

University of Wollongong Research Online

Faculty of Informatics - Papers (Archive)

Faculty of Engineering and Information Sciences

1993

Constructions of balanced ternary designs based on generalized Bhaskar Rao designs

Dinesh G. Sarvate

Jennifer Seberry University of Wollongong, jennie@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers

Part of the Physical Sciences and Mathematics Commons

Recommended Citation

Sarvate, Dinesh G. and Seberry, Jennifer: Constructions of balanced ternary designs based on generalized Bhaskar Rao designs 1993. https://ro.uow.edu.au/infopapers/1073

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

Constructions of balanced ternary designs based on generalized Bhaskar Rao designs

Abstract

New series of balanced ternary designs and partially balanced ternary designs are obtained. Some of the designs in the series are non-isomorphic solutions for design parameters which were previously known or whose solution was obtained by trial and error, rather than by a systematic method.

Disciplines

Physical Sciences and Mathematics

Publication Details

Dinesh Sarvate and Jennifer Seberry, Constructions of balanced ternary designs based on generalized Bhaskar Rao designs, Journal of Statistical Planning and Inference, 34, (1993), 423-432.

Constructions of balanced ternary designs based on generalized Bhaskar Rao designs

Dinesh G. Sarvate

Department of Mathematics, College of Charleston, Charleston, SC, USA

Jennifer Seberry

Department of Computer Science, University of Wollongong, Wollongong, NSW, Australia 2500

Received 18 August 1989; revised manuscript received 4 March 1991 Recommended by R.G. Stanton

Abstract: New series of balanced ternary designs and partially balanced ternary designs are obtained. Some of the designs in the series are non-isomorphic solutions for design parameters which were previously known or whose solution was obtained by trial and error, rather than by a systematic method.

AMS Subject Classification: Primary 62K05, 62K10; secondary 05B05.

Key words and phrases: Block design; balanced ternary design; generalized Bhaskar Rao design; Hadamard matrix; balanced incomplete block design; partially balanced incomplete block design.

1. Introduction

1

į

For the definitions of terms like blocks, incidence matrix of a block design, group divisible design (GDD), balanced incomplete block design (BIBD) and partially balanced incomplete block design (PBIBD) the reader is referred to Street and Street (1987). A balanced n-ary design is a collection of B multisets, each of size K, chosen from a set of size V in such a way that each of the V elements occurs R times altogether and 0, 1, 2, ..., or n-1 times in each block, and each pair of distinct elements occurs Λ times. So the inner product of any two distinct rows of the $V \times B$ incidence matrix of the balanced n-ary design is Λ . These designs were introduced by Tocher (1952), but in his definition the equireplicate property was not required. A balanced n-ary design where n = 2 is the well known balanced incomplete block design. A

Correspondence to: Prof. Dinesh Sarvate, Dept. of Mathematics, College of Charleston, 66 George Street, Charleston, SC 29424-000, USA.

balanced ternary design which has V elements, B blocks of size K, each of the

0378-3758/93/\$06.00 © 1993-Elsevier Science Publishers B.V. All rights reserved

elements occurring once in precisely ϱ_1 blocks and twice in precisely ϱ_2 blocks, and with incidence matrix having inner product of any two rows Λ , is denoted by BTD($V, B; \varrho_1, \varrho_2, R; K, \Lambda$). Notice that $R = \varrho_1 + 2\varrho_2$. A partially balanced ternary design (PBTD) can be defined similarly. A number of authors have studied these designs; for example, see Billington (1984), Donovan (1986), Patwardhan and Sharma (1988), Sarvate (1990), Soundara Pandian (1980), and the references therein. A list of partially balanced ternary designs with small parameters is given in Mirchandani and Sarvate (1992) and a classification of ternary group divisible designs and some constructions are given in Denig and Sarvate (1992). Some balanced ternary designs are related to generalized weighing matrices (for definitions see Geramita and Seberry (1979)). Most of the time in this paper when we talk about a BTD say, M, we are referring to the incidence matrix of the BTD.

