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Some Remarks on Authentication Systems 

Martin H.G. Anthony', Keith M. Martin', 
Jennifer Seberry", Peter Wild' 

Abstract 

Brickell, Simmons and others have discussed doubly perfect authentica­

tion systems in which an opponent's chance of deceiving the receiver is a 

minimum for a given number of encoding rules. Brickell has shown that in 

some instances to achieve this minimum the system needs to have splitting. 

Such a system uses a larger message space. Motivated by Brickell's ideas we 

consider authentication systems with splitting and the problems of reducing 

the message space. 

1 Authentication 

We use the model of authentication described by Simmons [9, 10] and Brickell [1]. 

There are three participants involved in this model; a transmitter T, a receiver R 

and an opponent O. T wants to communicate some infonnation to R. It is not 

necessary that the information be kept secret, but R wants to be sure that the 

information did indeed come from T. 

An item of information that the transmitter might want to send to the receiver 

is called a source state, and we denote by S the set of source states. We assume 

that there is some fixed probability distribution Ps on S (Ps(') is the probability 

that s E S is to be communicated on any given occasion). 

In order to relay a source state s E S to R, T encodes it (using some encoding 

rule chosen from a set I of encoding rules) as a message m and sends m to R. 
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In order for R to be able to determine which source state is being relayed it is 

necessary that for any given encoding rule a message m can relay at most once 

source state under that rule. T and R agree on which encoding rule they will use 

before communication starts. 

Let M be the set of messages that T can send to R. Let a be an element not 

belonging to S. Associated with an encoding rule i is a mapping fi: M --+ SU{O} 

given by fie m) = sifT can encode s E S as m under encoding rule i and fi( m) = a 

if no source state can be encoded as m under i. R accepts a message m as authentic 

(relaying source state s) if fi(m) = s. R rejects m if fi(m) = O. 

We call the triple (I, M, S) an authentication system and if III = b, IMI = v 

and IS) = k we denote it by AS(b, v, k). It may be represented by a matrix whose 

rows are indexed by the set I of encoding rules and whose columns are indexed 

by the set M of messages with entry fie m) in row i, coluIIlll m. Alternatively it 

may be represented by a b X k array A = (ai,) where ai. = {m E Mlj;(m) = s} 

for i E I, 8 E S. We call this b x k array ~ an authentication array corresponding 

to the authentication system. 

Example 1: Authentication array for AS(9,9,3) with M = {a, b, c, d, e, f, g, 

h}, is 

a d 9 
a e h 
a f , 
b d h 
b e i 
b f 9 
c d , 
c e 9 
c f h 

The opponent 0 attempts to get R to accept some information that did not 
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come from T. If 0 knows which encoding rule T and R have agreed upon then 

o may succeed with probability 1. We assume that T and R share an encoding 

rule in secret for each transmission and that the encoding rule is chosen according 

to a probability distribution PIon the set I of encoding rules. 0 may deceive R 

by impersonation or substitution. 0 impersonates T by sending a message when 

in fact T has not sent a message. 0 is successful if R accepts the message as 

authentic. If T sends a message m, relaying source state s, then 0 may intercept 

it and substitute a different message m'. 0 is sucessful if R accepts the substituted 

message m' and this message relays a source state different form s. 

If i E I and there exists ml 'I m2 such that !i(ml) = !i(m2) 'I 0 then we say 

splitting occurs in encoding rule i. If splitting occurs then two or more messages 

may relay the same source state for some encoding rule. In this case T also chooses 

a splitting strategy. Given that encoding rule i E I and the source state 8 E S are 

used, a splitting strategy determines the probability that T sends message m for 

each message m with may relay sunder i. 

An optimal strategy for T is a probability distribution PIon the set I of 

encoding rules and a splitting strategy which minimizes the probability that 0 

may successfully deceive R. This probability is denoted by Va and is a measure 

of the security afforded by the authentication system. 

2 Cartesian Doubly Perfect Authentication Sys­
tems 

Simmons and Brickell [1] have given a bOlllld on Va in terms of the size of the set 

I of encoding rules. They show that Va ::; b-~. This result was also obtained by 
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Gilbert, Mac Williams and Sloane [51 for a slightly different situation. 

An authentication system for which VG = b-t is called doubly perfect. 

In an authentication system (I,M,S), for each mE M, let f(m) denote the 

set {i E II/;(m) E S}. The proof of the following result is contained in the proof 

of Theorem 6 of Brickell [1]. 

