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matrices by using two Hadamard matrices
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Canberra, ACT 2600, AUSTRALIA

May 20, 1991

Abstract

We prove that if there exist Hadamard matrices of order h and n divisible by 4 then
there exist two disjoint W(Zhn, 1hn), whose sum is a (1,~1) matrix and a complex
Hadamard matrix of order —Im furthermore, if there exists an OD(m; sy, 53, - - -, 81) for
even m then there exists an OD( hnm; zhnsl, zhns2, .. hns,)

1 Introduction and Basic Definitions

A complex Hadamard matriz (see [4] ), say C, of order ¢ is a matrix with elements
1, 1,4, —i satisfying CC* = cI, where C* is the Hermitian conjugate of C. From (4], any
complex Hadamard matrix has order 1 or order divisible by 2. Let C = X + {Y, where
X,Y consist of 1,—1,0 and X AY = 0 where A is the Iladamard product. Clearly, if C is
an complex Hadamard matrix then XXT 4+ Y¥7T =¢f, X¥T = Y X7

A weighing matriz [2) of order n with weight &, denoted by W = W(n,k),is a (1,—~1,0)
matrix satisfying WW7T = kI,. W(n, n) is an Iladamard matrix.

Let A; be a (1,—1,0) matrix of order m and A; A = 8;I,. An orthogonal design D =
1A +:c2A2+ -+x1A; of order m and type (51,89, --, s,), written OD(m; 8y,52,--+,351), 0n
the commuting variables z1,z5,+++,2; is a square matrix with entries 0,tzq, £2g, -, %2
where z; or —z; occurs s; times in each row and column and distinct rows are formally
orthogonal. That is

!
T= (Z 3,'1:]2-)1,"

J=1

Australasian Journal of Combinatorics 4{1991),pp 93-102



Let M be a matrix of order tm. Then M can be expressed as

My, Mg --- My,
M= Mz My - My,
My Mg .- My

where M;; is of order m (i,j = 1,2,---,t). Analogously with Seberry and Yamada [3}, we
call this a t? block M-structure when M is an orthogonal matrix.

To emphasize the block structure , we use the notation M(,), where M) = M but in
the form of 2 blocks, each of which has order m.

Let N be a matrix of order tn. Then, write

Nu Nz .-+ Ny

N. N ... N.
Ny = n Nep oo Nu

Na N -+ Ny

where N;; is of order n (4,5 = 1,2,--,1).
We now define the operation () as the following:

Ly Ly -+ Lu
Ly Ly -+ Lo

My QO Ny = )
Ly Ly --- Ly
where M;;, N;; and L;; are of order of m,n and mn, respectively and

Lij = My X Nyj + Miz X Noj + - -« + My X Nyj,

8,7 =1,2,---,t. We call this the strong Kronecker multiplication of two matrices.

2 Preliminaries

Theorem 1 Let A be an OD(tm;py,---,p) with entries zy,--+,z; and B be an
OD(tn;q,--,qs) with entries y1,--+,y, then

i s
(A(z) O B(t))(A(t) O B(z))T = (Z PJ‘”?)(Z qjy]?)ltmw

=1 =1

{A(s) O Byyis not an orthogonal design but an orthogonal matriz.)
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[ A A -+ Ay ]

A = An An Ay
| An A - Au |
and -
Bu By -+ By ]
By = By B Bz
| Bu By - Bu |

where A;; and B;; are of orders m and n respectively (¢,j = 1,2,---,1).

Write
Cip Ci2 - Cu
Cn Cm - C
C=(AwO Byl Ap OBy =| " ™ ™™
Cn Cg -+ Cu

where C;; is of order mn.

We first prove Cy3 = 0. It is easy to calculate C)3 =

H
=3 (A1 x Bij + A1z x Baj + -++ + A x By;)(Af; x B + AL x BY, +--—+ A% x BY)
5=

i
= Y [(An4d) x (Bi;BY) + (A12A%,) x (By;BE) + -+ + (AuAf) x (By; B)))

=1
L2
= (AnAf + AAL + - + AuAD) x O GyD .
Jj=1
But
AnAl + ApAL + -+ ApAL = 0,
$O
Ci3=0.
Similarly,
Ci; = 0(i # j).

We now calculate Cj;.

t
Cii =Y (Ai X Bij + Aig X Baj + -+ + Ay x Byj)(A} x BT, + AL x B, +---+ AL, x Bf,
Jj=1

t .
= 3" [(AuaA]) x (B1;BY)) + (AnAL) x (B2 BE,) + -+ + (A AT) x (B BY)]
=

s
= (A Al + A AL + - + A AY) x ( 4y L
j=1
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{ s
= (X pieDn x (X a59P)1n

j=1 =1

] s
= (X Pie)( 49D .
j=1

=1
Thus .
(A) O Biy)(Aw O B = (X 212X 49 Iemn.

=1 =1

Corollary 2 Let A and B be the matrices of orders tm and tn respectively, consist of
1,—1,0 satisfying AAT = pl,,; and BBT = qI,;,. Then '

(Ay O Byy)(Ary O Biy)T = palimn-

Proof. 1In this case, A = OD(tm;p) , B=0D(tn;q) and z; = y; = 1.