The following definition is from Seberry (1982). Suppose we have a matrix W with elements from an elementary Abelian group $G = \{h_1, h_2, ..., h_g\}$, where $W = h_1A_1 + h_2A_2 + \cdots + h_gA_g$, with $A_1, ..., A_g \ v \times b$ (0, 1) matrices, and the Hadamard product $A_i^*A_j, i \neq j$, is zero. Suppose $(a_{i1}, ..., a_{ib})$ and $(b_{j1}, ..., b_{jb})$ are the *i*th and *j*th rows of W, then we define WW^+ by: $(WW^+)_{ij} = (a_{i1}, ..., a_{ib}) \cdot (b_{j1}^{-1}, ..., b_{jb}^{-1})$, with \cdot the scalar product. Then W is a generalized Bhaskar Rao design or GBRD if

- (i) $WW^+ = rI + tG(J I)$; and
- (ii) $N = A_1 + A_2 + \dots + Ag$ satisfies $NN^T = (r \lambda)I + \lambda J$, that is, N is the incidence matrix of a BIBD (v, b, r, k, λ) .

As a convention tG stands for t copies of $h_1 + h_2 + \dots + h_g$; that is t gives the number of times a complete copy $h_1 + h_2 + \dots + h_g$ of the group G occurs. Such a matrix will be denoted by GBRD $(v, b, r, k, \lambda = tg; G)$. Keeping consistency with BIBD notation we may write GBRD $(v, b, r, k, \lambda = tg; G)$ as GBRD $(v, k, \lambda = tg; G)$.

Here and elsewhere in the present paper J will stand for an appropriate size matrix with all entries one. For example here the matrix J is a square matrix of order V. A generalized Hadamard matrix GH(tg; G) can be regarded as a GBRD(tg, tg, tg; G).

There are several papers in the literature where GBRD's are used to construct block designs. An early application can be found in Seberry (1984), and one of the recent papers where such application is used to construct group divisible designs is Palmer and Seberry (1988). In the present note we apply these designs in the construction of new series of n-ary designs. As mentioned in the abstract we observed that in some cases these constructions give non-isomorphic solutions for design parameters which were previously known or whose solution was obtained by trial and error, rather than by a systematic method. This suggests that the methods will produce previously unknown designs.

2. Constructions based on generalized Hadamard matrices

Theorem 1. If a BTD(V, B; $\varrho_1, \varrho_2, R, K; \Lambda$) = M and a GH(n, G) = N with |G| = V exist, then a PBTD(nV, nB; $n\varrho_1, n\varrho_2, n\varrho_1 + 2n\varrho_2; nK, \Lambda_1 = n\Lambda, \Lambda_2 = nRK/V$) exists.

Proof. Construct a matrix P by replacing each element g in N by $T_g M$ where T_g is the right regular matrix representation of the element g of G. Observe that PP^T is a block matrix with diagonal entries $n((RK - \Lambda V)I + \Lambda J)$ and the off diagonal entries are $(n/V)[(RK - \Lambda V)I + \Lambda J]J$. Hence P is the incidence matrix of the required PBTD. \Box

Now when n = V = |G|, P gives the incidence matrix of a PBTD(V^2 , VB; $V\varrho_1$, $V\varrho_2$, $V(\varrho_1 + 2\varrho_2)$; VK, $\Lambda_1 = V\Lambda$, $\Lambda_2 = RK$). But we know that $\Lambda(V-1) = R(K-1) - 2\varrho_2$ i.e. $\Lambda V + (\varrho_1 + 2\varrho_2) + 2\varrho_2 = RK + \Lambda$ so we augment the matrix P by a column of rows of the BTD(V, B; ϱ_1, ϱ_2, R ; K, Λ) as follows:

$$[P: M \times J].$$

Here J is a column matrix of size V. The augmented matrix is a BTD $(V_2, (V+1)B;$ $V\varrho_1 + \varrho_1, V\varrho_2 + \varrho_2, (V+1)\varrho_1 + 2(V+1)\varrho_2; VK, VA + R + 2\varrho_2)$. Hence we have

Theorem 2. If a BTD(*V*, *B*; ϱ_1, ϱ_2, R ; *K*, Λ) = *M* and a GH(*V*, *G*) = *N* exist, then a BTD(V^2 , (*V*+1)*B*; $V\varrho_1 + \varrho_1$, $V\varrho_2 + \varrho_2$, (*V*+1) $\varrho_1 + 2(V+1)\varrho_2$; *VK*, $V\Lambda + R + 2\varrho_2$) exists.

