m�n


�
Pn

k����
k � 
��� Using Corollary 
 we have proved the

corollary� �

� Combination of Two Known Bent Sequences

��� Enumeration of Nondegenerate Linear Transformations

We replace the real numbers 
� �� � � � � �n by the vectors

�� � �	� � � � � 	�� �� � �	� � � � � 	� 
�� � � � � ��n�� � �
� 
� � � � 
� � Vn

respectively� Let � be nondegenerate linear transformation on Vn� Set �j � ���j�� j �
	� 
� � � � � �n � 
�

Lemma � If e�� e�� � � � � e�n i�e� e�� � e�� � � � � � e��n�� is an a�ne sequence then e�� � e�� �

� � � � e��n�� is also an a�ne sequence�

Proof� Let e�� � e�� � � � � � e��n�� be the sequence of the a�ne function h�x�� � � � � xn� on Vn�
Set h���x�� � � � � xn�� � g�x�� � � � � xn� thus h����j�� � g��j� i�e� h��j� � g��j� and thus
e�j � ��
�h��j� � ��
�g��j�� Since g�x�� � � � � xn� is an a�ne function the sequence of g i�e�
e�� � e�� � � � � � e��n�� is an a�ne sequence� �

Lemma � There exist exactly �n��
j�� ��

n � �j� nondegenerate linear transformations on Vn�

Proof� An equivalent statement is that there exist exactly �n��
j�� ��

n � �j� non�degenerate

matrices of order n over GF ���� Write D �

�
��

D�
���

D�n

�
�	 � a non�degenerate matrix of order

�



n over GF���� where Di is the i�th row of D� Note that D� has �n � 
 choices �excluding
the case that D� is the zero vector�� After D� is �xed D� has �n � � choices �excluding
D� � d�D� where d� � 	� 
�� After D� and D� are �xed D� has �n � �� choices �excluding
D� � d�D��d�D�� where d�� d� � 	� 
�� Continuing this reasoning� afterD�� � � � �Dn�� have
been �xed Dn has �n� �n�� choices �excluding Dn �

Pn��
j�� djDj� where each dj � 	� 
�� In

total D has �n��
j�� ��

n � �j� di�erent choices� �

Lemma � �i� All nondegenerate linear transformations on Vn can be divided into �n� 

disjoint classes ��� � � � ���n�� such that �� and �� are in the same class if and only
if f������� � � � � �����n�����g � f������� � � � � �����n�����g�

�ii� j�j j � �n���n��
j�� ��

n�� � �j�� j � 
� � � � � �n � 
�

Proof� Fix a nondegenerate linear transformation on Vn� say ��� Write ����j� � ��j �
j � 
� � � � � �n � 
�
We now count � such that � and �� are in the same class i�e� f������ � � � � ����n����g �
f������� � � � � �����n�����g � f��� � � � � ��n����g� This counting is equivalent to counting the
nondegenerate linear transformations on Vn � say �� such that f������ � � � �
����n�����g � f��� � � � � ��n����g because if we set � � ��� then f������ � � � � �����n�����g
� f�������� � � � � ������n������ f������ � � � � ����n�����g� f��� � � � � ��n����g� f�������
� � � � �����n�����g� Since f��� � � � � ��n����g contains ��� ��� ��� � � � � � ��n�� but contains
no �j � j � �n��� � � � � ��n��� the rank of f��� � � � � ��n����g is n � 
� Note that any non�
degenerate linear transformation preserves the rank of any set of vectors thus the rank of
f��� � � � � ��n����g is also n � 
� Suppose �j� � � � � � �jn�� � f��� � � � � ��n����g is a basis for
f��� � � � � ��n����g� Add an appropriate vector in Vn� say � such that �j� � � � � � �jn�� �  form
a basis of Vn�
We now determine � such that f������ � � � � ����n�����g � f��� � � � � ��n����g� For this pur�
pose a necessary and su�cient condition is

���j�� � c���j� � c���j� � � � �� c�n���jn��
���j�� � c���j� � c���j� � � � �� c�n���jn��

���
���jn��� � cn����j� � cn����j� � � � �� cn��n���jn��

��� � d��j� � d��j� � � � �� dn���jn�� � e

where �cij� is a nondegenerate matrix of order n � 
 on Vn�� and e � 
 since � is a
nondegenerate linear transformation� By Lemma � �cij� has �n��

j�� ��
n�� � �j� choices� On

the other hand �d�� � � � � dn��� has �
n�� choices� In total � has �n���n��

j�� ��
n����j� choices�

This proves that j�j j � �n���n��
j�� ��

n�� � �j�� j � 
� � � � � �n � 
� By Lemma � there

exists �n��
j�� ��

n� �j� nondegenerate linear transformations on Vn� Thus we have �
n��
j�� ��

n�

�j���n���n��
j�� ��

n�� � �j� � �n � 
 disjoint classes� �

��� Combination of Two Known Bent Functions

In this section we replace 
� �� � � � � ��k�� by vectors in V�k��� �� � �	� � � � � 	�� �� �
�	� � � � � 	� 
�� � � � � ���k���� � �
� 
� � � � � 
� respectively�

�



Let � be nondegenerate linear transformation on V�k��� Set �j � ���j�� j � 	� 
� � � � �
��k�� � 
� Suppose �� � �a�� � � � � a��k��� and �� � �b�� � � � � b��k��� are two bent sequences of
length ��k��� We now construct a �
 �
��sequence of length ��k� denoted by � � ���� ���
where each �j is of length ��k��� by using ��� �� and ��

Construction � Let the ���th� the ���th� � � � � and the ���k�����th entries of �� be a�� a�� � � � � a��k��
respectively and let the ���k���th� the ���k�����th� � � � � and the ���k�����th entries of �� be
b�� b�� � � � � b��k�� respectively�
Next let the ���th� the ���th� � � � � and the ���k�����th entries of �� be a�� a�� � � � � a��k��
respectively and let the ���k���th� the ���k�����th� � � � � and the ���k�����th entries of �� be
�b���b�� � � � ��b��k�� respectively�
Set � � ���� ����

Lemma � �� in Construction 
� is a bent sequence of length ��k�

Proof� Let L be an a�ne sequence of length ��k� By Theorem  L � �l� �l� where l is an
a�ne sequence of length ��k��� Write l � �e�� e�� � � � � e��k��� i�e� l � �e�� � e�� � � � � � e���k������

Write l � �l�� l�� where each lj is of length ��k��� By Theorem  each lj is an a�ne se�
quence of length ��k�� and l� � �l��
We now consider h��Li � h��� l�i� h��� l�i�
Case 
� L � �l� l�� By Construction 


h�� Li � h��� li� h��� li

where

h��� li �
��k��X
j��

aje�j�� �
��k��X
j��

bje�
��k���j��

and

h��� li �
��k��X
j��

aje�j�� �
��k��X
j��

bje�
��k���j��

�

Thus

h��Li � �
��k��X
j��

aje�j�� � ��

Write l� � �e�� � e�� � � � � � e���k�� �� by Lemma � it is an a�ne sequence of length ��k��� Write

l� � �l��� l
�
�� where each l�j is of length ��k��� By Theorem  each l�j is an a�ne sequence of

length ��k���
Thus �� becomes h�� Li � �h��� l

�
�i� Note that �� is a bent sequence of length ��k�� and l��

is an a�ne sequence of length ��k��� Thus h��� l��i � ��k�� and hence h��Li � ��k�
Case �� L � �l� �l�� By Construction 


h�� Li � h��� li � h��� li

�



where

h��� li �
��k��X
j��

aje�j�� �
��k��X
j��

bje�
��k���j��

and

h��� li �
��k��X
j��

aje�j�� �
��k��X
j��

bje�
��k���j��

�

Thus

h��Li � �
��k��X
j��

bje�
��k���j��

� �h��� l
�
�i� ���

Note that �� is a bent sequence of length ��k�� and l�� is an a�ne sequence of length ��k���
Thus h��� l

�
�i � ��k�� and hence ��� becomes h��Li � ��k�

Since L is arbitrary� by the three equivalent conditions of bent functions� � is a bent se�
quence� �

Construction � let the ���th� the ���th� � � � � and the ���k�����th entries of �� be a�� a�� � � � � a��k��
respectively and let the ���k���th� the ���k�����th� � � � � and the ���k�����th entries of �� be
b�� b�� � � � � b��k�� respectively�
Next let the ���th� the ���th� � � � � and the ���k�����th entries of �� be �a���a�� � � � �
�a��k�� respectively and let the ���k�� �th� the ���k�����th� � � � � and the ���k�����th entries
of �� be b�� b�� � � � � b��k�� respectively�
Set � � ��� ����

Lemma 	 �� in Construction �� is a bent sequence of length ��k�

Proof� The proof is similar to the proof of Lemma �� �

��� Enumeration of Bent Sequences by Construction � and �

Lemma 
 Let ��
�k denote the set of bent sequences of length ��k obtained via Construction


 and ��
�k denote the set of bent sequences of length ��k obtained via Construction �� Then

