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Abstract

A (1, -1)-matrix will be called a bent type matrix if each row and each column are
bent sequences. A similar description can be found in Carlisle M. Adams and Stafford
E. Tavares, Generating and counting binary sequences, I[EFE Trans. Inform. Theory,
vol. 36, no. 5, pp. 1170-1173, 1990, in which the authors use the properties of bent
type matrices to construct a class of bent functions. In this paper we give a general
method to construct bent type matrices and show that the bent sequence obtained from
a bent type matrix is a generalized result of the Kronecker product of two known bent
sequences.

Also using two known bent sequences of length
sequences of length 2%* more than in the ordinary construction, which gives construct
10 bent sequences of length 2%* from two known bent sequences of length length 22%~2,

226-2 we can construct 2¥ — 2 bent

Let V,, be the vector space of n tuples of elements from GF(2). Let a, § € V,,. Write
@ = (ay, - ,a,), 3 = (by,-++,b,), where a;,b; € GF(2). Write (a,) = >_7_ a;b; for the

scalar product of a and j.

Definition 1 We call the function h(z) = 121 + -+ + anzy,, + ¢, a;, ¢ € GF(2), an affine
function, in particular, h(z) will be called a linear function if ¢ = 0.

Definition 2 Let f(z) be a function from V,, to GF(2) (simply, a function on V,,). If

275 3 (1) = 4,
xEVn

for every 5 € V,,. We call f(z) a bent function on V,,.

From Definition 2, bent functions on V, only exist for even n. Bent functions were first
introduced and studied by Rothaus [13]. Further properties, constructions and equivalence
bounds for bent functions can be found in [2], [5], [7], [12], [16]. Kumar, Scholtz and
Welch [6] defined and studied the bent functions from Z to Z,. Bent functions are useful
for digital communications, coding theory and cryptography [3], [1], [4], [7], [8], [10],
9], [11], [12].



We say @ = (ay, - +,a,) < = (by,---,b,) if there exists k, 1 < k < 27, such that
a1 = by, ..., ap_1 = bx_q and ap = 0, by = 1. Hence we can order all vectors in V,, by the
relation <

o < ap < -+ < Qgn_q,

where
(&%s] = (07"'70)7
(&3] = (07"'71)7
Qgrn-1_7 = (0717 "71)7
agps = (1,0,---.,0),
Qgn_q = (1,1,,1)

Definition 3 Let f(z) be a function from V,, to GF(2). We call (—1)/(20) (—1)f(e1),

o, (=1)/@>") the sequence of f(z). We call the sequence of f(z) a bent sequence if f(z)
is bent. A (1, -1)-sequence will be called an affine sequence a (linear sequence) if it is the
sequence of an affine function (a linear function).

Definition 4 A (1,-1)-matrix H of order h will be called an Hadamard matriz if HHT =
hIy,.

If h is the order of an Hadamard matrix then h is 1, 2 or divisible by 4 [15]. A special kind
of Hadamard matrices defined as following will be relevant

Definition 5 The Sylvester-Hadamard matriz ( or Walsh-Hadamard matriz) of order 27,
denoted by H,, is generated by the recursive relation

_ Hn—l Hn—l _ _
H, = [Hn_l _Hn—1]7 n=1,2,..., Hy=1.

Let f(z) be a function from V,, to GF(2), £ be the sequence (regarded as a row vector) of
f(2). Then the following three conditions are equivalent

(i) f(x)is bent,
(ii) 273,67 is a (1, -1)-row vector,
(iii) for any affine sequence [ (£,1) = +237,
The equivalence of (i) and (ii) can be found in many references, for example, [2], [16].

Note that any affine sequence of length 2" is a row of £, (see subsection 2.3) thus (ii)
and (iii) are equivalent.

Definition 6 We call a (1, -1)-matrix of order 2 x 2" a bent type matriz if each row is a
bent sequence of length of 2" and each column is a bent sequence of length of 2.



For example,
+ +
+ +
+ + -

where + and — denote 1 and —1 respectively, is a bent type matrix of order 4. A similar
description can be found in [2, p. 1171].