In the remainder of this paper let Il = (JI;;) and N = (N;;) of order / and n respectively
be 16 block M-structures [3]. So

Hy Iy Hyz Hy
Hy Iy Hpz Hy
H3y Hz; Hss Hay
Hyy Hyy Hsgz Hyy

where . 4
S HiHL=hl, =) H;HE,
j=1 j=1
for i =1,2,3,4 and
4 4
S H;HL=0=) H;H},
j=1 i=1
for i # k, i,k =1,2,3,4.

Similarly, let

Nn N2 Nz Ny
Nai Nag Naz Ny
N3; Na; Nzz Ny
Ny Ny Nyz Ny

where . )
ZN.'J'NS =al, = Z N_,','ij,:,
i=1 =1
fori=1,2,3,4 and
4 4
S NiNL=0=Y NN},

J=1 J=1
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fori#k, i,k =1,2,3,4.

For ease of writing we define X; = %(H,-l + Hi), Yi= %(H,-l - Hp), Z; = %(H.‘a + Hi),
W; = %(H,‘;; — Hyy), where ¢ = 1,2,3,4. Then both X; 1Y, and Z; £ W; are (1, —1)-matrices
with X; AY; =0 and Z; A W; = 0, A the Hadamard product.

Let
Hy+Hy —Hn+Hi Hiz+Hyy —-Hiz+ Hyy
1| Hn+Hyy —Hn+ Hyy Hypz+Hyy —Has+ Ha
2| Ha+ Hsy —Il51+ H3y Hzz+ Higy —H3zz+ Hsg
Hy+Hy —Hpn+ Hyy Hyz+ Hys —Hypa+ Hyy

S =

Then S can be rewritten as

Hy Hiyy His His 1 <10 0
S—l Hyy Hey Hyz Hy 0 1 41 0 O
Hy Hyy Hyz Hy 0 0 1 +1

or
X - 4, -
X, -V, Z, -W,
X3 -Y; Zz -W;3
Xy -Y, 24 -W,

Obviously, S is a (0,1, —1) matrix.

Write

n Xa W 4y
Y X2 W, Z,
h Xa Ws Zs |’
Yo Xy Wy Z4

also a (0,1, —1) matrix.
We note S+ Ris a (1,~1) matrix, RA S = 0 and by Corollary 1

ST = RRT = %hlh.

Lemma 3 If there ezists an Hadamard matriz of order h divisible by 4, there ezists an
OD(h; %h, 3h).

Proof. From S and R as above. Now H = S+ R. Note HHT = ST+ RRT+ SRT+ RST =
hI, and SST = RRT = %h[h. Hence SRT + RST = 0. Let = and y be commuting variables
then E = 25 + yR is the required orthogonal design.

97



3 Weighing Matrices

Lemma 4 If there ezist Hadamard matrices of order h and n divisible by 4, there ezists a
W(ihn,ihn).

Proof. Let H and N as above be the Hadamard matrices of order h and n respectively. Let

.Xl )’1 Z] VV] Nu N12 Niz Ny
le X, Vs Z, W, 0 Ng1 Naz Nag Ny
2| Xs Ya Z3 W3 N3y Naz Naz Ny
)(4 }’4 Z4 I‘V.l N41 N«ﬂ N43A Ar'H
Rewrite
Py P Pz Py
P= Py Py Pz Py
P3; Py Pz Pay
Py Py; Pz Py
Consider

1
Py = —2—(X1 X N11+Y; X Na1 + Z; x Ngg + Wy X Ny,

where both X; X Nyj; +Y; X Ny and Z; X Nay + Wy x Ny are (1, —1) matrices. So Pi; has
entries 1,~1,0 and similarly for other P;;. By Lemma 1,

1
T _ —
PP = 8hnI},m.

Then # is a W(%Im, éhn).

Corollary 5 There erists a W(h, %h) (h > 1) if there exists an Hadamard matriz of order
h.

Proof. I h > 2let n =4 in Theorem 1. For the case h = 2, note W(2,1) is the identity
matrix.
We also note that if

Xa W 2 o Nu DNz Nz Ny

Q= 11X, Yo 2 W, 0 Nn Nz Ngg Ny
21 X3 Ys Zz W, —Na1 —Nazz ~Nzz =Nz

X4 Yy 24 Wy ~Nyg —Ngg —Ngz —Ny

Then Q is also a W(%hn, }hn).

Theoremn 6 Suppose h and n divisible by 4, are the orders of Hadamard matrices then
there ezist two disjoint W(%hn, %hn), whose sum and difference are (1, ~1) matrices.
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Rewrite

Qu Q1z Qi3 Qua
0= Qn Q2 Q1 Qu
@31 Q32 Q3 Qu
Qu Quz Quz Qu

We note 1
Pij = 5(Xi X Nij + Y X Noj + Z; X Naj + Wi X Nyj),

and
1
Q,‘j = E(X. X N]j +Y; x sz - Z; x 1\’3_7' - W; x N4j).