��
�k � ��

�k � � where � denotes the empty set�

Proof� Suppose we construct the bent sequence of length ��k� say � � ���� ���� by using
the bent sequences �� � �a�� � � � � a��k���� �� � �b�� � � � � b��k��� and the nondegenerate linear
transformation on V�k��� denoted by �� in Construction 
� Similarly we suppose in Con�
struction � we construct a bent sequence of length ��k� say �� � ����� �

�
��� by using bent

sequences �� � �a��� � � � � a
�
��k���� �� � �b��� � � � � b

�
��k��� and a nondegenerate linear transfor�

mation on V�k��� denoted by ���


	



Set �j � ���j�� �
�
j � ����j� where j � 	� 
� � � � � ��k���
� Note that �� � ������ �

�
� � ������

and �� � �	� 	� � � � � 	� thus �� � ��� � �	�	� � � � � 	� since both � and �� are linear transfor�
mations�
In Construction 
 a� occurs in the ���th place of �� also a� occurs in the ���th place of ���
Thus the �rst entries in �� and �� are the same�
In Construction � a�� occurs in the ���th place of ��� also �a�� occurs in the ���th place of
���� Thus the �rst entries in ��� and ��� are negatives each other� This proves that � �� ���
Since both � and �� are arbitrary ��

�k � ��
�k � �� �

By Lemma � we divide all nondegenerate linear transformations on V�k�� into ��k�� � 

disjoint classes� ��� � � � ����k���� such that �� and �� are in the same class if and only if
f������� � � � � ������k�����g � f������� � � � � ������k�����g�
We �x a �s � �s� s � 
� � � � � ��k�� � 
�

Lemma � Suppose we construct the bent sequence of length ��k� say � � ���� ���� by
using the bent sequences �� � �a�� � � � � a��k���� �� � �b�� � � � � b��k��� and the nondegenerate
linear transformation on V�k��� denoted by �s where �s � �s� in Construction 
 ���� Also
in Construction 
 ��� we construct a bent sequence of length ��k� say �� � ����� ����� by
using bent sequences �� � �a��� � � � � a

�
��k��

�� �� � �b��� � � � � b
�
��k��

� and a nondegenerate linear
transformation on V�k��� denoted by �t where �t � �t� If t �� s then � �� ���

Proof� Set �j � �s��j�� �
�
j � �t��j� where j � 	� 
� � � � � ��k�� � 
� Since f�s����� � � � �

������k�����g �� f�t����� � � � � ������k�����g i�e� f��� � � � � ���k����g �� f���� � � � � �
�
��k����g

there exists a � such that � � f��� � � � � ���k����g but � �� f���� � � � � �
�
��k����g�

In Construction 
 we note that � � f��� � � � � ���k����g and we can suppose ai� occurs in the
��th place of �� and ai� also occurs in the ��th place of �� thus the entry in the ��th place
of �� and the entry in the ��th place of �� are the same�
For ��� in Construction 
� we note that � �� f���� � � � � �

�
��k����

g thus � � f��
��k��

� � � � �
��
��k����g and we can suppose bj� occurs in the ��th place of ��� and �b�j� occurs in the
��th place of ��� thus the entry in the ��th place of ��� and the entry in the ��th place of
��� are negatives of each other� This proves � �� ��� Similarly we can prove the lemma for
Construction �� �

Lemma �� We 	x a �s � �s� Suppose we construct the bent sequence of length ��k� say
� � ���� ���� by using the bent sequences �� � �a�� � � � � a��k���� �� � �b�� � � � � b��k��� and
the nondegenerate linear transformation on V�k��� say �s� in Construction 
 ���� Also in
Construction 
 ��� we construct a bent sequence of length ��k� say �� � ����� �

�
��� by using

bent sequences �� � �a��� � � � � a
�
��k���� �� � �b��� � � � � b

�
��k��� and the same nondegenerate linear

transformation �s� If ����� �
�
�� �� ���� ��� then � �� ���

Proof� Without any loss of generality suppose aj� �� a�j� for some j�� By Construction 

aj� occurs in the �j����th place of ���
On the other hand� by Construction 
� a�j� occurs in the �j����th place of ���� Thus �� �� ���
and thus � �� ��� Similarly we can prove the lemma for Construction �� �







Theorem � �i� Using two bent sequences of length ��k��� say �� and ��� we can construct
��k � � di�erent bent sequences of length ��k�

�ii� let ��k denote the number of the bent sequences of length ��k then ��k 
� ���k� �����k��
for k 
� ��

Proof� �i� For the two bent sequences of length of ��k�� in Construction 
 ���� � has
��k�� � 
 choices� By Lemma � we can construct ��k�� � 
 di�erent bent sequences from
the two known bent sequences of length of ��k��� By Lemma � we have ��k � � di�erent
bent sequences of length of ��k in Construction 
 and � in total�
�ii� Two bent sequences of length ��k � � have ���k�� choices� By Lemma 
	 and �i� of the
theorem ��k 
� ���k � �����k�� for k 
� �� �

We note that �i� of Theorem � gives many more bent sequences of length ��k from two
known bent sequences of length ��k�� than the ordinary construction� which gives 
	 bent
sequences of length ��k from two known bent sequences of length ��k�� �see �����

��� Examples

Example � Since �� � �� by Theorem 
� �	 
� ��	 � ���� � ��� and �
 
� ��
 � ����	 �
�� � ���� � �� � �	��
� � ���������
Previously Adams and Tavares ��� estimated ���	
��� as the number of bent sequences
of length �
 including linear�based bent sequences and those constructed from four bent
sequences of length �	�

Example � Let k �  in Construction� Let � be a nondegenerate linear transformation
on V�� Write �� � �	�	� 	� 	� 	�� �� � �	� 	� 	� 	� 
�� � � � � ����� � �
�
� 
� 
� 
�� De�ne �� a
nondegenerate linear transformation on V� as follows

����� � �	� 	� 	� 
�
�� ����� � �	� 	� 
� 
� 	�� ���	� � �	�
� 
� 	� 	��
����� � �
� 
� 	� 	�	�� ����
� � �
� 	� 	� 	� 	��

Obviously� f��� ��� �	� ��� ��
g is a basis of V��
Write ���j� � �j where j � 	� 
� � � � � 
� Hence we have

�� � �	�	� 	� 	� 	�� �� � �	� 	� 	� 
� 
�� �� � �	�	� 
� 
� 	�� �� � �	� 	� 
� 	� 
��
�	 � �	�
� 
� 	� 	�� �� � �	� 
� 
� 
� 
�� �
 � �	�
� 	� 
� 	�� � � �	� 
� 	� 	� 
��
�� � �
�
� 	� 	� 	�� �� � �
� 
� 	� 
� 
�� ��� � �
�
� 
� 
� 	�� ��� � �
� 
� 
� 	� 
��
��� � �
� 	� 
� 	� 	�� ��� � �
� 	� 
� 
�
�� ��	 � �
� 	� 	�
� 	� ��� � �
� 	� 	� 	� 
��
��
 � �
� 	� 	� 	� 	�� �� � �
� 	� 	� 
�
�� ��� � �
�	� 
� 
� 	�� ��� � �
� 	� 
� 	� 
��
��� � �
� 
� 
� 	� 	�� ��� � �
� 
� 
� 
�
�� ��� � �
�
� 	� 
� 	�� ��� � �
� 
� 	� 	� 
��
��	 � �	� 
� 	� 	� 	�� ��� � �	� 
� 	� 
�
�� ��
 � �	�
� 
� 
� 	�� �� � �	� 
� 
� 	� 
��
��� � �	� 	� 
� 	� 	�� ��� � �	� 	� 
� 
�
�� ��� � �	� 	� 	�
� 	� ��� � �	� 	� 	� 	� 
��

Choose two bent sequences of length �	�

�� � �� � �� �� ��� �� �� ���� � �a�� � � � � a�
�


�



and
�� � �� � �� �� �� �� ��� ���� � �b�� � � � � b�
��

Let the ���th� the ���th� � � �� the ����th entries of �� be a�� a�� � � � � a�
 respectively and the
��
�th� the ���th� � � �� the ����th entries of �� be b�� b�� � � � � b�
 respectively� We have now
constructed ���

�� � �� �� �� ��� �� �� �� �� ��� �� �� �� �� ��� ����

Also let the ���th� the ���th� � � �� the ����th entries of �� be a�� a�� � � � � a�
 respectively and
the ��
�th� the ���th� � � �� the ����th entries of �� be �b�� �b�� � � � ��b�
 respectively� We
have now constructed ���

�� � ���� �� ��� �� �� �� �� ��� �� �� �� �� ��� ����

Finally set � � ���� ���� by Lemma �� this is a bent sequence of length of �
 by using ��� ��
and � in Construction 
�
Similarly we can construct another bent sequence by using ��� �� and � in Construction ��
To do this set ��� � �� and ��� � ���� �

� � ����� �
�
��� by Lemma �� this is a bent sequence of

length of �
 by using ��� �� and � in Construction ��
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