+ + +

Definition 7 A (1, -1)-matrix of order 2 x 2™ will be called an affine type matriz if each
row is an affine sequence of length of 2" and each column is an affine sequence of length of
2,

For example,

+ + - - - - 4+ +
+ + - -+ + - -
+ + + + + + + +
+ + + + - - - -
is an affine type matrix of order 4 x 8. Any Walsh-Hadamard matrix is an affine type matrix

(see subsection 2.3).

Definition 8 Let A; and Aj be affine type matrices of order 27 x 2", If Ay = Q A1 P where
() and P are diagonal matrices of order 27 and 2" whose diagonals consist of +1 we say A4
and Ay are equivalent.

+ + + + + +
For example Tt - and Tt are equivalent affine type matrices.
+ - + + + + +
+ - + + + + +
Definition 9 We call each of the four (1, -1)-sequences of length 2 ++, +—, ——, —+
E'-constructed. Recursively, suppose E"-constructed has been defined for n = 1,...,k—1.

The (1, -1)-sequence [ will be said to be E*-constructed if | = (I, £l') where I is E*~1-
constructed.

1 Bent Type Matrices

1.1 Bent Type Matrices Constructed from Affine Type Matrices

Lemma 1 Let by, bq,...,ban_1 be a bent sequence and cg,cq,...,con_1 be an affine sequence
then bocg, bict, ..., ban_1con_q1 is a bent sequence.

Proof. Let bg,b1,...,ban_1 be the sequence of a bent function f from V,, to GF(2)
and cg,c1,...,¢c3n_1 be the sequence of an affine function from V,, to GF(2). Note that



boco, bicy, ..., ban_yeon_y is the sequence of f + g. From Property 1 [6, p. 95] f+ ¢ is
bent. This proves the lemma. a

Bent type matrices can be used to construct bent sequences. For convenience, we quote a
part of the Theorem found in [2]

Theorem 1 Let B = (b;;) be a bent type matriz of order 27 x2". Write 3; = (b1;,...,bam;),
j=1,....,2" and a; = (b1 ... bjzan), j = 1,...,2™. Then both

(2_%mﬁlﬂmv e 2_%mﬁznﬂm)

and ) )
(272" Hyp,y -+-, 272 agm H )

are bent sequences of length 2m+7,

Proof. The proof can be found in [2, p. 1171]. O

Using the three equivalent conditions of bent functions in Section 1, both 2_%mﬁjﬂm and

2_%”aiHn are bent sequences of length 2™ and 2. Hence Theorem 1 gives an example that
the concatenation of some bent sequences is also bent. In general this is not true if some
extra conditions are not satisfied. For example, each of + + +—, ++ —4+, + — ++,
—+++ is bent but the concatenation of the four sequences is not bent. The conditions for
bent type matrices are restrictive. In this section we use affine type matrices to construct
bent type matrices.

Theorem 2 Let A be an affine type matriz of order 2™ x 2™, P be a diagonal matriz of order
2" whose diagonal is a bent sequence of length 2™, say ag, a1, ...,an_1 and @ be a diagonal
matriz of order 2™ whose diagonal is a bent sequence of length 2™, say bg,by,...,bam_1.
Then QAP is a bent type matriz of order 2™ x 2™.

Proof. Since each row of A is an afline sequence, by Lemma 1, each row of AP is a bent
sequence. Note each column of AP is still an affine sequence. By Lemma 1, each column of
QAP is a bent sequence. Note each row of QAP is still a bent sequence. This proves the
theorem. a

To find the bent sequences using the special construction mentioned in Theorem 1, we first
construct bent type matrices using Theorem 2. In particular, when the affine matrix A in
Theorem 2 consists of only ones, the bent type matrix mentioned in Theorem 2 yields a
bent sequence which is the Kronecker product (see [15]) of two bent sequences: 2_%mﬁjﬂm

and 2_%”042'Hn. Thus we have reproved Theorem 1 [16] using a different method.

Corollary 1 Let 7, denote the number of different bent sequences on V,, with first entries
+ and 0, x, denote the number of inequivalent affine type matrices of order 2™ x 2™. Then
there exist at least T, T Omxy different bent type matrices of order 2™ x 2™.