Corollary 3. If q is an odd prime power, then a BTD $(q^2, (q+1)q; (q+1), (q-1)(q+1)/2, q(q+1); q^2, q^2+q-1)$ exists. \Box

Proof. Saha and Dey (1973) showed that BTD(q, q, 1, (q-1)/2, q; q, q-1) exist, where q is an odd prime power, and it is well known that GH(q, G) exist. \Box

Example 1. Consider BTD(3, 3; 1, 1, 3; 3, 2) = M and GH(3, Z_3) = N, that is,

	1	2	0			1	1	1	
M =	2	0	1	and	N =	1	w	w^2	
	0	1	2			1	w^2	w	

Then the above construction gives a BTD(9, 12; 4, 4, 12; 9, 11):

1 2 0 1 2 0 1 2 0 1 2 0 2 0 1 2 0 1 2 0 1 1 2 0 0 1 2 0 1 2 0 1 2 1 2 0 1 2 0 201 0 1 2 2 0 1 2 0 1 0 1 2 1 2 0 201 2 0 1 0 1 2 1 2 0 201 0 1 2 2 0 1 0 1 2 1 2 0 201 120 012 0 1 2 0 1 2 2 0 1 1 2 0 0 1 2

Now a BTD(9, 12; 4, 4, 12; 9, 11) was previously known and it is listed (number 163) in Billington and Robinson (1983). However, it is interesting to note that the above design does not contain any complete blocks and therefore it is non-isomorphic to the one given in Billington and Robinson (1983) which contains complete blocks.

Remarks. (1) As generalized Hadamard matrices GH(n, G) exist for infinitely many values of *n* other than the one given above, for each BTD which exists, we can construct infinitely many PBTDs.

(2) In the Appendix, we give a list of BTDs obtained via Theorem 2 and the list of BTDs with prime power V, given in Billington and Robinson (1983). It may be interesting to know that there are 34 BTDs in our list with $R \leq 50$.

(3) The above Theorems can be generalized to *n*-ary designs.

3. Constructions based on Bhaskar Rao Designs

Generalized Bhaskar Rao Designs over the group $\{1, -1\}$ are called Bhaskar Rao Designs (BRD).

Theorem 4. Suppose there exist a BRD $(v, b, r, k, 2\lambda; Z_2)$ and square matrices B and C of order u, with entries from $\{0, 1, 2, ..., n-1\}$, which satisfy the following properties:

(i) $BB^{T} = CC^{T} = cl + d(J - I)$,

(ii) $BC^{T} = CB^{T} = el + f(J - I)$,

where c, d, e and f are integers. Then there exists a matrix with entries from $\{0, 1, 2, ..., n-1\}$ such that the inner product of any two distinct rows is in the set $\{\Lambda_1 = rd, \Lambda_2 = \lambda(c+e), \Lambda_3 = \lambda(d+f)\}$ and the inner product of a row with itself is rc.

Proof. Construct a matrix P by replacing 1's in the BRD by B and -1's in the BRD by C. Then a block diagonal entry of PP^{T} is rBB^{T} (using (i) $BB^{T} = CC^{T}$) which is equal to rcI + rd(J-I). Now as the inner product of any two rows of a BRD is zero, it is clear that the product of the entries in the pairs (1, 1) and (-1, -1) and in the pairs (1, -1) and (-1, 1) occur equal number of times in the inner product. Therefore the off diagonal block entry of PP^{T} is equal to $\lambda(BB^{T} + BC^{T})$, which is equal to $\lambda((c+e)I + (d+f)(J-I))$ (using (ii) $BC^{T} = CB^{T}$). Hence the result follows. \Box

Let B be a symmetric balanced ternary design. Then

$$BB^{\mathrm{T}} = (R^2 - \Lambda V)I + \Lambda J.$$

Now we use Theorem 4 with B = C, to get

Corollary 5. A symmetric BTD(V, B; $\varrho_1, \varrho_2, R; K, \Lambda$) and a BRD($v, b, r, k, 2\lambda; Z_2$) give a PBTD($vV, bV; r\varrho_1, r\varrho_2, rR; kR, \Lambda_1 = r\Lambda, \Lambda_2 = 2\lambda(R^2 - \Lambda V + \Lambda), \Lambda_3 = 2\lambda\Lambda$).

