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Immunizing Public Key Cryptosystems 
Against Chosen Ciphertext Attacks 

Yuliang Zheng and Jennifer Seberry 

Abstract-This paper presents three methods for strengthening 
public key cryptosystems in such a way that they become secure 
against adaptively chosen ciphertext attacks. In an adaptively 
chosen ciphertext attack, an attacker can query the decipher
ing algorithm with any ciphertexts, except for the exact object 
ciphertext to be cryptanalyzed. The first strengthening method is 
based on the use of one-way hash functions, the second on the 
use of universal hash functions, and the third on the use of digital 
signature schemes. Each method is illustrated by an example of a 
public key cryptosystem based on the intractability of computing 
discrete logarithms in finite fields. Security of the three example 
cryptosystems is formally proved. Two other issues, namely, 
applications of the methods to public key cryptosystems based 
on other intractable problems and enhancement of information 
authentication capability to the cryptosystems, are also discussed. 

I. INTRODUCTION 

ACONSlDERABLE amount of research has been done 
in recent years, both from the theoretical [1]-[4J and 

practical [5J points of view, in the pursuit of the construction 
of public key cryptosystems secure against chosen ciphertext 
attacks. In such an attack, the attacker (cryptanalyst) has access 
to the deciphering algorithm of a cryptosystem. The attacker 
can query the deciphering algorithm with any ciphertexts, 
obtain the matching plaintexts, and use the attained knowledge 
in the cryptanalysis of an object ciphertext. 

The theoretical results are appealing in that the schemes 
which embody them are provably secure under certain assump
tions. However, most of these schemes are impractical due 
to the large expansion of the resulting ciphertext. The recent 
and notable schemes by Damgiird overcome the problem of 
impracticality, but they are totally insecure against adaptively 
chosen ciphertext attacks in which an attacker has access to 
the deciphering algorithm even after he or she is given an 
object ciphertext to be cryptanalyzed. The attacker is allowed 
to query the deciphering algorithm with any ciphertext, except 
for the exact object ciphertext. 

Adaptively chosen ciphertext attacks would impose serious 
problems on many services provided by modem information 
technology. To illustrate the possible attacks, consider the case 
of a security-enhanced electronic mail system where a public 
key cryptosystem is used to encipher messages passed among 
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users. Nowadays, it is common practice for an electronic mail 
user to include the original message he or she received into a 
reply to the message. For instance, a reply to a message may 
be as follows 

(original message) 
> ..... . 
> Hi, is Yum-Cha still on tonight? 
> ..... . 

(reply to the message) ... 
Yes, it's still on. I've already made the bookings ...... . 
This practice provides an avenue for chosen ciphertext 

attacks, as an attacker can send a ciphertext to a target user and 
expect the user to send back the corresponding plaintext as part 
of the reply. Now suppose that a user Alice is in the process 
of negotiating, through the electronic mail system, with two 
other users Bob and Cathy who are rivals of each other in a 
business. Let c be a ciphertext from Bob to Alice. Naturally, 
Cathy would like to know the contents of the communications 
between Alice and Bob. Cathy can obtain the ciphertext c 
by eavesdropping. However, it would be infeasible for her to 
extract its contents immediately. Instead, Cathy might try to 
discover implicitly the contents of c through discussions with 
Alice using the electronic mail. The problem facing Cathy 
is that she cannot simply pass c to Alice with the hope that 
Alice would include the contents of c into her reply, as Alice 
would detect that c is actually a ciphertext created by Bob but 
not by Cathy. Nevertheless, if the cryptosystem is insecure 
against adaptively chosen ciphertext attacks, Cathy might still 
be able to obtain indirectly what she wants in the following 
way: 

I) send Alice ciphertexts Cl, C2, .. " Cn , none of which is 
the same as the object ciphertext c; 

2) receive the matching plaintext messages (hopefully); and 
3) extract the contents of c by the use of information 

obtained from the n plaintext-ciphertext pairs. 
In this paper, we present three pragmatic methods for im

munizing public key cryptosystems against adaptively chosen 
ciphertext attacks. The first method is based on the use of one
way hash functions, the second on the use of universal hash 
functions, and the third on the use of digital signature schemes. 
Each method is illustrated by an example of a public key 
cryptosystem based on the intractability of computing discrete 
logarithms in finite fields. Security of the three cryptosystems 
against adaptively chosen ciphertext attacks is formally proved 
under reasonable assumptions. 

In Section II, we summarize various types of possible attack 
to cryptosystems and introduce a formal definition for security 
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of public key cryptosystems. In Section III, previous proposals 
together with their problems are reviewed. OUf immunization 
methods are illustrated in Section IV, by three public key 
cryptosystems based on the intractability of computing discrete 
logarithms in finite fields. This is followed by an analysis 
of security of the cryptosystems in Section V. Section VI is 
concerned with two other issues, namely, applications of the 
immunization methods to public key cryptosystems based on 
other intractable problems, such as the problem of factoring 
large composite numbers, and the addition of information 
authentication capability to the three cryptosystems. Finally, 
Section VII presents some concluding remarks. 

II. NOTION AND NOTATIONS 

We will be concerned with the alphabet ~ = {O, I}. The 
length of a string x over ~ is denoted by lxi, and the 
concatenation of two strings x and lJ is denoted by xlly. The 
bit-wise exclusive-or of two strings x and y of the same length 
is denoted by x Eft y. The ith bit of x is denoted by Xi, and 
the substring of X from Xi to Xj, where i ~ j, is denoted by 
X[i ... j). #5 indicates the number of elements in a set 5, and 
x ER 5 means choosing randomly and unifonnly an element 
X from the set 5. The Cartesian product of two sets 5 and T 
is denoted by 5 x T. 