Proof. We first note that for a fixed affine type matrix of order 2™ x 2", we can construct
at least 7,7, different bent type matrices of order 2™ x 2" by using Theorem 2. Otherwise
suppose B is an affine type matrix of order 2™ X 2", )1 # Q2 or P, # P, but Q1BP; =
()2 B P, where each (); and each P; are the matrices mentioned in the proof of Theorem 2
whose first entries on the diagonals are 4+. Thus

Q201 BP P, = B. (1)

Note that both 2@ and P P, are diagonal matrices whose diagonals consist of £1. Let
Q2Q1 = diag(qr,---,qox), PLPy = diag(py,---,pgx). Let By = (by,---,by)T be the first
column of B. Compare the first columns on each side of (1) then we have ¢;b;p; = b,
j =1,...,2" thus 4G =p1,J = 1,...,2% and thus Q2Q, = +I,x according as p; = +1.
Hence Q2()1 = elym and Py P, = elyn where e = £1. Since the first entries on the diagonals
of 1, G2, P, Py are +, ()1 = ()3 and P, = P,. This contradicts to the assumption that
Q1 #Qz or P #Pz-

Secondly we note that if By and By are inequivalent affine type matrices of order 2™ x 27,
there exist no @1, 2, Pi, P> as mentioned in Theorem 2 such that Q1B P = Q2B2F5.
Otherwise we would have ()91 B1 PP, = By. This contradicts the assumption that By
and Bs are inequivalent. Hence we have established the corollary. a

1.2 Constructing Affine Type Matrices

lo
1
Lemma 2 Write H, = . where l; is a row of H,. Then l; is the sequence of a
lon_y
linear function on V.
Proof. The proof can be found in [14]. O

We can now established

Theorem 3 An (1, -1)-matriz of order 2™ X 2" is an affine type matriz if and only if each
row is K™ -constructed and each column is E™ -constructed.

Proof. Note that H, has 2" rows and there exist 2" linear sequences of length 2". By
Lemma 2 each linear sequence is a row of H,, and thus each affline sequence is a row of £ H,,.
By the Definition of H, each row of H, and is £"-constructed. Hence each affine sequence
is E"-constructed. On the other hand, there exist 2"*1 E"-constructed (1 -1)-sequences

and 27! affine sequences. Thus each E"-constructed (1 -1)-sequences is affine. O

Theorem 4 Let Ay be an affine type matriz of order 2™ x 2™ with rank r1 and A, be an
affine type matriz of order 2™2 x 2™2 with rank ro. Then Ay X Ag is an affine type matriz
of order 2m™1 M2 5 QN2 with rank vy, where X is the Kronecker product.



Proof. Note that each row of 4; x Ay is E™T"2_constructed and each column of A; x A,
is E™t™2_constructed. Hence by Theorem 3, A; X Ay is an affine type matrix.

Let (7 be the invertible submatrix of order r; and C5 be the invertible submatrix of order
r9. Hence by (25) of [16, p. 114], Cy X Cy is invertible and thus the rank of Ay x Aj is at
least ry7y.

On the other hand, since the ranks of A; and A are vy and r, respectively, write suppose
aq,...,a, for the linearly independent row vectors of Ay, and 3y,...,0,, for the linearly
independent column vectors of A,. Note that any row vector of Ay is a linear combination
, and any row vector of Ay is a linear combination of 3;,...,5,,. Any row
vector of Ay X Ay can be written as a X 3, where a is a row vector of A; and f is a row
vector of Ay, Write @ = 3701 aja; and 8 = 3772, b;83;, where each a; and b; € GF(2).
Hence

of ay,...,a,

T1 T2
a X ﬁ = ZZaibj(ai X ﬁ])
=1 7=1
This proves that the rank of A; x As is at most ryry and hence it is exactly rqirs. a

Corollary 2 (i) let A be an affine type matriz of order 2™ x 2" with rank r and o be
the row vector of an affine sequence of length 2° then both a x A and A X «a are affine
type matriz of order 2™ x 275 with rank r,

(ii) let o be the row vector of an affine sequence of length 2° then both ax H,, and H, X« are
affine type matrices of order 2" x 2% with rank 2", where H, is a Walsh-Hadamard
matriz,

(iii) let a be the row vector of an affine sequence of length 2° and 3 be the row vector of
an affine sequence of length 2t then o x BT is an affine type matriz of order 2t x 2°
with rank 1.