Similarly,

Corollary 6. A symmetric BTD(V, B; $\varrho_1, \varrho_2, R; K, \Lambda$) and a Hadamard matrix of order 4t give a PBTD(4tV, 4tV; 4t $\varrho_1, 4t\varrho_2, 4tR; 4tR, \Lambda_1 = 4t\Lambda, \Lambda_2 = 4t(R^2 - \Lambda V + \Lambda))$.

Remark. Let B be a symmetric balanced ternary design. Then as above

 $BB^{\mathrm{T}} = (R^2 - \Lambda V)I + \Lambda J,$

and furthermore

$$(2J-B)(2J-B)^{\mathsf{T}} = 4JJ^{\mathsf{T}} - 2JB^{\mathsf{T}} - 2BJ^{\mathsf{T}} + BB^{\mathsf{T}}$$
$$= 4VJ - 4RJ + BB^{\mathsf{T}};$$

 $B(2J-B)^{\mathrm{T}}=2BJ-BB^{\mathrm{T}}=2RJ-BB^{\mathrm{T}},$

and

 $(2J-B)B^{\mathrm{T}} = 2JB - BB^{\mathrm{T}} = 2RJ - BB^{\mathrm{T}}.$

Theorem 7. Let B be a symmetric balanced ternary design with R = V and suppose a BRD $(v, b, r, k, 2\lambda; Z_2)$ exists. Then a PBTD $(vV, bV; r\rho_1, r\rho_2, rR; kR, \Lambda_1 = r\Lambda, \Lambda_2 = 2\lambda R)$ exists.

Proof. Suppose that in the statement of Theorem 4, *B* is a symmetric BTD and C=2J-B. Also note that V=R and therefore $V-\varrho_1-\varrho_2=\varrho_2$ and therefore the values of ϱ_1 and ϱ_2 do not change in 2J-B. \Box

Example 2. A BTD(11, 11; 1, 5, 11; 11, 10) exists [2, no. 113] and a BRD(4, 3, 2; Z_2) exists, therefore a PBTD(44, 44; 3, 15, 33; 33, $A_1 = 30$, $A_2 = 22$) exists.

Corollary 8. Let B be a symmetric BTD with R = V. Suppose a BRD $(v, b, r, k, 2\lambda; Z_2)$ exists such that $rA = 2\lambda R$; then a BTD $(vV, bV; r\varrho_1, r\varrho_2, rR; kR, rA)$ exists.

Example 3. BRD(4, 3, 2; Z_2) and BTD(3, 3; 1, 1, 3; 3, 2) give a BTD(12, 12, 3, 3, 9; 9, 6). Now this design also exists [Billington and Robinson, 1983, no. 57], but the solution is given by listing all the blocks.

We observe that if there exist a BTD $(V, V; \varrho_1, \varrho_2, R = V, V, \Lambda)$ and a BRD $(v, b, r, k, 2\lambda; Z_2)$ for which $r\Lambda = 2\lambda R$, then the BTD $(vV, bV; r\varrho_1, r\varrho_2, rR; kR, 2\Lambda R)$ constructed by using Theorem 7 and the BRD $(v, b, r, k, 2\lambda; Z_2)$ can also be used to give a BTD. In other words:

Theorem 9. If there exists a BTD($V, V; \varrho_1, \varrho_2, V; V, \Lambda$) and a BRD($v, b, r, k, 2\lambda; Z_2$) for which $r\Lambda = 2\lambda R$, then the BTD($v^t V, b^t V; r^t \varrho_1, r^t \varrho_2, r^t R; k^t R, (2\lambda)^t R$) exists for all integers $t \ge 0$.

Proof. Suppose that the new BTD constructed by Theorem 7 has the replication number R' = rR and the index $\Lambda' = 2\lambda R$. We wish to show that R' and Λ' satisfy Corollary 8, i.e., $r(\Lambda') = 2\lambda R'$, but $r(2\lambda R) = 2\lambda(rR)$.

Example 3 now gives

Corollary 10. A BTD $(4^{t} \cdot 3, 4^{t} \cdot 3; 3^{t}, 3^{t}, 3 \cdot 3^{t}; 3 \cdot 3^{t}, 2^{t} \cdot 3)$ exists for all $t \ge 0$.