Lemma 1 Let (1, M, S) be a doubly perfect authentication system AS(b, v, k) 

with VG = o. Then n = lin is an integer, b = n 2 and If(m)1 = n for all m E M. 

The bound of the following lemma is given by Simmons [l1]. Simmons also 

shows that if equality holds then splitting does not occur in any encoding rule of 

an optimal strategy. In an optimal strategy for a doubly perfect authentication 

system all encoding rules are equally likely. 

Hence we have 

Lemma 2 Let (1, M, S) be an authentication system AS(b, v, k). Write n = l!VG. 

Then v ~ kn. If the system is doubly perfect then equality holds if and only if there 

is no splitting. 

An authentication system is called. cartesian if whenever fie m) =f- 0 and IiC m) =f­

o for i, j E I and m E M then fie m) = fie m). In a cartesian authentication system 

a message relays the same source state whichever encoding rule is being used. The 

sets M(s) = {m E Mlfi(m) = s for some i E I} for s E S then partition M. In 

the b x k array A representing a cartesian authentication system the entry ai$ is a 

subset of Me s) which is the set of messages relaying source state s. 

Suppose that, for each s E S, 1>$ is a bijection from M(s) to the set of integers 

{I, 2, ... , IM(s)I}. Thus 4>, labels the messages of M(s) with the integers 1 to 
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IM(s)l. Then A' = (a;,) where a;. = 4>.(a;.) is a b X k array with integer entries. 

We refer to A' as a cartesian authentication array. 

Example 2: Cartesian authentication array ,corresponding to AS(9, 9, 3) of 

Example 1. 

Source States 
1 1 1 
1 2 2 
1 3 3 
2 1 2 Encoding 
2 2 3 Rules 
2 3 1 
3 1 3 
3 2 1 
3 3 2 

Brickell [1] has constructed cartesian doubly perfect authentication systems 

using cartesian authentication arrays which he has called orthogonal multi-arrays. 

An orthogonal multi-array OM A( k, nj Tl, ••• , Tk) is a n2 X k array A = (aij) satis-

fying (i) aij is a r j-subset of the set { 1, 2, ... , r j} and eli) given integers x, y with 

exists exactly one i such that ml E air and m2 E ajy. An OMA(k,n;rl1 ... ,Tk) 

corresponds to a cartesian doubly perfect authentication system with b = n2
, 

v = n 2: rj and VG = lin. This system has splitting if and only if Tj > 1 for some 

J. 

An OMA(k, nj 1, ... , 1) is called an orthogonal array and denoted OA(k, n). 

An OA(k, n) is equivalent to a set of k - 2 mutually orthogonal latin squares of 

order n. The maximum number of mutually orthogonal latin squares of order n 

is n - 1. A set of n - 1 mutually orthogonal latin squares of order n is called a 
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complete set. Complete sets of mutually orthogonal latin squares are known to 

exist when n is a prime power. 

1 1 
1 2 
1 3 
1 4 
1 5 
1 6 
2 1 
2 2 
2 3 
2 4 
2 5 
2 6 
3 1 
3 2 
3 3 
3 4 
3 5 

A' = (1,(a,,)) = 
3 6 
4 1 
4 2 
4 3 
4 4 
4 5 
4 6 
5 1 
5 2 
5 3 
5 4 
5 5 
5 6 
6 1 
6 2 
6 3 
6 4 
6 5 
6 6 

1 
2 
3 
4 
5 
6 
2 
3 
6 
1 
4 
5 
3 
6 
2 
5 
1 
4 
4 
1 
5 
2 
6 
3 
5 
4 
1 
6 
3 
2 
6 
5 
4 
3 
2 
1 

1,7 
2 
5 
6 
3 

4,8 
6 

1,8 
3 
2 

4,7 
5 
3 
6 

4,7 
1,8 

5 
2 
8 
4 

2,6 
3,5 

1 
7 
4 

3,5 
8 
7 

2,6 
1 

2,5 
7 
1 
4 
8 

3,6 

Encoding 
Rules 

(the numbers represent messages) 
Table 1. 