Theorem 5 For any integers k, n, m, 0 < k < n < m, there exists at least (2% — 1)!
inequivalent (under the meaning in Definition 8) affine type matrices of order 2™ x 2™ with
rank 2.

Proof.  Write Walsh-Hadamard matrix Hy = [hy - - - hyx] where each h; is the column vector
of Hy. We first prove that any two [hy by, --- h; | and [k by, -+ b, ] are inequivalent
if jo, -+, jyr and iy, -+, i are two different rearrangements of 2, ...,2%. Otherwise if

there exist diagonal matrices as mentioned in Definition 8, say @ = diag(q1, -+, ),
P = diag(py,---,pax), then Q = 1ok, P = £1,k, since

QUi hyy <. by, JP = [hahe, ... i), (2)

and comparing the first columns on each side of (2), we have g;a;p; = a; where (ay,- -+, am)! =
hi, thus ¢; = p1, j = 1,...,2% and thus Q = +I,» according as p; = +£1. By the same
reasoning we can prove that P = +1/y, according as ¢; = +1. On the other hand, there
exists an integer ¢, 2 < ¢ < 2% such as j; # 4; and thus hj, # h;,. We note that (2) cannot
hold by comparing %;, and h;,. This proves the above statement.

Let R be the matrix of order 27~% x 27~% with elements ones. By Theorem 4



[y hj, -+ hj, ] X R is an affine type matrix of order 2™ x 2" with rank 2%, Permuting

J25+++,Jox We obtain (2% — 1)! inequivalent matrices of this kind. O

Note that 0! = 1 in Theorem 5.

Corollary 3 For any positive integers n and m, n < m, there exist at least 3 7_,(2F — 1)!
inequivalent (within the meaning of Definition 8) affine type matriz of order 2™ x 2",

Proof. We note that if two matrices have different ranks they are inequivalent within the
meaning of Definition 8. O

Corollary 4 For any positive integers n < m there exists at least T,Tm Y p_o(2F — 1)!
different bent type matrices of order 2™ x 2",

Proof. By Corollary 3 0,,xn 2 2221(2’“ — 1), Using Corollary 1 we have proved the
corollary. a

2 Combination of Two Known Bent Sequences

2.1  Enumeration of Nondegenerate Linear Transformations

We replace the real numbers 1, 2, ..., 2" by the vectors
g = (0,"',0), ap = (0,"',0,1), ey Qgn_q1 = (1,1,1) € Vn

respectively. Let ¢ be nondegenerate linear transformation on V,. Set 8; = ¢(a;), j =
0,1,...,2" — 1.

Lemma 3 Ifej, e, -+ ean i.€. €qp, €01, ", €apn_, 15 an affine sequence then eg,,eg,,
L €8,y 15 also an affine sequence.

Proof. Let eqy, €0y, 5€amm_, be the sequence of the affine function h(zq,...,2,) on V.

Set h(p(z1,...,24)) = g(21,...,2,) thus h(p(e;)) = ¢g(a;) ie. h(F;) = g(a;) and thus
e, = (—=1)MP) = (=1)9(9). Since g(x1,...,2,) is an affine function the sequence of g i.e.
€80, €6, "+ +€Bym_, 18 an affine sequence. 0

Lemma 4 There exist exactly H?:_&(Q” — 27) nondegenerate linear transformations on V,,.