Now we will construct some balanced ternary designs via Theorem 7 using a particular BTD

$$B = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 0 & 2 \end{bmatrix} \text{ and } C = 2J - B.$$

Corollary 11. If $v(v-1) \equiv 0 \pmod{12}$, then there exists a BRD $(v, b, r, 3, 2\lambda; Z_2)$ (see Seberry, 1982) and therefore a PBTD $(3v, 3b; r, r, 3r; 9, \Lambda_1 = 2r, \Lambda_2 = 6\lambda)$ exists. Furthermore if $2r = 6\lambda$ then we get a BTD.

Example 4. BRD(4, 4λ , 3λ , 3, 2λ ; Z_2) gives a BTD(12, 12λ ; 3λ , 3λ , 9λ ; 9, 6λ).

Remark. Several families of PBTD(3v, 3b; r, r, 3r; 12, $\Lambda_1 = 2r$, $\Lambda_2 = 6\lambda$) can be constructed by using the existence results of BRD(v, b, r, 4, $2t\lambda$; Z_2), which are given by de Launey and Seberry (1984).

A result similar to Theorem 4 can be given as follows:

Theorem 12. Let a BRD $(v, b, r, k, 2\lambda; Z_2)$ with the following properties exist:

(a) In the inner product of any two distinct rows the number of occurrences of the pairs (1,1), (-1,-1), (1,-1) and (-1,1) are constants, say c_1 , c_2 , c_3 and c_4 respectively, (with $c_1 + c_2 = c_3 + c_4 = \lambda$).

(b) Each row of the BRD contains constant number of 1's and -1's, say d_1 and d_2 (with $d_1 + d_2 = r$).

Assume further that there exist square matrices B and C of the same order with entries from $\{0, 1, 2, ..., n-1\}$, and which satisfy:

(i) $BB^{T} = sI + q(J-I);$ (ii) $CC^{T} = uI + w(J-I);$ (iii) $BC^{T} = xI + y(J-I);$

(iv) $CB^{T} = zI + a(J-I);$

where s, q, u, w, x, y, z, and a are integers. Then there exists a matrix with entries from $\{0, 1, 2, ..., n-1\}$ such that the inner product of any two distinct rows is in the set $\{\Lambda_1 = d_1q + d_2w, \Lambda_2 = c_1q + c_2w + c_3y + c_4a, \Lambda_3 = c_1s + c_2u + c_3x + c_4z\}$ and the inner product of a row with itself is $d_1s + d_2u$.

Theorem 13. Suppose a SBIBD($4t^2$, $2t^2 + t$, $t^2 + t$) and a symmetric BTD(V, V; ϱ_1 , ϱ_2 , R; R, Λ) exist. Further suppose that the Hadamard matrix corresponding to the SBIBD satisfies the properties required in Theorem 12 for the BRD. (Note that the Hadamard matrix corresponding to the SBIBD is a BRD($4t^2$, $4t^2$, $4t^2$, $4t^2$, $4t^2$, Z_2).) Then there exists a PBTD($4t^2V$, $4t^2V$, $4t^2\varrho_1$, $(2t^2 - t)(V - \varrho_1) + 2t\varrho_2$, $2V(2t^2 - t) + 2tR$; $2V(2t^2-t) + 2tR$, $\Lambda_1 = 4t^2\Lambda + 4(2t^2 - t)(V - R)$, $\Lambda_2 = 4t^2R + 4(t^2 - t)(V - R)$).

Proof. SBIBD($4t^2$, $2t^2 + t$, $t^2 + t$) gives a regular (constant row and column sum 2t) Hadamard matrix, H, when its zeros are replaced by -1's. That means in the proof of Theorem 12, $c_1 = t^2 + t$, $c_2 = t^2 - t$, $c_3 = c_4 = t^2$. Now replace the ones by the symmetric BTD B and -1's by C = 2J - B. Then the block matrix so constructed has $2t^2 + t$ copies of B and $2t^2 - t$ copies of C in each of its row. Now using the remark after Corollary 6, and the notation of Theorem 12, we have

 $s = R^2 - \Lambda(V-1), \quad q = \Lambda; u = R^2 - \Lambda(V-1) + 4(V-R), \quad w = \Lambda + 4(V-R);$

 $x = z = 2R - (R^2 - \Lambda(V-1));$ $y = a = 2R - \Lambda;$ $d_1 = 2t^2 + t,$ $d_2 = 2t^2 - t.$

Therefore we get the required PBTD $(4t^2V, 4t^2V; 4t^2\varrho_1, (2t^2 - t)(V - \varrho_1) + 2t\varrho_2, 2V$ $(2t^2 - t) + 2tR; 2V(2t^2 - t) + 2tR, \Lambda_1 = 4t^2\Lambda + 4(2t^2 - t)(V - R), \Lambda_2 = 4t^2R + 4(t^2 - t)$ (V - R)).