Denote by IN the set of all positive integers, and by n a 
security parameter which determines the length of messages, 
the length of ciphertexts, the security of cryptosystems, etc. As 
in the Diffie-HelimanIEIGamal's public key scheme [6], [7], 
p is an n-bit prime and g is a generator for the multiplicative 
group GF(p)* of the finite field GF(p). Both p and g are 
public. To guarantee the security of cryptosystems based on 
the discrete logarithm problem, the length n of p should be 
large enough, preferably n > 512, and p - 1 should contain 
a large prime factor [8], [9J. Unless otherwise specified, all 
exponentiation operations appearing in the remaining pari of 
this paper are assumed to be over the underlying groups. 

Note that there is a natural one-to-one correspondence 
between strings in:En and elements in the finite field GP(2"). 
Similarly, there is a natural one-to-one correspondence be
tween strings in :En and integers in [0, 2n - 1J. Therefore, we 
will not distinguish among strings in :En, elements in GP(2") 
and integers in [0,2n - 1]. 

A public key cryptosysrem, invented by Diffie and Hellman 
[6J, consists of three polynomial time algorithms (C, E, D). C 
is called a key-generation algorithm which, on input n, gener
ates probabilistically a pair (pk, sk) of public and secret keys. 
Following the tradition in the field, when a security parameter 
n is used as input to an algorithm, it will be represented by the 
all-l string of n bits which is denoted by In. E is called an 
enciphering algorithm which, on input a public key pk and a 
plaintext message Tn, outputs a ciphertext c. Here, m is chosen 
from a message space ]\tIn. D is called a deciphering algorithm 
which, on input a secret key 13k and a ciphertext c, outputs 
a message Tn or a special symbol 0 meaning "no plaintext 
output." E and D satisfy the following unique decipherabilily 
condition, namely, D(sk, E(pk, m)) = m. 

A. Attacks to Cryptosystems 

There are four common types of attack to a cryptosys
tern, namely, ciphertext only attacks. known plaintext attacks. 
chosen plaintext attacks. and chosen ciphertext attacks [IOJ. 
Related attacks against digital signatures are fully discussed 
in [11]. 

In a ciphertext only attack, which is the least severe among 
the four types of attack, an attack is given an object ciphertext 
and tries to find the plaintext which is hidden in the object 
ciphertext. 

In a known plaintext attack, an attacker has a collection 
of plaintext-ciphertext pairs besides an object ciphertext. The 
attacker may use the knowledge gained from the pairs of 
plaintexts and ciphertexts in the cryptanalysis of the object 
ciphertext. 

In a chosen plaintext attack, an attacker has access to the 
enciphering algorithm. During the cryptanalysis of an object 
ciphertext, the attacker can choose whatever plaintexts he or 
she desires, feed the enciphering algorithm with the desired 
plaintexts, and obtain the corresponding ciphertexts. Note 
that this type of attack is always applicable to a public key 
cryptosystem, since the attacker always has access to the public 
enciphering algorithm. 

In a chosen ciphertext attack, which is the most severe 
among the four types of attack, an attacker has access to the 
deciphering algorithm. The attacker can query the deciphering 
algorithm with any ciphertexts and obtain the corresponding 
plaintexts. Then the attacker can use the knowledge obtained 
in the query and answer process to extract the plaintext of an 
object ciphertext. 

Researchers further distinguish two forms of chosen ci
phertext attack: indifferenrly chosen ciphertext attacks and 
adaptively chosen ciphertext attacks. An indifferently chosen 
ciphertext aHack is also called a lunchtime attack or a midnight 
attack [2]. In such an attack, the ciphertexts fed into the 
deciphering algorithm are chosen without being related to 
the object ciphertext. However, the ciphertexts fed into the 
deciphering algorithm may be correlated with one another. 
This fonn of attack models the situation where the attacker 
has access to the deciphering algorithm before he or she is 
actually given the object ciphertext. 

In adaptively chosen ciphertext attacks, all ciphertexts fed 
into the deciphering algorithm can be correlated to the object 
ciphertext. This form of attack is more severe than the indif
ferently chosen ciphertext attacks, and it models the situation 
where the attacker has access to the deciphering algorithm 
even after he or she is given the object ciphertext. The 
attacker is thus pennitted to give the deciphering algorithm 
any available ciphertexts, except for the exact object ciphertext, 
and obtain the matching plaintexts. (See the Introduction for 
a practical application where adaptive!y chosen ciphertext 
attacks would be a considerable threat.) 

B. Notion of Security 

Much effort has been directed towards formalizing the 
notion of security of (public) key cryptosystems [12]-[14], 
[3]. To be called secure, a cryptosystem should fulfill at least 
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the condition that it is infeasible for an attacker to obtain the 
complete plaintext of an object ciphertext. This requirement for 
the attacker can be weakened to that of obtaining just partial 
information of the plaintext. This intuition is well captured 
by the notion of semantic security, which can be viewed 
as the polynomiruly bounded version of Shannon's "perfect 
secrecy" [I5], Informally, a cryptosystem is semantically 
secure if whatever can be computed by an attacker about 
the plaintext given an object ciphertext can also be computed 
without the object ciphertext. Semantic security ensures that 
no partial information on the plaintext is leaked from an 
object ciphertext to probabilistic polynomial time bounded 
attackers. 

We can further classify semantic security into the following 
four kinds according to different types of attack. These four 
kinds of semantic security are: 1) semantic security against 
ciphertext only attacks; 2) semantic security against known 
plaintext attacks; 3) semantic security against chosen plaintext 
attacks; 4) semantic security against chosen ciphertext attacks, 
respectively. As this paper is concerned with public key 
cryptosystems, we will restrict our attention to the later two 
kinds of semantic security, namely, semantic security against 
chosen plaintext attacks and semantic security against chosen 
ciphertext attacks, In the following, a definition for semantic 
security of public key cryptosystems is given in terms of two 
probabilistic polynomial time Turing machines (algorithms): a 
collector and a partial information extractor (see also (2J). 