Since P + Qi = X; X N1j + Y x Noj and Pyj — Qi = Z; x N3; + W; x Ny; we conclude
that P;; + Q;; are (1,—1) matrices and P;; AQ;; = 0. Thus P £ Q is a (1,—1) matrix and
PAQ =0. P and Q are both PV(-};hn, %hn) by Corollary 1.

4 Complex Hadamard Matrices
Lemma 7 PQT = QPT,

Proof. Write
By By, Eiz Eyy
Enn Eyy Ejz Eoy

T
PQ E3;

I
&
]
8
&

and _

PT =
@ F3 Fap Fzz Fay

We first prove E;3 = Fis.

We note
E3 =
1 4
= ij—;(X]lej-i-Yl X Naj+Zy X Naj+ Wi x Ny (X x N+ YT x NL - 2T x NL-WT x NT)
and
Fi3=
1

4
=5 3 (X1x Nyj+Yi x Noj—Zy x N3j— Wy XNa ) X3 xNE+YT < NT+ 2T x NE+wT < NT).
i=1
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Obviously, E;3 = Fp3 if and only if

. .
D(X1 X Nij+ Yi x No;) (235 x N+ W x NJ)) ®
j=1
4

=3 (% x N3j+ W1 x N} (XT x N + Y x NT). (2)
=1

To show this, note

4 4 4 T
So(Xy x Nyy) (2T x N) = 3 (X123) x (Ni;NE) = X128 x 3" Ny;NE =0,
Jj=1 j=1 j=1 .

and similarly for other parts in (1) and (2). Thus Ey3 = Fi3. Similarly, E;; = F};, for other

i .

We now prove E; = F;;. We see
E;=

1 - .
=7 D (XixX Nyj+Yi X Noj+ Zix Naj+ Wx Ny XT x NE+ YT x NE-ZT x NE-WF x NE)

Fi=

4
= %Z(X,»lej-t-Y.-xNgj—Z;><N3,-—W.-><N4j)(X,-TxN1Tj+Y,-T><N2Tj+Z,~TxN£~+W,-TXNZ;-).

7=1

[

Obviourly, E;; = Fy; if and only if

4
D(Xi x Nyj +Y; x Noj)(2F < NE + WT x NT) (3)
j=1
4
=3 (Zi x Naj + Wi x Ny} XT x NE + ¥T x NE). (4)
Jj=1

The proof is the same as in (1) and (2). Hence E;; = F;. Finally, we conclude PQT = QPT.

Theorem 8 If there exist Hadamard matrices of order h and n divisible by { then there
ezists a complex Hadamard mairiz of order %hn.

Proof. By the proof of Theorem 2, P and Q are the two disjoint W(;hn, 3hn)ie. PAQ =0
and P+ @ is a (1,~1) matrix. Furthermore by Lemma 3, PQT = QPT. Thus P+iQ isa
complex Hadamard matrix of order %hn.

100



5 Orthogonal Designs

Theorem 9 If there exist Hadamard matrices of order h , n vdivisible by 4 and an
OD(m;s1,82,--,81), where m is even, then there erists an

1
oD( ihnm; Zhnsl , ihnsg, caey, %hns;).

Proof. Let
— Dy Dg
D= [ Ds D4}’
be the OD(m;sy,82,-+-,8) on the commuting variables z1,---,%;, where Dj is of order
1m. Let
gm. Le

Y ) D, D
v=| 5 $lo[n 2]

where P and Q, constructed above, are from the Hadamard matrices of order / and =.

Then by Theorem 3 and Corollary 1,
1 !
T 2
D'D* = Zhn( E ijj)Il_h"m.
J

Since PAQ = 0, if D consists of 0, £z, -+, +z; then D’ also consists of 0,xz1,+ -+, %z so
D' is an " 1 1 1
oD( Zhnm; zhnsl, ZhTLSg,' N Zhns,).

Corollary 10 If there exist Hadamard matrices of order h and n divisible by { then there
exists an OD(3hn; %hn, 1hn).

Proof. Let
D= [ ’ y]

in the proof of Theorem 4, where z and y are commuting variables, put m = { = 2 and
s1=8=1.

6 Remark

Theorem 1 cannot be replaced by Corollary 1 because the existence of ladamard matrices
of order & and n does not imply the existence of an Iladamard matrix of order %hn. For
example, there exist Hadamard matrices of order 4 -3 and 4 - 71 but no Hadamard matrix
of order 4 - 213 has been found [1}, however, by Theorem 1, we have a W(4 -213, 2-213).
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By the same result, there exists a W (4k,2k) and a complex Hadamard matrix of order 4k,
where k is

781 789 917 1315 1349 1441 1633 1703 2059 2227 2489 2515
2627 2733 3013 3273 3453 3479 3715 4061 4331 4435 4757 4781
4899 4979 4997 5001 5109 5371 5433 5467 5515 5533 5609 5755
5767 5793 5893 6009 6059 6177 6209 6333 6377 6497 6539 6575
6801 6881 6887 6943 7233 7277 7387 7513 7555 7663 7739 781l
7989 8023 8057 8189 8549 8591 8611 8633 8809 8879 8927 9055
9097 9167 9557 9363 9573 9659 9727 9753 9757 9869 9913 9991
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