Corollary 14. If V = 2R - A then we get a BTD $(4t^2V, 4t^2V; 4t^2\varrho_1, (2t^2 - t)(V - \varrho_1) + 2t\varrho_2, 2V(2t^2 - t) + 2tR; 2V(2t^2 - t) + 2tR, 4t^2R + 4(t^2 - t)(V - R)).$

Example 5. BTD(6, 6; 2, 1, 4; 4, 2) exists [Billington and Robison, 1983 no. 3] and SBIBD(4, 3, 2) (t=1) exists (first row: 1 1 1 0). Here $c_2 = 0, 4t^2R + 4c_2(V-R) = 16$ and $4t^2A + 4(2t^2 - t)(V-R) = 8 + 8 = 16$ and therefore a BTD(24, 24; 8, 6, 20; 20, 16) exists.

Remark. The SBIBD($4t^2$, $2t^2 + t$, $t^2 + t$) used in Theorem 13 have been extensively studied in Koukouvinos, Kounias and Seberry (1989) and Seberry (1992).

Appendix

A list of BTDs obtained via Theorem 2 is given. The last column gives the number of the BTD used with prime power V in Billington and Robinson (1983).

								No. in		_							No
No.	V	B	ϱ_1	ϱ_2	R	K	Λ	B&R	No.	V	B	ϱ_1	ϱ_2	R	K	Λ	B
1	9	12	4	4	12	9	11	1	83	49	112	48	24	96	42	81	1
2	9	16	8	4	16	9	15	2	84	49	96	48	24	96	49	95	1
3	9	20	12	4	20	9	19	4	85	361	380	120	60	240	228	151	1
4	49	56	24	8	40	35	28	6	86	81	360	40	40	120	27	38	1
5	25	30	6	12	30	25	29	7	87	25	120	24	24	72	15	40	1
6	9	24	16	4	24	9	23	9	88	9	48	16	16	48	9	44	1
7	64	72	36	9	54	48	40	11	89	64	216	36	36	108	32	52	1
8	25	60	12	12	36	15	20	12	90	25	90	24	24	72	20	55	1
9	9	24	8	8	24	9	22	13	91	25	72	24	24	72	25	70	1
10	25	36	12	12	36	25	35	14	92 02	81	120	40	40	120	81	119	1
11 12	9 121	28 132	20	4	28	9 77	27 53	15 18	93 04	121 81	144 390	24 110	60	144 130	121 27	143 42	1 1
12			60	12	84 28	77			94 05	81 9	590 52	44	10 4	52	27 9	42 51	1
13	9 25	28 42	12 18	8 12	28 42	9 25	26 41	21 22	95 96	9 529	552	44 264	4 24	312	9 299	176	
	16		10							329 9	552			512	299 9	50	1 1
15	49	35		15	35	16	33	23	97 08			36	8			50 57	1
16 17	49 9	56 32	8 24	24 4	56 32	49	55 31	25 26	98 99	64 25	234	81 54	18 12	117 78	32 25	57 77	1
17	361	32 380	120	20	52 160	9 152	51 67	20 29	99 100	23 9	78 52	54 28	12	52	23 9	49	1
19		32	120	20	32	152 9	30	31	100	16	65	35	12	65	16	63	1
20	121	264	48	。 24	52 96	9 44	30 34	32	101	49	104	55 56	24	104	49	103	1
20	25	204 60	24	12	48	20	34	32 34	102	49 9	52	20	16	52	49 9	48	1
22	25	48	24 24	12	48	25	47	34	103	25	78	30	24	78	25	76	1
23	16	40	10	15	40	16	38	37	105	81	130	50	40	130	81	129	1
24	49	64	16	24	64	49	63	38	105	121	156	36	60	156	121	155	1
25	81	270	70	10	90	27	29	40	107	16	65	5	30	65	16	61	2
26	25	90	42	6	54	15	31	41	108	169	182	14	84	182	169	181	2
27	9	36	28	4	36	9	35	42	100	9	56	48	4	56	9	55	2
28	121	32	84	12	108	99	88	46	110	961	992	384	32	448	434	202	2
29	64	216	45	18	81	24	29	47	111	256	272	204	17	238	224	208	2
30	9	36	20	8	36	9	34	48	112	81	420	100	20	140	27	45	2
31	25	54	30	12	54	25	53	49	113	9	56	40	8	56	9	54	2
32	49	168	24	24	72	21	29	51	114	25	84	60	12	84	25	83	2
33	16	45	15	15	45	16	43	53	115	289	612	180	36	252	119	103	2
34	9	36	12	12	36	9	33	54	116	121	384	120	24	168	77	106	2
35	16	45	15	15	45	16	43	55	117	81	180	100	20	140	63	108	2
36	49	72	24	24	72	49	71	56	118	9	56	32	12	56	9	53	2
37	81	90	10	40	90	81	89	59	119	16	70	40	15	70	16	68	2
38	9	40	32	4	40	9	39	60	120	49	112	64	24	112	49	111	2
39	64	180	72	9	90	32	44	61	121	9	56	24	16	56	9	52	2
40	81	150	80	10	100	54	66	63	122	25	84	36	24	84	25	82	2
41			192	24		230	104	66	123	81	140	60	40	140		139	2
42	81		60	20	100	27	32	68	124	121	168	48	60	168	121	167	2
43	9	40	24	8	40	9	38	69	125	16	70	10	30	70	16	66	2
44	361		120	40	200	95	52	71	126	169	364	28	84	196		104	2
45	169	364	84	28	140	65	53	72	127	49	112	16		112	49	110	2
46	49	112	48	16	80	35	56	74	128	169	196	28		196	169		2
47	25	60	36	12	60	25	59	75	129	64	360	117	9	135	24	49	2
48	9	40	16	12	40	9	37	77	130	25	150	78	6	90	15	52	2