If there do not exist k - 2 mutual orthogonal latin squares of order n then a 

cartesian doubly perfect authentication system with VG = lin and lSI = k must 
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have splitting. For example, since there does not exist a pair of orthogonal latin 

squares of order 6, a cartesian doubly perfect authentication system with VG = 1/6 

and IS\ = 4 must have splitting. In such a case v > 24. Brickell [1] gives an example 

of an OMA(4,6j 1, 1, 1,2). This example corresponds to an authentication system 

with v = 30. This is the minimum size of M that such a system arising from an 

OMA can have. The following example shows that it is possible for a cartesian 

doubly perfect authentication system with VG = 1/6 and lSI = 4 to have fewer 

than 30 messages. 

This example is a cartesian authentication array corresponding to a cartesian 

doubly perfect authentication system with VG = 1/6, lSI = 4 and v = 26. 

Stinson [11] has used transversal designs to construct a cartesian authentication 

system with VG = 1/6, lSI = 7 and v = 42. (This system has a subsystem with 

4 source states and 24 messages). However this example has b = 72 and is not 

doubly perfect. In the light of the above example we may state a result in a slightly 

more general form that that given in theorems 5 and 6 of Brickell [1]. 

Theorem 1 Let S = {Sl' ... J Sk} and let M(Sl)J ... , M(Sk) be disjoint sets. 

Put M = M(s,)u ... UM(sk). An n' X k array A = (a;.) where a;, £:: M(s) for 

1 :$ i :$ »2 J S E S is an authentication array corresponding to a cartesian doubly 

perfect authentication system with VG = l/n and lSI = k if and only if 

(i) a;, i q, for 0111 ~ i ~ n', 8 E S 

(ii) for all s E Sand m E M(s), I(m) = {ilm E A;,} has n elements 

(iii) for any s;, Sj E S, 8; i Sj, II(m,) n f(m,)1 < 1 for all m, E M(s,) and 

m, E M(s,). 
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3 Incidence Structures 

An incidence structure is a triple (P, B, I) where P and B are non-empty disjoints 

sets and I ~ P X B. The elements of P are called points and the elements of B 

are called blocks. We say PEP is incident with x E B if and only if (P, x) E I. 

Let (I, M, S) be a cartesian doubly perfect authentication system AS(n2, v, 

k). We may define an incidence structure (I,M,!) by (i,m) E I if and only if 

j;( m) ¥ O. We note that each block m E M is incident with n points. We also 

note that if two blocks m, m' E M are incident with the same set of points then 

(1, M\{m'}, S) would also be a cartesian doubly perfect authentication system. 

We therefore assume throughout that no two blocks of CJ, M, I) are incident with 

the same set of points. An incidence structure with these two properties is called 

a design. 

The design (I, M, I) has the property that there is a partition of blocks into 

classes M(s,), ... M(s.) such that 

(i) every point belongs to at least one block of every class, 

(ii) any two blocks, belonging to distinct classes, have at most one point in 

common. 

Indeed the existence of a cartesian doubly perfect authentication system with 

VG = lin and 181 = k is equivalent to the existence of a design with n2 points, 

block size n and such a partition. 

If the authentication system (I, M, S) has been constructed from an orthogonal 

multi-array then the partition M(.,), ... , M(S,) of the design (I, M, I) has the 

property that each point is incident with a constant number of blocks from each 
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class. Such a partition is called a resolution. Moreover any two blocks from distinct 

classes are incident with exactly one common point. Such a resolution is called an 

outer resolution. If the orthogonal multi-array is in fact an orthogonal array, so 

that there is no splitting in the authentication system, then the blocks of a class 

are disjoint and the design is a net (See Hughes and Piper [6]). A net with k 

classes is equivalent to k - 2 mutually orthogonal Latin squares. 

There are two problems: 

(1) for a given n find the largest integer k such that there exists a cartesian 

doubly perfect authentication system with Va = lin and lSI = k. 

(2) for given nand k find a cartesian doubly perfect authentication system with 

the minimum number of messages. 

These problems correspond to constructing designs admitting partitions of the 

blocks having the properties described above with the maximtun ntunber of blocks. 

The largest value of k is n + 1 and the minimwn number of blocks is kn. These 

solutions correspond to orthogonal arrays. See Stinson [11] for a description of 

these systems in terms of transversal designs. 

Theorem 2 Let (I, M, S) be a cartesian doubly perfect authentication system with 

VG = lin. Let A be a cartesian authentication array for it. 