A collector is a probabilistic polynomial time algorithm L, 
and it corresponds to the first stage of cryptanalysis in which 
an attacker gathers information useful for the next stage. The 
output of L is a string which can be the emire history of its 
computation, We are interested in the following three types 
of collectors, 

1) A chosen plaintext collector L cp , which has as input only 
a security parameter n and a public key pk, Note that Lcp 
can always obtain plaintext-ciphertext pairs by the use of the 
public key pk. 

2) An indifferently chosen ciphertext collector Li~c which, 
in addition to nand pk, has access to the deciphering al
gorithm, The collector can query the deciphering algorithm 
with polynomially many ciphertexts, obtain answers from the 
algoritlun, and use the information in its computation, 

3) An adaptively chosen ciphertext collector Lace, which 
has as input n,pk, and an object ciphertext. Like an indiffer
ently chosen ciphertext collector Lice, an adaptively chosen 
ciphertext collector Laee also has access to the deciphering 
algorithm. Lace can query the deciphering algorithm with 
polynomially many ciphertexts, except for the exact object 
ciphertext. The ciphertexts given to the deciphering algorithm 
can be related to the object ciphertext to be cryptanalyzed, 

A partial information extractor is a probabilistic polynomial 
time algorithm T, which corresponds to (he second stage of 
cryptanalysis in which an attacker actually computes informa
tion about the plaintext of an object ciphertext. T has n, pk, 
and an object ciphertext as input, and has access to Ihe output 
of a collector L, The output of T is a string which may 
represent some partial information of the plaintext message 
obscured in the object ciphertext. 

m 

Definition 1: Let (C,E,D) be a public key cryptosystem, 
lvln =: E P a message space induced by a security parameter 
n, where P is a polynomial in n, Assume that a message Tn 

is drawn from Mn with a probability p(m), Let V be any set 
and !::k any function from Mn to V, where pk is a public 
key generated probabilistically by C on input n. Denote by 
]I gk the maximum probability wilh which one could guess the 
output of the function fhk without having any idea about ils 
actual input. Note that PfPk :;=; ruaxvEv{E '" 'If"( }]p(m)}, 

n mcp .. ~ n V 

where pre[J;:k(v)] denotes the set of preimages of v under 
f;:k~ The public key cryptosystem (C, E, D) is semantically 
secure against chosen plaintext (indifferently and adaptively, 
respectively, chosen ciphertext) attacks if for any chosen 
plaintext (indifferently and adaptively, respectively, chosen 
ciphertext) collector L Cl'(L,ee and La~c, respectively), for any 
partial infomlation extractor T, for any polynomial Q =: Q( n), 
for all sufficiently large n, 

pc{T(ln,pk,c) ~ fr.'(m)} < Pf:' + I/Q 

where m is a message chosen from M" with probability 
p(m),pk a public key generated probabili~tically by C on 
input n, and c the ciphertext of In with respect to pI., 

An equivalent notion of semantic security is that of poly" 
nomial security, A cryptosystem is polynomially secure if 
no probabilistic polynomial time algorithms can distinguish 
between the ciphertexts of two plaintext messages 'fnl and 
m2' We refer the reader to {13], [14], [2], and {4] for a 
more detailed treatment of the notion of security for cryp
tosystems. A related notion called nonmalleable security was 
introduced in [3], where an example of nonmalleable public 
key cryptosystems was also demonstrated. 

III. PROBLEMS WITH PREVIOUS PROPOSALS 

Rahin pioneered the research of constructing provably se
cure public key cryptosystems by designing a public key 
cryptosystem with the property that extracting the complete 
plaintext of an object ciphertext is computationally equivalent 
to factoring large numbers [16]. Goldwasser and Micali in~ 

vented the first public key cryptosystem that hides rul partial 
information lI3]. The cryptosystem is a probabilistic one and 
it enciphers a plaintext in a bit-by-bit manner. A common 
drawback of these and many other cryptosystems is that, 
although secure against chosen plaintext attacks, they are 
easily compromised by chosen ciphertext attackers. On the 
other hand, much progress has been made in recent years in 
the construction of public key cryptosystems secure against 
chosen ciphertext attacks, We will review this development, 
and point out problems and weakness of the proposed schemes. 

A. Theoretical Results 

Theoretical study into the construction of public key cryp
tosystems secure against chosen ciphertext attacks was ini
tiated by Blum, Feldman, and Micali [1], who suggested 
the potential applicability of noninteractive zero-knowledge 
proofs to {he subject. Naor and Yung carried further the study 
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and gave the first concrete public key cryptosystem that is 
(semantically) secure against indifferently chosen ciphertext 
attacks [21. Rackoff and Simon considered a more severe type 
of attack, namely, adaptively chosen ciphertext attacks, and 
gave a concrete construction for public key cryptosystems 
withstanding the attacks [4]. In [3] Oolev, Dwork, and Naor 
proposed a nonmalleable (against chosen plaintext attacks) 
public key cryptosystem, and proved that the cryptosystem 
is also secure against adaptively chosen ciphertext attacks. 

All of these cryptosystems are provably secure under certain 
assumptions. However, since they rely heavily on noninterac
tive zero-knowledge proofs, the resulting ciphertexts are in 
general much longer than original plaintexts. This disadvan
tage makes the cryptosystems highly impractical and difficult 
to realize in practice. 