	I/			_	D	v		No. in		I/	D	0	0	- D	v	4	No. i B&R
No.	V	B	ϱ_1	ϱ_2	R	<u></u>	_Λ	B&R	No.	V	В	ϱ_1	ϱ_2	R	K	Λ	Bak
49	16	50	20	15	50	16	48	78	131	9	60	52	4	60	9	59	270
50	49	80	32	24	80	49	79	80	132	2809	2862	702	54	810	795	229	275
51	169	182	56	42	140	130	107	83	133	289	306	234	18	270	255	238	277
52	81	180	20	40	100	45	54	84	134	9	60	44	8	60	9	58	279
53	25	60	12	24	60	25	58	85	135	225	720	176	32	240	75	79	281
54	81	100	20	40	100	81	99	87	136	81	270	110	20	150	45	82	282
55	9	44	36	4	44	9	43	89	137	64	216	99	18	135	40	83	283
56	361	380	180	20	220	209	127	95	138	25	90	66	12	90	25	89	284
57	169	182	126	14	154	143	130	96	139	169	910	126	42	210	39	47	287
58	9	44	28	8	44	9	42	97	140	81	450	90	30	150	27	48	288
59	25	66	42	12	66	25	65	98	141	49	280	72	24	120	21	49	289
60	81	330	50	30	110	27	35	100	142	25	150	54	18	90	15	51	290
61	9	44	20	12	44	9	41	101	143	16	100	45	15	75	12	53	291
62	16	55	25	15	55	16	53	102	144	9	60	36	12	60	9	57	292
63	49	88	40	24	88	49	87	103	145	16	75	45	15	75	16	73	293
64	25	66	18	24	66	25	64	107	146	361	1140	180	60	300	95	78	295
65	81	110	30	40	110	81	109	108	147	49	168	72	24	120	35	84	297
66	121	132	12	60	132	121	131	113	148	49	120	72	24	120	49	119	298
67	9	48	40	4	48	9	47	115	149	9	60	28	16	60	9	56	304
68	121	528	96	24	144	33	38	123	150	25	90	42	24	90	25	88	306
69	25	120	48	12	72	15	41	125	151	81	150	70	40	150	81	149	308
70	9	48	32	8	48	9	46	126	152	121	660	60	60	180	33	47	309
71	289	918	144	36	216	68	50	127	153	9	60	20	20	60	9	55	312
72	81	270	80	20	120	36	52	128	154	64	270	45	45	135	32	65	313
73	25	90	48	12	72	20	56	129	155	121	180	60	60	180	121	179	321
74	25	72	48	12	72	25	71	130	156	16	75	15	30	75	16	71	327
75	81	180	80	20	120	54	79	133	157	169	546	42	84	210	65	79	328
76	64	144	72	18	108	48	80	134	158	81	270	30	60	150	45	81	329
77	49	224	48	24	96	21	39	139	159	49	168	24	48	120	35	83	330
78	16	80	30	15	60	12	42	140	160	25	90	18	36	90	25	87	331
79	9	48	24	12	48	9	45	141	161	49	120	24	48	120	49	118	335
80	256	816	102	51	204	64	50	142	162	169	210	42	84	210	169	209	336
81	49	168	48	24	96	28	53	144	163	64	135	9	63	135	64	133	340
82	16	60	30	15	60	16	58	146	164	225	240	16	112	240	225	239	344