Then 

(i) 151 :s n + 1 with equality if and only if A i, an orthogonal array 

(ii) IMI 2: niSI with equality if and only if A i, an orthogonal array. 
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Proof: (i) Let lSI = k. Let i E I. There exist m" ... , mk E M such that J;(mj), 

... , j,( m.) are the k elements of S. Then I( mj), ... I( mk) are k n-subsets of I 

which intersect pairwise in {i}. Thus 1 + ken - 1) :5 III = n2
, Hence k :S n + 1. 

If k = n + 1 then I(md, ... , I(mk) cover the n2 -1 points of I distinc~ from 

i exactly once. Suppose m E M and J;(m) ,. O. Then j,(m) = j,(mj) for some 

j. Now II(m) n I(mh)1 ~ 1 for h ,. j, so I(m) n I(mh) = {i} and we must have 

I(m) = I(mj). Hence m = mj. 

lt follows that there is no splitting, blocks within a class are disjoint and blocks 

from distinct classes meet in exactly one point. Thus (I,M,I) is a net, and A is 

an orthogonal array, (ii) follows by lemma 2 and Brickell [1) theorerri 6. 

When n is a prime power constructions of appropriate nets in the case of 

equality in theorem 2 are well known for any k = lSI::; n + 1. 

4 Mutually Orthogonal F-squares 

By lemmas 1 and 2 an authentication system (I, M, S) with lSI = k, III = n2 and 

IMI < nk cannot be doubly perfect. That is if IMI ~ nk then VG 2: lin. 

However, for some applications, it may be important that the size of the mes­

sage space is kept small. In this section we use F-squares which are generalizations 

of latin squares to construct cartesian authentication systems AS( n2
, v, k) with 

v < nk. By theorem 1 of Simmons [9J, which asserts that VG 2: ISI/IMI it follows 

that for these systems Va > lIn, and they are not doubly perfect. 

Let n be a positive integer and let ()\lj"" Am) be a vector of positive in­

tegers such that Al+ ... +Am = n. An F-square of order n with frequency 

vector (AI"'" Am) is an n x n matrix X = (Xii) with entries Xij from a set 
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u = {u" ... , Un} of m symbols such that each element U; E U appears exactly 

Ai times in each row and in each column of X. The F-square X is denoted 

F(n;.l.".l." ... ,.l.m). An F(n;l, ... ,l) (also denoted F(n;l")) is a latin square. 

The integers All"" Am are called the frequencies of the symbols in the square. 

Two F-squares FI (nj All ... ,Am) and F2( n; !Jb ..• p,p) are called orthogonal if for 

all 1 ::; i ::; m and 1 ::; j ::; p the pair (i, j) occurs exactly AijJj times when FI and 

F, are superimposed. (See Denes and Keedwell [4]). 

Fk_2(n; A(k-2),lJ ••• , A(k-2),m(k_2») are a .!let of k-2 mutually orthogonal F.squares, 

Put). = max(,\jj) and t = min(mi). Then there is a cartesian authentication 

system AS(b,v,k) with b= n2, v = 2n+2:mi and lin::; Va::; A/n. 

Proof: The k-2 mutually orthogonal F-squares determine a bx k array, A' = (ai;) 

where, for 1 ::; i, j ::; n, 

an(i-l)+i,h = xt-
2 h = 3, ... 1 k 

a n(i-l)+j,l = z 

an (i-l)+i,2 = J 

Corresponding to A' is a cartesian authentication system (1, M, S) = AS(n2, 

v, k) where v = 2n + ~ Mi. Let S = {Si' ... , Sk} and let the partition of M be 

Suppose Ph = i, and suppose 0 impersonates T using message mh with prob-

ability Iii for j = 1, ... , i. Since there is, for each encoding rule, exactly one 

message in Ms which is valid under that rule the probability that 0 is successful 

is "Zp(i)l/t = l/t. Hence Va 2': l/t. 
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Now suppose that T uses a strategy with the uniform probability distribution 

on the encoding rules. Suppose 0 impersonates T by sending mij' Then there are 

nAij encoding rules under which mij is valid and the probability that 0 succeeds 

,s 

Suppose 0 observes the message mij and substitutes ma.b for it. There are nAij 

encoding rules under which mij is valid and of these there are AjjAa.b under which 

ma.b is also valid. Hence 0 succeeds in deceiving R with a substitution attack with 

probability 

It follows that VG ::; >./n. 

Remark: If we identify some symbols in any column of A'so that the total 

number of occurrences of this combined symbol is at most An then we obtain 

an AS(n2 ,v' ,k) which still satisfies (lin) ~ VG :$; Aln but for which v' :$; v. 