B. Damgdrd's Schemes 

In [5], Damgard took a pragmatic approach to the subject. 
He proposed two simple public key cryptosystems that appear 
to be secure against indifferently chosen ciphertext attacks. 
The first is based on detenninistic public key cryptosystems. 
Let (Eo, Do) be lhe pair of enciphering and deciphering 
algorithms of a detenninistic public key cryptosystem. Let 
(pkl,sk1) and (pk2 ,sk2 ) be two pairs of public and secret 
keys, and let h be an invertible one-to-one length-preserving 
function. The enciphering algorithm of Damgard's first cryp
tosystem operates in lhe following way: 

E(pkj,pkz, m) ~ (Eo(ph, r),Eo(pk" h(r)) Ell m) 

= (Cl, C2) 

where m E En is a plaintext message and r ER En is a 
random string. The corresponding deciphering algorithm is as 
follows: 

Damgard's second scheme is based on the Diffie-HeUman! 
ElGamal public key cryptosystem [6], [7], whose security 
relies on the intractability of computing discrete logarithms 
in finite fields. User Alice's secret key is a pair (XAI, x A2) of 
elements chosen independently at random from [1,p - 1]. Her 
public key is (YAl, YA2), where YAI = g:rAl and YA2 = g:r A2 • 

When user Bob wants to send an n-bit message m in secret 
to Alice, he sends her the following enciphered message: 

E(YA1, YA2, p, g, m) = (gT, YAI' YA2 E& m) 

= (C1,C2,C3) 

where r ER [1,p - 1]. Note that here n is the length of the 
prime p. The deciphering algorithm for Alice, who possesses 
the secret key (XA1.XA2), is as follows: 

if ciA1 = C2 

otherwise. 

Here 0 is a special symbol meaning "no plaintext outpur." 

Although Damgaro's schemes are very simple and seem 
to be secure against indifferently chosen ciphertext attacks, 
they are insecure against adaptively chosen ciphertext attacks. 
Given an object ciphertext c(c = (Cl,C2) for the first scheme, 
and c = (CI' C2, (3) for the second scheme). an attacker can 
choose a random message mT from En, calculate the bit-wise 
exclusive-or of m T and the last part of the ciphertext c, and 
feed the deciphering algorithm with the modified ciphertext 
c/. The attacker will get m' = m E9 m T as an answer, and 
obtain the desired message! m by computing m' E9 m T • Our 
cryptosystems to be described below share the same simplicity 
possessed by Damgard's cryptosystems, yet they attain a 
higher level of security, namely, security against adaptively 
chosen ciphertext attacks. 

IV. STRENGTHENING PUBLIC KEY CRYPTOSYSTEMS 

This section presents three simple methods for immu
nizing public key cryptosystems against chosen ciphertext 
attacks. The nature of the three immunization methods is 
the same-they all immunize a public key cryptosystem by 
appending to each ciphertext a tag that is correlated to the 
message to be enciphered. This is also the main technical 
difference between our proposals and Damgard's schemes. The 
three methods differ in the ways in which tags are generated. 
In the first method, tags are generated by the use of a one
way hash function; in the second method by the use of a 
function chosen from a universal class of hash functions; 
and in the third method by the use of a digital signature 
scheme. The second immunization method is superior to the 
other two immunization methods in that no one-way hash 
functions are needed. This property is particularly attractive 
given the current state of research, whereby many one-way 
hash functions exist, few are efficient, and even fewer are 
provably secure. 

We will illustrate our immunization methods with cryp
tosystems based on the Diffie-Hellman/EIGamal public key 
scheme. In Section VI, applications of the immunization 
methods to cryptosystems based on other intractable problems 
will be discussed. Denote by G the cryptographically strong 
pseudorandom string generator based on the difficulty of 
computing discrete logarithms in finite fields [17]-[19]. G 
stretches an n-bit input string into an output string whose 
length can be an arbitrary polynomial in n. This generator 
produces O(log n) bits output at each exponentiation. In 
the authors' opinion, for practical applications. the generator 
could produce more than 3n/4 bits at each exponentiation, 
without sacrificing security. Recently, Micali and Schnorr 
discovered a very efficient pseudorandom string generator 
based on polynomials in the finite field GF(p) (see Section 4 
of [20]). The generator can produce. for example, n/2 bits 
with 1.25 multiplications in GF(p). The efficiency of our 

lOne might argue thaI since at least half bits in the original ciphenext 
c remain untouched in the modified ciphertext c', adding a checking step 
to the deciphering algorithms would effectively thwart the attack. This 
countenneasure, however, does not work in general, as the deciphering 
algorithms may not know c. Even if the deciphering algorithms have a list of 
ciphertexts containing c, a more sophisticated attacker might still succeed in 
extracting m by generating c' in such a way that it passes the checking step. 
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cryptosystems to be described below can be further improved 
if MicaH and Schnorr's pseudorandom string generator is 
employed. 

User Alice's secret key is an element XA chosen randomly 
from [1,p-1], and her public key is YA = g"'A.1t is assumed 
that all messages to be enciphered are chosen from the set"E P

, 

where P = pen) is an arbitrary polynomial with Pen) ~ n. 
Padding can be applied to messages whose lengths are less 
than n bits. In addition, let l = l( n) be a polynomial which 
specifies the length of tags. It is recommended that l should 
be at least 64 for the sake of security. 

A. Immunizing with One-Way Hash Functions 

Assume that h is a one-way hash function compressing input 
strings into i-bit output strings. User Bob can use the following 
enciphering algorithm to send in secret a P-bit message m to 
Alice. 

AlgorithmI: E()wh(YA,p,g,m) 
1) x En [1,p - I]. 
2) z = G(yA)[l .. (P+ll)' 
3) t = h(m). 
4) Ci = g"'. 

5) C2 = z EEl (milt). 
6) output (Cl, C2). end 
The deciphering algorithm for Alice, who possesses the 

secret key x A, is as follows. 
Algorithm 2: Dowh(XA, p, g, Cl, C2) 

l)z' = G(C~A)[l ... (PHl)' 
2) W = Zl EEl C2. 

3) m' = W[l ... P)' 

4) t' = W[(P+ll ... (PHl]' 
5) if hem') = t' then output (m') else output (0). end 
When messages are of n bits, i.e., P = n, instead of 

the one-way hash function h, the exponentiation function can 
be used to generate the tag t. In this case, the enciphering 
algorithm can be modified as follows: a) change the step 2 to 
"z = G(YA)[l ... 2n);" b) change the step 3 to "t = gm." The 
deciphering algorithm can be modified accordingly. 