Acknowledgement

We are grateful to the referees for useful comments.

References

Billington, E.J. (1984). Balanced *n*-ary designs: A combinatorial survey and some new results. Ars Combinatoria 17A, 37-72.

Billington, E.J. and P.J. Robinson (1983). A list of balanced ternary designs with $R \le 15$, and some necessary existence conditions. Ars Combinatoria 16, 235-258.

Denig, W.A. and D.G. Sarvate (1992). Classification and constructions of ternary group divisible designs. *Congressus Numerantium*. Accepted.

Donovan, D. (1986). Topics in balanced ternary designs. Ph.D. Thesis, University of Queensland.

Geramita, A.V. and J. Seberry (1979). Orthogonal designs: Quadratic Forms and Hadamard Matrices. Marcel Dekker, New York.

Koukouvinos, Ch., S. Kounias and J. Seberry (1989). Further Hadamard matrices with maximal excess and new SBIBD($4k^2$, $2k^2 + k$, $k^2 + k$). Utilitas Mathematica 36, 135–150.

Launey, W. de and J. Seberry (1984). Generalized Bhaskar Rao designs of block size four. *Congressus Numerantium* **41**, 229–294.

Mirchandani, J. and D.G. Sarvate (1992). Some necessary existence conditions, constructions, and a list of partially balanced ternary designs. Submitted.

- Palmer, W. and J. Seberry (1988). Bhaskar Rao designs over small groups. Ars Combinatoria 26A, 125-148.
- Patwardhan, G.A. and S. Sharma (1988). A new class of partially balanced ternary designs. Ars Combinatoria 25, 189-194.
- Saha, G.M. and A. Dey (1973). On construction and uses of balanced ternary designs. Ann. Inst. Statist. Math. 25, 439-445.
- Sarvate, D.G. (1990). Constructions of balanced ternary designs. J. Australian Math. Soc. Ser A, 48, 320-332.
- Soundara Pandian, V.S. (1980). Construction of partially balanced *n*-ary designs using difference sets. Ann. Inst. Statist. Math. 32, 445-464.
- Seberry, J. (1982). Some families of partially balanced incomplete block designs. In: E.J. Billington, A.P. Street and S. Oates-Williams, Eds., Combinatorial Mathematics IX, Vol. 952, Lecture Notes in Mathematics. Springer Verlag, Berlin, 378-386.
- Seberry, J. (1984) Regular group divisible designs and Bhaskar Rao designs with block size 3. J. Statist. Plann. Inference 10, 69-82.
- Seberry, J. (1989) SBIBD($4k^2$, $2k^2 + k$, $k^2 + k$) and Hadamard matrices of order $4k^2$ with maximal excess are equivalent. Graphs and Combinatorics 5, 373-383.
- Street, A.P. and D.J. Street (1987). Combinatorics of Experimental Design. Oxford Science Publications, Clarendon Press, Oxford.
- Tocher, K.D. (1952). The design and analysis of block experiments, J. Roy. Statist. Soc. Ser B 14, 45-100.