By making suitable identifications of symbols in an array arising from mutually 

orthogonal F -squares, we obtain the following result. 

Corollary 1 Suppose there exi"t k -2 mutually orthogonal F(n, At)-"quare$ (nec-

e""arily n = At). Then there exi"t" a carte"ian authentication "y"tem AS( n2, 

kn/ >., k) with VG = >'/ n. 

Example 3: Table 2 is a cartesian authentication array corresponding to an 

AS(36, 16, 6) with 1/2 ::; VG ::; 2/3 constructed as above from four mutually 

orthogonal F-squares: F,(6; 16 ), F,(6; 1',2); F,(6;2'), F,(6; 2',4'), 
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1 2 3 4 5 6 1 2 5 5 3 4 
2 3 6 1 4 5 5 1 3 2 4 5 
3 6 2 5 1 4 3 5 4 1 5 2 
4 1 5 2 6 3 5 4 2 3 1 5 
5 4 1 6 3 2 4 3 5 5 2 1 
6 5 4 3 2 1 2 4 1 4 5 3 

F,(6; I') F,(6; 1'2) 

1 2 3 3 2 1 1 2 2 2 2 1 
1 2 3 3 2 1 2 1 2 2 1 2 
3 1 2 2 1 3 1 2 2 2 2 1 
2 3 1 1 3 2 2 2 1 1 2 2 
3 1 2 2 1 3 2 2 1 1 2 2 
2 3 1 1 3 2 2 1 2 2 1 2 

.0", F,(6,2 ) 1 1 F,(6,2 ,4 ) 

Seberry [8J has shown how to construct a set of n - 1 mutually orthogonal 

FC n; ,\ t)-squares using a generalized. Hadamard matrix of size n = At with entries 

from a group G of order t. 

Several families of generalized Hadamard matrices GH(n; G) of size n with 

entries from G are known to exist including the families: n = 2p'\ G = Z~ 

(Jungnickel [7], Street [12]); n = 4p", G = Zjl (Dawson [2]; and n = (p" -l)p", 

G = Zp (Seberry [8]) (where p is a prime and a is a positive integer). These give 

families of cartesian authentication systems AS(b, v, k) with b = n 2, v = pCi(n -1), 

k = n -1 and VG = lip". 

5 Cyclotomy and Mutually Orthogonal 

F-squares. 

In this section we use sets of mutually orthogonal F -squares and cyclotomy to 

construct authentication systems. This construction is based on a method of 

Parker (see [4]) for constructing sets of mutually orthogonal latin squares. It 

13 



produces authentication schemes AS(b, v, k) with similar properties to those of 

the previous section: b = (q + I)', v < (q + I)k and VG ::; >./(q + I) where q is 

a prime power and f is the order of the F-squares of some set of k - 2 mutually 

orthogonal F -squares. 

Source States 
1 1 1 1 1 1 
1 2 2 2 2 2 
1 3 3 5 3 2 
1 4 4 5 3 1 
1 5 5 3 2 2 
1 6 6 4 1 2 
2 1 2 5 1 2 
2 2 3 1 2 2 
2 3 6 3 3 1 
2 4 1 2 3 2 
2 5 4 4 2 2 
2 6 5 5 1 1 
3 1 3 3 3 2 
3 2 6 5 1 2 
3 3 2 4 2 1 

Encoding Rules 3 4 5 1 2 1 
3 5 1 5 1 2 
3 6 4 2 3 2 
4 1 4 5 2 2 
4 2 1 4 3 1 
4 3 5 2 1 2 
4 4 2 3 1 2 
4 5 6 1 3 2 
4 6 3 5 2 1 
5 1 5 4 3 2 
5 2 4 3 1 1 
5 3 1 5 2 2 
5 4 6 5 2 2 
5 5 3 2 1 1 
5 6 2 1 3 2 
6 1 6 2 2 1 
6 2 5 5 3 2 
6 3 4 1 1 2 
6 4 3 4 1 2 
6 5 2 5 3 1 
6 6 1 3 2 2 
(the numbers represent messages) 