Proof. An equivalent statement is that there exist exactly H?;&(Q” — 27) non-degenerate
Dy

matrices of order n over GF(2). Write D = : , a non-degenerate matrix of order
D2n



n over GF(2), where D; is the i-th row of D. Note that D; has 2" — 1 choices (excluding
the case that D; is the zero vector). After D; is fixed Dy has 2" — 2 choices (excluding
Dy = dy1 Dy where d; = 0,1). After Dy and D, are fixed D3 has 2" — 22 choices (excluding
D3 = dyDy+4dy Dy, where dy,dy = 0,1). Continuing this reasoning, after Dy,..., D, have
been fixed D, has 2" — 2"t choices (excluding D,, = Z?;ll d;D;, where each d; = 0,1). In
total D has H?:_&(Q” — 27) different choices. 0

Lemma 5 (i) All nondegenerate linear transformations on V,, can be divided into 2" — 1
disjoint classes Qq,...,Q9n_1 such that ¢y and @y are in the same class if and only

if {g1(ao), ... p1(agn-1_1)} = {p2(ao),. .., pa(agn-1_4)},
(i) Q] =2 HIZ3(2n~ = 27), j=1,...,2" — 1.

Proof.  Fix a nondegenerate linear transformation on V,,, say ¢g. Write ¢o(a;) = ﬁ?,
j=1,...,2" — 1.

We now count ¢ such that ¢ and ¢g are in the same class i.e. {¢(ag),...,¢(agm-1_1} =
{evolag),...,polaan-1_1)} ={Po,...,09n—1_1}. This counting is equivalent to counting the
nondegenerate linear transformations on V,, , say #, such that {¢(5o),...,

V(Bgn—1-1)} = {Bo, .., Ban-1_1} because if we set ¢ = 1hpg then {¢(ao),...,¢1(agm-1_1)}
= {1#990(0&0), s 7¢@0(a2"—1—1): {Qb(ﬁO)? A ¢(ﬁ2"—1—1)}: {ﬁov ce 7ﬁ2"—1—1}: {990(040)7

.y polagn-1_1)}. Since {ag,...,a9n-1_1} contains aj, az, Qsz,...,09n—2 but contains
no aj, j = 2" ... asn_q, the rank of {ag,...,am-1_1} is n — 1. Note that any non-
degenerate linear transformation preserves the rank of any set of vectors thus the rank of
{Bo,...,Pon—1_1} is also n — 1. Suppose §j,,...,05;,_, € {Bo,...,Bym-1_1} is a basis for
{Bo,...,Pan—1_1}. Add an appropriate vector in V,,, say v, such that 5;,,...,53; _,,v form
a basis of V,.

We now determine v such that {¢(5g),...,¥(Byn-1_1)} = {Bo,. .., Pan—1_1 }. For this pur-

pose a necessary and sufficient condition is

(Pi) = 1By, + b, + -+ -1,y
(Bj2) = ca1Bi, + 22, + -+ c2n-185,_,

V(Bjn-1) = 1185, + o128, + -+ + cnm1n-18, 4
() = diBj, + dofjy + -+ dua By, ey
where (¢;;) is a nondegenerate matrix of order n — 1 on V,,_; and e = 1 since # is a
nondegenerate linear transformation. By Lemma 4 (¢;;) has H?;g(?”_l — 27) choices. On
the other hand (dy,--+,d,_1) has 2”71 choices. In total ¢ has 2”_1H?:_§(2”_1 — 27) choices.
This proves that |Q;| = 2”_1H?:_g(2”_1 — 2, j =1,...,2" — 1. By Lemma 4 there
exists H?;&(Q” — 27) nondegenerate linear transformations on V,,. Thus we have H?:_&(Q” -
2]‘)/271—111?:—3(271—1 — 27y =27 — 1 disjoint classes. a

2.2 Combination of Two Known Bent Functions

In this section we replace 1, 2, ..., 22*71 by vectors in Vop_1: ag = (0,---,0), a; =
(0,--+,0,1), ..., ag2r—1_y = (1,1,---,1) respectively.



Let ¢ be nondegenerate linear transformation on Vop_y. Set 5; = ¢(a;), 7 =0,1,...,
22k=1 _ 1. Suppose & = (ay,- -+, ap2k—2) and £ = (by,- -+, byre—2) are two bent sequences of
length 222, We now construct a (1 -1)-sequence of length 2%*, denoted by 1 = (1, 72)
where each 7; is of length 2261y using &, & and .

Construction 1 Let the 3y-th, the §q-th, ... and the 8y21—2_;-th entries of 7y be ay, aq, ..., a925—1
respectively and let the (8y2x—2-th, the By2x—2-th, ..., and the 8y2,-1_;-th entries of 5 be
b1,b2,...,by2k—1 Tespectively.