B. Immunizing with Universal Hash Functions 

A class H of functions from E P to Ei is called a (strongly) 
universal class of hash functions [21], [22} mapping P-bit 
input into i-bit output strings if, for every Xl #- X2 E EP 
and every Yl, Y2 E Ei, the number of functions in H taking 
Xl to Yl and X2 to Y2 is #HI22i. An equivalent definition 
is that when h is chosen uniformly at random from H, 
the concatenation of the two strings h(xl) and h(X2) is 
distributed randomly and uniformly over the Cartesian product 
Ei x Z[. Wegman and Carter found a nice application of 
universal classes of hash functions to unconditionally secure 
authentication codes [22}. 

Now assume that H is a universal class of hash functions 
which map P-bit input into i-bit output strings. Also assume 
that Q = Q(n) is a polynomial, and that each function in 
H is specified by a string of exactly Q bits. Denote by hs 
the function in H that is specified by a string 8 E "EQ. The 
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enciphering algorithm for Bob who wants to send in secret a 
P-bit message m to Alice is the following. 

Algorithm 3: E"hf(YA,P, g, m) 
1) x ER [1,p - I]. 
2)r=YA' 
3) z = G(r)[I ... Pj. 

4) s = G(r)[(P+ll ··(P+Ql)· 
5)Cl=g"'· 
6) C2 = hs(m). 
7) C3 = z EEl m. 
8) output (CbC2,t:3). end 
The deciphering algorithm for Alice, who possesses the 

secret key.x A, is as follows. 
Algorithm 4: Duhf(XA,P, g, Cl, C2, C3) 

1) r' = C~A. 

2) z' = G(r')[l ... P). 

3) s' = G(r')[(p+l) .. (P+Qlj' 
4) m' = z' EEl C3. 

5) if hsl(m') = C2 then output (m') else output (0). end 
Note that the second part C2 = hs(m) in the ciphertext 

can be obscured in the same way as Algorithm 1. This would 
improve practical security of the cryptosystem, at the expense 
of more computation time spent in generating pseudorandom 
bits. 

The following is a simple universal class of hash functions 
which is originated from linear congruential generators in finite 
fields. (See also Propositions 7 and 8 of [21]). Let k be 
an integer. For k+ 1 elements al,u2:"',ak,b E GF(21'), 
let 8 be their concatenation, i.e., S = atlla211" '1Iakllb, 
and let hs be the function defined by hs(Xl,X2,···,Xk) = 
E~=l aixi + b, where Xl, X2, .. " Xk are variables in GF{2l ). 
Then the collection H of the functions hs defined by all k + 1 
elements from GF(21') is a universal class of hash functions. 
Functions in H compress kl-bit input into i-bit output strings. 
By padding to input strings, these functions can be applied to 
input strings whose lengths are not exactly kl. In particular, 
when k = fPjll, they can be used to compress P-bit input 
into i-bit output strings. In this case, a function in H can 
be specified by a string of Q = P + (1 + all bits, where 
o ~ a = P madill < 1. This universal class of hash 
functions is particularly suited to the case where the length P 
of messages to be enciphered is much larger than the length l 
of tags. We refer the reader to [22} and [23} for other universal 
classes of hash functions. 

C. Immunizing with Digital Signature Schemes 

Assume that h is a one-way hash function compressing input 
strings into n-bit output strings. Also assume that Bob wants 
to send in secret a P-bit message m to Alice. The enciphering 
algorithm employed by Bob is the following. 

AlgorithmS: Esig(YA,p,g,m) 
1) x ER [1,p - I]. 
2) k ER [l,p - 1] such that gcd(k,p -1) = 1. 
3) '+k r = YA . 
4) z = G(r)[l .. p), 

5)Cl=g"'. 
6) C2 = gk. 
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7) '3 = (h(m) - xc)/k mod (1' - 1). 
8) C4 = z ffi m. 
9) output (CI' C2, Ca, (4). end 
The corresponding deciphering algorithm for Alice, who 

possesses the secret key x A, is as follows. 
Algorithm 6: D~iq(:rA' p, g, CI. C2, C3, C4) 
1) r' = (CICZ)"'A ~ 
2) z' = G(r')p ... Pj. 

3) m' = z' ffi C4. 

4) if gh{m') = c1' <lJ then output (m') else output (0). end 
Similar to the cryptosystem based on the use of universal 

hash functions described in Section IV-B, security of the 
cryptosystem can also be improved by hiding the third part 
C3 = (h(m) -xr)/k mod (p-I) with extra pseudorandom bils 
produced by the pseudorandom string generator G. In addition, 
when messages to be enciphered are of n bits, neither the one
way hash function h nor the pseudorandom string generator 
G is necessary. The enciphering algorithm for this case can 
be simplified by changing step 4 of the above enciphering 
algorithm to "z = r," and step 7 into "C3 = (m - xr)/k 
mod (p - 1)." The deciphering algorithm can be simplified 
accordingly. 

The first three parts (CI' C2, C3) of the ciphertext represents 
an adaptation of the EIGamal's digital signature. However, 
since everyone can generate these parts, they do not really 
fonn the digital signature of m. This immunization method 
was first proposed in [24], where other ways for generating 
the third part Ca in the ciphertext were also suggested. 

In Section V, we will prove that the three cryptosystems 
are secure against adaptively chosen ciphertext attacks under 
reasonable assumptions. For convenience, we wiH denote 
by CO<L'h the first cryptosystem which applied one-way hash 
functions, by C"h] the second cryptosystem which applies 
universal hash functions and by Cs;1] the third cryptosystem 
which applies the ElGamal digital signature. 

V. SECURITY OF THE CRYPTOSYSTEMS 

This section is concerned with issues related to security 
of the three cryptosystems. First we discuss security of the 
cryptosystems against chosen plaintext attacks. We prove that 
both Cowh and Cuh ] arc secure against chosen plaintext attacks 
under the Diffie-Hellman Assumption to be defined below. 
Security of the cryptosystem C9ig is also discussed briefly. 
Then we introduce a notion called sole-samplahility, and apply 
the notion in the proofs of security of the cryptosystems against 
chosen ciphertext attacks. 