Table 2. 
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, 
Let q = mf + 1 be a prime power, The multiplicative group of GF(q) is cyclic 

of order q - 1 and has a unique subgroup H' of order f. The cyclotomic classes of 

index m of GF(q) are the cosets of H in the multiplicative group of GF(q), 

Suppose FI = ex}), F2 = (X~j)' ... , Fm = (xi;) are m mutually orthogonal 

F -squares of order f. Suppose that the rows and columns for these F -squares are 

indexed by an F-set U. Suppose that Uj is the set of symbols appearing in Pi! 

i = 1, ... ,m. Let 1/J : H ~ U be a bijection and, for i = 1, ... ,m let (Pi : H ---+ U; 

be a function such that for each u E U there are exactly). elements h E H with 

<piCh) = u where u appears .\ times and each row (and column) of F j • 

Let D = {Ca"~ 1), (a" 2), ... , (am+l' m+ I)} <;; GF(q) x Zm+' such that a, oF aj 

for i oF j. We define a (q + f)' x m+ 2 array A in the following way: 

(1) the 12 rows of the f2 X (m + 2) array B obtained as in the previous section 

from F1 ! ... , Fm are rows of A 

(2) for each a E GF(q) the row aa ... a is a row of A 

(3) for each (h,j,a) E H x Zm+' X GF(q) there is a row whose dth entry (1 :S 

d:S m+ 2) is 

ha, + a where i + j = d(modm + 2) if j '¢ d(modm + 2) 

¢d_,(h) ifj =d(modm+2), doF1,2 

.p(h)ifj=d(modm+2), d=I,2 

We note that the array A has the following properties: each symbol appearing 

in columns 1 and 2 appears q + f times; each element of GF(q) appears q + f 
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times in each of the columns 3 to m + 2; if a symbol appears .\ times in each row 

(and column) of F; then it appears A( q + f) times in column i + 2 of A. 

Two symbols, neither of which belongs to GF(q)~ appear together in the same 

row only in rows of B. The number of times this happens is given by the product 

of the frequencies of the two symbols (symbols in columns 1 and 2 have frequency 

1). A symbol not in GF(q) and an element of GF(q) occur together in ).. rows 

where).. is the frequency of the symbol. Two elements a, b E GF(q)~ a =F b, occur 

together in the same row if and only if there exist ai, aj E D such that a - b or 

b - a and aj - aj belong to the same cyclotomic class. 

Put Dk = {aj - aj!ai, aj ED, i - j = k(modm + 2)}, k = 1, ... , m + 1. 

Suppose J.Lk is the maximum number of representatives of anyone cyclotomic 

class which belong to Dk. Then for i - j = k(mod(m + 2», J.Lk is the maximum 

number of rows of A in which any pair a, bE GF(q) appear together in cohunns 

i,j (respectively). Let J.L be the maximum of J.Lll'" ,J.Lm+1' The following theorem 

may be proved in a similar fashion to theorem 3. 

Theorem 1 Let q = mf + 1 be a prime-power. Suppose Fll ... Pm are mutually or­

thogonal F-squares of order f. Let).. be the maximum of the frequencies occurring 

in F" ... Fm. Suppose D = {(a" 1), ... , (am+" m + I)} <;; GF(q) X Zm+2 is such 

that aj =F aj for i =F j. Let J.L be as described above. Then the array A as defined 

above is a cartesian authentication array corresponding to a cartesian authentica-

tion system AS(b, v, k) with b = (q+ f)', v::; (q+ f)k and VG ::; max(A, !')/(q+ f)· 

By making identifications of symbols we may obtain other cartesian authenti­

cation systems AS(b,v',k) with VG ::; =(A,!')/(q+f) and v' < v. 
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We remark that the construction may be generalized by using a cartesian au­

thentication array of size j2 X (m + 2) in piace of B in D above. 

Example 1: Consider m = 4. Let q = 4J + 1 be a prime power. Suppose there 

exist four mutually orthogonal F -squares of order f such that each symbol in these 

squares has frequency 1 or 2. Let 0: be a primitive element of GF(q) and put D = { 

(0,1), (1,2), (1 + ",3), (1 +" + ,,',4), (1 +" + ,,' + ,,',5)}. Then if f is odd D. 

contains at most 2 elements from any cyclotomic class of index 4 for k = 1, 2, 3, 4, 

5. Hence in this case the above construction yields an AS« q+ I)', 6( q+ 5), 6) with 

Va :S 2j(q + I). For example with f = 9, q = 37, since there exist four mutually 

orthogonal latin orders of order 9 we obtain an AS( 462 ,6.46,6) with VG ::;; 2/46. 
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