Next let the fo-th, the 8y-th, ... , and the By2r—>_;-th entries of 0y be aq,aq9,..., 09261
respectively and let the fy2x—2-th, the Byor—2-th, ..., and the Sy2x—1_,-th entries of 7, be
—b1,—bg,...,—byr_1 respectively.

Set n = (m1, 12).

Lemma 6 7, in Construction 1, is a bent sequence of length 22%.

Proof. Let L be an affine sequence of length 22*. By Theorem 3 I = (I, £1) where [ is an
affine sequence of length 225~ Write [ = (€1, €9, -, €g2u1)ie. | = (€agsCays - s €anpy_ )
Write [ = (Iy, ly) where each [; is of length 22%=2. By Theorem 3 each [; is an affine se-
quence of length 22k=2 and I, = +14.

We now consider (n, L) = (n1,l1) + (12, 12).

Case 1: L = (I, I). By Construction 1

<777L> = <77171> + <7727l>

where
92k—2 22k—2
<77171> = Z azep; 4 + Z b16522k—2+]_1
and
22k—2 22k—2
<7727l> = Z azep; 4 — Z b16522k—2+]_1‘
Thus

22k—2

<777L> =2 Z_: a;es;_q- (3)

Write I* = (eg,, €8, €80k 1 ), by Lemma 3, it is an affine sequence of length 22#~1. Write
I* = (I3, I5) where each [7 is of length 22k=2_ By Theorem 3 each [5 is an affine sequence of
length 22F=2,

Thus (3) becomes (1, L) = 2(£1,15). Note that & is a bent sequence of length 22¥=2 and I3
is an affine sequence of length 22*=2. Thus (£, 1}) = £2%~1 and hence (n, L) = +2*.

Case 2: L = (I, —!). By Construction 1

(m, L) = (1, 1) — (m2,1)



where
22k—2 22k—2

<77171> = Z azep; 4 + Z b16522k—2+]_1

and
92k—2 92k—2
<7727l> = Z azep; 4 — Z b16522k—2+]_1‘
Jj=1 Jj=1
Thus
92k—2
(n, L) =2 Z b16522k—2+]_1 = 2(&,13). (4)
Jj=1

Note that £ is a bent sequence of length 22%=2 and I3 is an affine sequence of length 222,

Thus (£5,05) = £2F~1 and hence (4) becomes (1, L) = £2*.
Since L is arbitrary, by the three equivalent conditions of bent functions, 7 is a bent se-

quence. O
Construction 2 let the Fy-th, the $1-th, ..., and the S,2x—>_;-th entries of gy be aq,aq, ..., aynr
respectively and let the (8y2x—2-th, the By2x—2-th, ..., and the 8y2,-1_;-th entries of 5 be
bi,ba,...,by2k—1 respectively.

Next let the Bg-th, the fq1-th, ..., and the B42x—2_4-th entries of 7y be —aq, —aq,...,

—aq2k—1 Tespectively and let the (By2x—2-th, the By2k—2q-th, ..., and the By2k-1_;-th entries

of nz2 be by,by, ..., byer—1 respectively.
Set n = (m n2).

Lemma 7 5, in Construction 2, is a bent sequence of length 2%F.

Proof. The proof is similar to the proof of Lemma 6. a

2.3 Enumeration of Bent Sequences by Construction 1 and 2

Lemma 8 Let 21, denote the set of bent sequences of length 228 obtained via Construction
1 and Z%, denote the set of bent sequences of length 228 obtained via Construction 2. Then
=L, NE% = ¢ where ¢ denotes the empty set.

Proof. Suppose we construct the bent sequence of length 2%*, say n = (71, m2), by using
the bent sequences & = (a1, -+, a92k—2), &2 = (b1, -+, by2r—2) and the nondegenerate linear
transformation on Vsp_1, denoted by ¢, in Construction 1. Similarly we suppose in Con-
struction 2 we construct a bent sequence of length 2%%, say o' = (7}, 15), by using bent
sequences & = (ay,---, @), & = (b}, ,blu_>) and a nondegenerate linear transfor-
mation on Vai_1, denoted by ¢'.