Security of our cryptosystems relies on the intractability of 
computing discrete logarithms in finite fields. More specifi
caily, it relies on the Diffie-Hellman Assumption which can 
be informally stated as follows. 

Assumption 1: Given Yl,Y2,g, and p, where Yl = gX1 

and Y2 ::;; gX' for some Xl and J:2 chosen randomly and 
independently from [I,p - 1], it is computationally infeasible 
for any probabilistic polynomial time algorithm to compute 
Y = gX1"2. 

Note that an algorithm for computing V = gX1(X2+"J) from 
YI, Y2, Y'J, g, and p, where VI and V2 are the same as above, and 

V3 = g"3 for some X3 E [I,p -1], can be used to compute 
V = gXP;~. from VI,Y2,g, and p in the following way. In 
addition to YI, Y2, g, and p, the algorithm is also provided 
with Y3 = gX3, where X'J is a known element chosen from 
[I,p - IJ. Let the output of the algorithm be y. Then we 
have g",X2 = y/yt J • Therefore, under the Diffie-Hellman 
Assumption, it is also infeasible to compute 1} = g",(X2+XJ) 

from Yl,Y2,1f:J,9, and p. 

A. Security Against Chosen Plaintext Attacks 

Let Xl,X2 ER [I,p -IJ,YI = g"l and Y2 = g"'2. Let z\ 

be a P -bit string taken from the output of the pseudorandom 
string generator G on input gXl"", and Z2 a truly random 
P -bit string. Then, by an argument similar to that for 
semantic security of a public key cryptosystem [251 based 
on the intractability of factoring large composite numbers. 
one can show that under the Diffie-Hellman Assumption, 
no probabilistic polynomial time algorithm can distinguish 
between ZI and z~. The algorithm is allowed to have access 
to P.g.YI, and !Jz. 

It follows from the above result that the cryptosystem Cowl< 

is semantically secure against chosen plaintext attacks. In other 
words. it leaks no partial information to attackers mounting 
chosen plaintext a!lacks. Note that if the l = h(m) part is 
not enciphered together with m. some partial information on 
In may be leaked, and the resultant cryptosystem may not be 
semantically secure against chosen plaintext attacks. 

Next we consider the cryptosystem Cull!. For rruly random 
strings z E I;P and s E I;Q. neither;; ffi Tn nor h.,(m) leaks 
any information on m (in the sense of Shannon [15]), where 
h~ is the hash function specified by the string s (see Section 
IV-B). In addition, when Z and 8 arc independent of each 
other, no information on Tn is leaked from zEBm together with 
hAm). Now let XJ,X2 ER [l.p -Il'YI = g'" and Y2 = 9:1,':'· 

Let z be the first P-bit substring, and 8 be the next Q -bit 
substring of the output of the pseudorandom string generator 
G on input gXl£2. Then to a probabilistic polynomial time 
algorithm which is allowed to have access to p, g, 1}1. and !i2, 

the two strings z and 8 look like independent random strings. 
Consequently, no partial information on m can be obtained by 
a probabilistic polynomial time algorithm, which is given as 
input zffim,hs(m),p,g,YI, and Y2. From this it follows that 
C"h] is semantically secure against chosen plaintext attacks. 

The above informal arguments for the semantic security of 
the first two public key cryptosystems, Co",h and Cuh ]' can 
be easily translated into formal proofs in a way similar to the 
proof of security of the cryptosystem proposed in [25]. Thus, 
we have the following result. 

Theorem 1: Under the Diffie-Hellman Assumption (As
sumption I), both Cow" and Cuhf . are semantically secure 
against chosen plaintext attacks. 

Unlike the previous two cryptosystems, we are not able to 
prove that the cryP{osystem Csig is also semantically secure 
against chosen plaintext attacks. This is mainly caused by the 
difficulty in measuring the amount of information on m leaked 
by the third part C3 = (h(m) - xr)/k mod (p - l) in the 
ciphertext. It is further complicated by the requirement that 
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C4 = z EB m also has to be taken into consideration together 
with C3. Nevertheless, when the one-way hash function is 
carefully chosen so that it behaves like a random function, 
the cryptosystem apparently leaks no partial information to 
attackers mounting chosen plaintext attacks. 

B. Security Against Chosen Ciphertext Attacks 

Recall that the output of the enciphering algorithm of 
the cryptosystem Cowh is (Cl,C2), where Cl = g",C2 = 
z Ell (mlll),t = h(m), and h is a one-way hash function. 
The enciphering algorithm defines a function that maps an 
element (x, m) from [l,p - 1] x 2f to an element (Cl, C2) 
in [l,p - 1J x 2:P +l. Due to the involvement of t = h(rn), 
the creation of the ciphertext is apparently impossible without 
the knowledge of x and m. Similar observations apply to the 
cryptosystems Cull! and Csi9 ' This motivates us to introduce,a 
notion called sole-samplable space. A related notion was used 
by Damgiird in the investigation of the security of his second 
public key cryptosystem [5]. 

Let 1 be a function from D = UnDn to R = UnRn, where 
Dn <;;; r,n,Rn <;;; r,Ql and Ql = Ql(n) is a polynomiaL 
We call R = UnRn the space induced by the junction f. 
Informally, we say that the space R = UnRn is sole-samplable 
if there is no other way to generate an element y in Rn than 
to pick an element x in D" first and then to evaluate the 
function at the point x. To formally definc sole-samplability, 
we need the following two types of Turing machines: sample 
generators and preimage extractors. 

A sample generator for the space R = UnRn induced bY' a 
function 1 is a probabilistic polynomial time Turing machine 
S that, given n as input and access to an oracle OR for the 
space R, outputs a Ql-bit string. The oracle prints in one step 
a sample string y E Rn as the answer to a requst n E IN. Scan 
query the oracle only by writing n E :IN on a special tape, and 
will read the oracle answer y E R.. on a separate answer tape. 

A pre image extractor of a sample generator S is a proba
bilistic polynomial time Turing machine X that has complete 
access to the contents of S's tapes and can observe thoroughly 
the entire computation of S. The input of X is an integer 
n E :IN and the output of X is an n-bit string. 

Definition 2: Let 1 be a function from D = U"Dn to 
R= UnRn, where Dn <;;; r:',R" ~ EQl and QI = Ql(n) is 
a polynomial. The space R = UnRn induced by the function 
1 is sole-sampable if, for any sample generator S and for any 
polynomial Q2 = Q2(n), there is a preimage extractor X of 
the sample generator S such that for all sufficiently large n, 

pc{X(ln,S)) i; 1-I/Q, 

where Pr {X(l n: S)} is the probability that, when the output 
of S is a sample y from R" that is different from those 
given by an oracle OR, X outputs a string XED" such that 
y ~ f(x). 

Note that when a function f is not one-way, that is, the 
inverse function 1- 1 of f is computable in probabilistic 
polynomial time, the space R induced by 1 is trivially sole
samplable, -as one can always compute the preimage x E Dn 
of an element y E R", which implies that there is essentially 

only one way to sample Rn. namely, picking x first and then 
computing y = f(x). In this paper, we are only interested in 
spaces induced by one-way functions. 

A necessary condition for the space R = U"R" induced by 
a one-way function f to be sole-sample is that R be sparse. 
That is, #R,,/2Q, < 1/Q2 for any polynomial Q'l = Qz(n) 
and for all sufficiently large n. Otherwise, if R is nonsparse, 
one can always generate with a high probability a sample 
of R" simply by flipping Ql coins. However, sparseness 
is not a sufficient condition for sole-samplability. As an 
example, consider the space induced by the one-way function 
f(x) = 1'(:r)IIf'(x), where l' is a one-way permutation on 
U"E". Although the space is sparse (as we have Rn/22n = 
2" /2'ln = 1/2" < 1/Q2 for any polynomial Q2 = Q2(n) and 
for all sufficiently large n), a sample y = y'lly' E E2n can be 
readily obtained by flipping n coins. It is an interesting subject 
for future research to investigate other conditions for the space 
induced by a one-way function to be sole-samplable. 

We will use the following assumptions in the proofs of 
security of the three cryptosystems. The assumptions are 
concerned with the ~ole-samplability of the spaces induced 
by the functions defined by the enciphering algorithms of the 
cryptosystems. Thesc assumptions are apparently reasonable 
thanks to the involvement of a tag in the generation of the 
ciphertext of a plaintext message. For the sake of simplicity, 
"the space induced by the functions defined by the enci
phering algorithm" will be called "the space induced by the 
enciphering algorithm." 

Assumption 2: The space induced by the enciphering algo
rithm of the cryptosystem Cowh is sole-samplable. 

Assumption 3: The space induced by the enciphering algo
rithm of the cryptosystem Cuh! is sole-samplable. 

Assumption 4: The space induced by the enciphering algo
rithm of the cryptosystem CS;g is sole-samplable. 

We say that two assumptions Al and A2 are compara
ble if either Al implies A2 or A2 implies AI. Otherwise, 
we say that A I and A2 are incomparable. Examples of 
comparable assumptions are the Diffie-Hellman Assumption 
(Assumption 1) and the assumption that discrete logarithms 
over large finite fields are intractable. They are compara
ble as the former implies the latter. Now we consider the 
Diffie-Hellman Assumption and Assumption 2 (Assumptions 
3 and 4, respectively). Note that Assumption 2 (Assumptions 
3 and 4, respectively) holds even if the Diffie-Hellman As
sumption does not hold. The former may hold if the latter 
does hold. Therefore, Assumption 2 (Assumptions 3 and 
4, respectively) may hold regardless of the Diffie-Hellman 
Assumption. In other words, Assumption 2 (Assumptions 3 
and 4, respectively) and the Diffie-Hellman Assumption may 
be incomparable. It is worthwhile to investigate the exact 
relations among the assumptions. 

The fo!lowing theorem reveals the relevance of sole
samplability to security of cryptosystems. 

Theorem 2: Assume that the space induced by the 
enciphering algorithm of a public key cryptosystem is sole
samplable. Then the cryptosystem is semantically secure 
against adaptively chosen ciphertext attacks if and only if it is 
semantically secure against chosen plaintext attacks. 
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Proof: The "only if' part is trivially true. Now we prove 
the "if' part by showing that for a public key crypwsystem 
whose enciphering algorithm induces a sole-samplable space, 
an adaptively chosen ciphertext attacker can do no better than 
a chosen plaintext attacker. Thus, security of the cryptosystem 
against adaptively chosen ciphertext attacks is reduced to its 
security against chosen plaintext anacks. 

Recall that an adaptively chosen ciphertext attacker consists 
of a pair (Lace, 'Tacc) of probabilistic polynomial time Turing 
machines, where Lace is an adaptively chosen ciphertext 
collector and Tacc a partial information extractor. Suppose 
Lace queries the deciphering algorithm Q = Q(n) times, 
each time with a different ciphertext Ci. Consider the first 
ciphertext Cl. Since the space induced by the enciphering 
algorithm is sole-samplable, the preimage of CI, part of which 
is the plaintext ml of Ct, can be computed in probabilistic 
polynomial time from the history of Lace'S computation. 
In other words. querying the deciphering algorithm with 
CI gives C ace no more infonnalion, since the history of 
Lace's computation contains already the answer to Ct. Similar 
arguments apply to C2,C3,···,CQ. Thus. the ability to have 
access to the deciphering algorithm gives Ca<:e no advantage in 
ils computation, and hence Cacc can be completely simulated 
by a probabilistic polynomial time Turing machine L' which 
has n,pk, and an object ciphertext as input and has no access 
to the deciphering algorithm. 