10



Set B; = ¢(a;), B; = ¢'(a;) where j = 0,1, ... ,2%=1_1. Note that 8y = ¢(ap), 85 = ¢'(ao)
and ag = (0,0,---,0) thus 8o = 8, = (0,0,---,0) since both ¢ and ¢ are linear transfor-
mations.

In Construction 1 a1 occurs in the fg-th place of 1 also @y occurs in the Fy-th place of 75.
Thus the first entries in 77 and 7, are the same.

In Construction 2 af occurs in the fo-th place of 5] also —a} occurs in the Fy-th place of
75. Thus the first entries in 7] and 75 are negatives each other. This proves that n # 7.
Since both 1 and 7’ are arbitrary =}, N =3, = ¢. O

By Lemma 5 we divide all nondegenerate linear transformations on V551 into 22k=1 _ 1
disjoint classes: €q,...,Q50,-1_; such that ¢y and ¢, are in the same class if and only if

{ei(ao), .., prlager—2_1)} = {p2(ao), ..., pa(azr—2_y)}.
We fix a o, € Q, s =1,...,22~1 1,

Lemma 9 Suppose we construct the bent sequence of length 2%, say n = (m, m2), by
using the bent sequences & = (a1, -, aqn—2), & = (b1, -+ ,byer—2) and the nondegenerate
linear transformation on Vai_1, denoted by s where ¢, € Q, in Construction 1 (2). Also
in Construction 1 (2) we construct a bent sequence of length 22, say v = (1}, 1), by
using bent sequences & = (af,- -+, ahay_s), §2 = (b7, +,blan_s) and a nondegenerate linear
transformation on Vap_1, denoted by p; where oy € Qy. If t # s then n # 1.

Proof.  Set 3; = pg(a;), 85 = ¢i(a;) where j =0,1,.. ,22k=1 1. Since {¢s(ap),. .-,
prager—2_y)} # {@ao), .. palapn—2 1)} ie. {fo,....Bpen-2 1} # {Bo-- s Bana_y}
there exists a 3 such that 3 € {fo,...,Bp2k—2_1} but 8 & {50,...,Bln_o_,}-

In Construction 1 we note that 5 € {8, ..., Fy2k—2_;} and we can suppose a;, occurs in the
B3-th place of 1y and a;, also occurs in the 3-th place of 1, thus the entry in the 3-th place
of 11 and the entry in the -th place of 7y are the same.

For 7/, in Construction 1, we note that 8 & {ff,...,80—o_,} thus B € {Bl_2,...,
Byek—1_1} and we can suppose bj, occurs in the 3-th place of 5y and —b" occurs in the
G-th place of 75 thus the entry in the $-th place of 1} and the entry in the $-th place of
775, are negatives of each other. This proves n # 7. Similarly we can prove the lemma for
Construction 2. a

Lemma 10 We fiz a ¢, € Q,. Suppose we construct the bent sequence of length 22, say

n = (n, n2), by using the bent sequences & = (ay, -, a9k—2), & = (b1, -+, byer—2) and
the nondegenerate linear transformation on Vi,_1, say s, in Construction 1 (2). Also in
Construction 1 (2) we construct a bent sequence of length 22, say 1’ = (v, 1), by using

bent sequences £ = (ay, -+, al_5), 2 = (b, -, byon_z) and the same nondegenerate linear

transformation ¢s. If (&), &) # (&1, &) then n # 1.

Proof. Without any loss of generality suppose a;, # a;O for some jg. By Construction 1
aj, occurs in the 3; _;-th place of 1.

On the other hand, by Construction 1, @’ occurs in the 3;,_1-th place of nj. Thus m # m;
and thus n # 5’. Similarly we can prove the lemma for Construction 2. O

11



Theorem 6 (i) Using two bent sequences of length 226=2 say & and &, we can construct
22k _ 9 different bent sequences of length 2%*,

(ii) let o) denote the number of the bent sequences of length 22k then 191 > (2% - 273,
for k= 2.

Proof. (i) For the two bent sequences of length of 22*=2 in Construction 1 (2), ¢ has
22k=1 _ 1 choices. By Lemma 9 we can construct 22=1 — 1 different bent sequences from
the two known bent sequences of length of 22=2. By Lemma 8 we have 22% — 2 different
bent sequences of length of 22* in Construction 1 and 2 in total.

(ii) Two bent sequences of length 22 — 2 have 72,_, choices. By Lemma 10 and (i) of the
theorem 1o = (2%F — 2)73,_, for k 2 2. a

We note that (i) of Theorem 6 gives many more bent sequences of length 2% from two
known bent sequences of length 222 than the ordinary construction, which gives 10 bent
sequences of length 22% from two known bent sequences of length 22#=2 (see [2]).

2.4 Examples

Example 1 Since 75 = 8, by Theorem 1, 74 = (2% — 2)82 = 896 and 74 = (2° — 2)7} =
62 - 8962 = 62 - 802816 = 49774592.

Previously Adams and Tavares [2] estimated 48201728 as the number of bent sequences
of length 2° including linear-based bent sequences and those constructed from four bent
sequences of length 2%,

Example 2 Let £ = 3 in Construction. Let ¢ be a nondegenerate linear transformation
on V5. Write ap = (0,0,0,0,0), a3 = (0,0,0,0,1), ..., ass_y = (1,1,1,1,1). Define ¢, a
nondegenerate linear transformation on Vj as follows

e(a1) =(0,0,0,1,1), ¢(az) =(0,0,1,1,0). ¢(ay)=(0,1,1,0,0),
@(QS) = (171707070)7 99(0416) = (1,0,0,0,0).

Obviously, {ay, a3, a4, as, aje} is a basis of Vs.
Write ¢(a;) = 3; where j =0,1,...,31. Hence we have

By = (0,0,0,0,0), By =(0,0,0,1,1), By =(0,0,1,1,0), A3 =(0,0,1,0,1),
B4 =1(0,1,1,0,0), Bs=(0,1,1,1,1), B¢=(0,1,0,1,0), pBr=(0,1,0,0,1),
Bs = (1,1,0,0,0), fo=(1,1,0,1,1), po=(1,1,1,1,0), f1 =(1,1,1,0,1),
B2 = (1,0,1,0,0), B3 =(1,0,1,1,1), B4 =(1,0,0,1,0) B315=(1,0,0,0,1),
B16 = (1,0,0,0,0), B17 = (1,0,0,1,1), Bz =(1,0,1,1,0), B19 =(1,0,1,0,1),
B0 = (1,1,1,0,0), By = (1,1,1,1,1), Boz = (1,1,0,1,0), B23 = (1,1,0,0,1),
B4 = (0,1,0,0,0), Bys = (0,1,0,1,1), Bas = (0,1,1,1,0), Bz = (0,1,1,0,1),
Bag = (0,0,1,0,0), B9 =(0,0,1,1,1), B30 =(0,0,0,1,0) B33 =(0,0,0,0,1).

Choose two bent sequences of length 2%:

L=H+++++-——+-F+—-+——+)=(a1,--,a16)
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and

G=(+++-+++-+++-———+)= (b1, be).

Let the Fp-th, the 8y-th, ..., the B15-th entries of 1y be a1, ao,...,a16 respectively and the
(16-th, the By7-th, ..., the G31-th entries of 1y be by, by, ..., big respectively. We have now
constructed ny:

m=(t+-—+-++-F——F+—F+++-+t+ -+ -+ —+—+—+4).

Also let the fg-th, the Fy-th, ..., the 315-th entries of 3 be a1, ag,. .., a16 respectively and
the B1g-th, the Bi7-th, ..., the fs;-th entries of 12 be —by, —bg, ..., —big respectively. We
have now constructed 7s:

m=(t—++++++t-—— -ttt -+t ————+-)

Finally set 7 = (11, 12), by Lemma 6, this is a bent sequence of length of 2° by using &, &
and ¢ in Construction 1.

Similarly we can construct another bent sequence by using &, £ and ¢ in Construction 2.
To do this set n; = 1 and 9y, = —n2. ' = (], 15), by Lemma 7, this is a bent sequence of
length of 26 by using ¢&;, & and ¢ in Construction 2.
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