Now we have reduced the adaptively chosen ciphertext at
tacker (Lace. T"cc) into another pair (C, T"ee) of probabilistic 
polynomial time Turing machines. Note that the input to C 
consists of n, pk, and an object ciphertext, while the input to 
'Lee consists of n, pk, an object ciphertext, and the output 
of C. Consider a chosen plaintext attacker (Lcp,Tcp ). The 
input to Lcp consists of nand pk, while the input to Tcp 
consists of. in addition to nand pk, an object ciphertext and 
the output of Lep. Therefore, the main difference between 
(C, 'Lee) and (Lep, Tcp ) is Ihal C has, in addition to nand 
pk, an object ciphertet as input, while Lep has only nand 
pk as input. This difference can be eliminated by letting Tace , 
which ha.~ an object ciphertext as input. accomplish that part of 
C's computation which has to use an object ciphertext. Thus, 
(C, Lce) can be completely simulated by a chosen plaintext 
attacker (Lcp, Tcp ). 

Putting the above discussions together, we know that an 
adaptively chosen ciphertext attacker (LaC(") Lee) can be com
pletely simulated by a chosen plaintext attacker (Lep, Tep). 
From this it follows immediately that the "if' part is true, 
i.e., the cryptosystem is semantically secure against adaptively 
chosen ciphertext attacks if it is semanticatly secure against 
chosen plaintext attacks. 0 

Theorem 2 is interesting in that it not only relates sole
samplability to security of a cryptosystem, but also suggests 
an approach to the construction of public key cryptosystems 
that attain security against adaptively chosen ciphertext at
tacks. 

By Theorems 1 and 2, our first twO cryptosystems, C"""h and 
Cuhf, are both semantically secure against adaptively chosen 
ciphertext attacks. under Assumptions 2 and 3, respectively, 
and the Diffie-Hellman Assumption. As discussed at the 

end of Section V -A, we are not able to prove semantic 
security against chosen plaintext attacks of the cryptosystem 
C8ig under the Diffie-Hellman Assumption. In order to prove 
semantic security against adaptively chosen ciphertext attacks 
of Caig, we have to use an assumption stronger than the 
Diffie-Hellman Assumption, namely, that Csig is semantically 
secure against chosen plaintext attacks. These discussions lead 
to the following theorem. 

Theorem 3." The three cryptosystems. Cowh , Cuhf, and C8ig , 

are all semantically secure against adaptively chosen cipher
text attacks, under 1) Assumption 2 and the Diffie-Hellman 
Assumption, 2) Assumption 3 and the Diffie-Hellman As
sumption, and 3) Assumption 4 and the assumption that 
it is semantically secure against chosen plaintext attacks, 
respectively. 

VI. EXTENSIONS OF TIlE CRYPTOSYSTEMS 

We have focused our attention on cryptosystems based 
on the discrete logarithm problem in finite fields. The cryp
tosystems can also be based on discrete logarithms over 
other kinds of finite abelian groups, such as those on elliptic 
or hyperelliptic curves defined over finite fields [261. [27]. 
Another variant of the cryptosystems is to have a different 
large prime for each user. This variant can greatly improve 
practical security of the cryptosystems when a large number 
of users are involved. 

Our first two methods for immunization, namely, immu
nization with one-way hash functions and immunization with 
universal hash functions, can be applied to public key cryp
tosystems based on other intractable problems. For example, 
the methods can be used to immunize the probabilistic public 
key cryptosystem proposed in [25], which is based on the 
intractability of factoring large composite numbers. The meth
ods might be extended further in such a way that allows us 
to construct from any trap-door one-way function a public 
key cryptosystem secure against adaptively chosen ciphertext 
attacks. 

Authentication is another important aspect of information 
security. In many situations, the receiver of a message 
needs to be assured that the received message is truly 
origina~d from its sender, and that it has not been tampered 
with during its transmission. Researchers have proposed 
many, unconditionally or computationally, secure methods for 
information authentication [28J. We take the cryptosystem 
Cu.hf as an example to show that our cryptosystems 
can be easily enhanced with information authentication 
capability. 

To do so, it is required that sender Bob also has a pair 
(y B, X B) of public and secret keys. Infonnation authentication 
is achieved by letting Bob's secret key XB be involved in 
the creation of a ciphertext. More specifically, we change 
step 2 of the enciphering Algorithm 3 to "r = y~B+X," 
and step 1 of the corresponding deciphering Algorithm 4 to 
"r' = (YBCtYA." Although ciphertexts from Alice to Bob are 
indistinguishable from those from Bob to Alice, it is infeasible 
for a user differing from Alice and Bob to create a "legal" 
ciphertext from Alice to Bob or from Bob to Alice. This 
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property ensures information authentication capability of the 
cryptosystem. From the observation following the definition of 
the Diffie-Hellman Assumption (Assumption 1), we know that 
computing g"'1("'2+"'3) from g"'l, gX2, and gX3, and computing 
g"'l"" from gX! and g"'2, are equally difficult. Therefore, 
the authentication-enhanced cryptosystem is as secure as the 
original one. 

The cryptosystem C"wh can be enhanced with information 
authentication capability in a similar way. For the cryptosys
tern Csig , the capability can be added by simply replacing x, a 
random string chosen from [l,p-l], with Bob's secret key XB. 

VII. CONCLUSIONS 

We have presented three methods for immunizing public key 
cryptosystems against chosen ciphertext attacks; the second 
immunization method, based on the use of universal hash 
functions. is particularly attractive in that no one-way hash 
functions are needed. Each immunization method is illustrated 
by an example of a public key cryptosystem based on the 
intractability of computing discrete logarithms in finite fields. 
The notion of sole-samplability has been fonnally defined, and 
an interesting relation between sole-samplability and security 
of cryptosystems has been revealed. This relation has been 
further applied in the fonnal proofs of security of the example 
public key cryptosystems. The generality of our immunization 
methods is shown by their applicability to publie key cryp
tosystems based on other intractable problems, such as that of 
factoring large composite numbers. An enhancement of infor
mation authentication capability to the example cryptosystems 
has also been suggested. 
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