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The public key cryptosystem published by Diffie and Hellman in 1976 is still of great interest 
today. Of the public key systems that have been proposed the RSA scheme of Rivest, Shamir and 
Adelman is of most current interest. 

We shall briefly describe this system (more can be found in references 2 and 7) and then describe a 
method to obtain suitable primes for use in the scheme. 

The RSA Scheme 

To implement this scheme a person (traditionally Bob) makes himself a set of three large numbers: 
m, E andD, (the modulus, public key and secret key respectively) with the following properties 

ify =x E (modm) then X= yD (modm) 

for all numbers x in the range (0, m ~ 1). 

The numbers E and m are published, and someone else (traditionally Alice) who wishes to send a 
secret message x (regarded for the purposes of encryption as a large integer) to Bob, calculates y 
from x and sends to Bob the cryptogram y. Since Bob knows D he can recover the message. 
Anyone else wishing to eavesdrop must find D • or else discover x some other way. Both of 
these recourses appear to be computationally infeasible for suitable choices of parameters. 

Bob makes m ,E and D as follows. He chooses two very large primes p and q with p and 
q of roughly equal size (of say 500-600 bits each). This choice ofp and q is what will concern 
us here. Bob chooses E at random, relatively prime to gcd(p - 1. q - 1), and then finds D by 
solving 

ED = 1 (mod(p -1)(q -1)) 

which he can do easily and quickly using Euclid's algorithm (see reference 7). Finally he fonns m 
by choosing 

m = pq. 

A potential eavesdropper must, it seems, first findD. which appears to require the determination of 
p and q ,which in turn seems to imply that he must be able to factorize m. To factorize m = 
pq where p and q are very large primes of say 500-600 bits each is one of the hardest known 
common problems (see references 2 and 3). 

Strong primes give more cryptographic security 

The advanced techniques a cryptanalyst might use (see references 2, 3 and 6) break down when p 
(and similarly q) is not only prime but has the property that p - I has a large prime factor, say r 
, and p + 1 has a large prime factor, say s (see reference 6). The cryptanalyst's task is made 



even more difficult if r - 1 should have a large prime factor, say t, as well. For logistical reasons 
it is also necessary to be able choose p in some sense at random but with a given number of bits. 

Thus there is considerable urgency to solve the problem of rmding primes with these desirable 
properties. However very little has been published on the way to do so. The method we describe 
is due to John Gordon (reference 5). It fmds the large prime factors r, s and t separately and 
incorporates them in the construction. The extra conditions imposed on p and q add only 19% 
to the task of finding p and q . 

A prime p will be called a strong prime if it satisfies the following seven conditions: 

(i) P is large 

(li) p is prime 

(iii) P is chosen at random in response to a seed 

(iv) p has a given number of bits 

(v) p - I has a large prime factor, say r 

(vi) p + 1 has a large prime factor, say s 

(vii) r - 1 has a large prime factor, say t. 

Since we wish p, rand s all to be large we are only interested in odd primes p whose 
properties are 

p =2jr +1 (or p = I (mod2r)) 

p =2ks -1 (or p =(s -1 )(mod2s)) 

r=2Lt+1 (or pr=1 (mod2t)) 

for some j, k and L where r, s and t are primes. 

Gordon's technique 

Gordon proposes the following steps: 

(i) choose random seeds a and b 

(ii) from a and b generate random primes s and t 

(iii) from t construct r 

(iv) from r and s construct p . 

Find r and s,' Finding random primes r and s which are of a specified number of bits (n ) and 
greater than a given seed is relatively straightforward. Starting with a random seed a , we fmd the 
first prime s (or t ) greater than a. 

The time to rmd s (or t ) in this way using Knuth's Algorithm - P (see reference 3), is dominated 
by the time to perform modular exponentiations which take, on average, approximately 

Texp In) = eTn 3 Iw seconds 

where c is a constant of size about 8, T is the time (in seconds) for one instruction and w is the 
word size in bits. If we quickly eliminate by trial division all multiples of primes less than, say, 



256 it is necessary to examine only about 0.07n numbers on average before fmding a prime (see 
reference 5), and so the time needed to find s (or t ) (ignoring the time for quick eliminations) is 
about 0.07n times cTn 3 /w • i.e. about 

Tprime (n) = evTn 4 Iw 

when we have found s (or t ) it is unlikely to have more bits than the seed a. We can virtually 
ensure this by picking our value of a in the range (2n-1• 2n-l +2n-2 - 1). This ensures a starts 
with the two binary digits 10 which leaves a run of 2n-2 integers in which to find a prime before 
increasing the number of bits. 

Find r: We now wish to find a prime of the form 2Lt +1. We search through (2Lt + I)-space 
for successive values of L. 

We are likely to exhaust about nLn(2)/2 = 0.35n sucessive values of L before finding r (see 
reference 5). Every time L doubles another bit is added to 2Lt + 1. A naive search will almost 
certainly result in a prime of too many bits. 

A more sophisticated approach is to choose 21 to be, say, dIn) = log 2 (n ) bits shorter than the 
desired length of r (see below). then starting with unity. to add in successive multiples of 2t until 
the desired length of r is achieved and then to begin checking primality at each subsequent addition 
of 2t. In this way, L is unlikely to double during the search for primes. This certainty of 
success can be increased by using a larger d(n). 

Find p: We now wish, given primes r and s • to find a prime p , close in size to a given number 
of bits, and satisfying 

p =2jr +1 =2ks -I for some j and k 

or 

p =1(mod2r) =(2s -1)(mod2s) 

The key to fmding primes with these properties is the following theorem. 

Theorem: If r and s are odd primes, then p satisfies 

p = I (mod 2r ) = (s -1)(mod 2s) 

if and only if p is of the form 

p = PO +2krs 

where 

PO = u(r,s) :u(r,s) odd 

= u(r,s) + rs :u(r,s) even 

and 

u(r,s) = (sr-l_ r s-1 )(modrs) 

Proof: Integers which satisfy (1) also satisy the weaker condition 

p =jr +1 =ks -I for some j and k 

(I) 

(2) 

(3) 

(4) 



Numbers which satisfy (4) are alternatively odd and even. The integers which satisy (I) are just the 
odd-valued solutions of (4). We now show that numbers satisfying (4) are of the form u(r,s) + 
krs. Solving (4) is just a special case of the Chinese Remainder Theorem (see reference 7). 

Consider the number u(r,s) of the fonn of (3) above. Now by Fennat's Theorem (see reference 7) 
we have s r-1 = I (mod r), and similarly r s-1 = I (mod s). Also, of course, s r-1 = 0 (mod 
s), and r s-1 = 0 (mod r). Finally, rs = 0 (mod r) = 0 (mod s). Thus u(r,s) satisfies (4). 

We now show that numbers not of the fonn u(r,s) + krs cannot satisfy (4). 

Let u and w satisfy (4) and consider the difference 

u - w = I (modr) - I (modr)= O(modr)=kr 

= (s - I )(mod s ) - (s - I )(mod s ) = 0 (mod s ) = k'r 

for some k and k' . Thus u - w is a multiple of the Iern( T, s ), which is rs since r and s 
areprime. Since u(r,s) satisfies4 u and w must be of the fonn u(r,s) + krs. # 

Finding u(r,s) and hence PO requires two exponentiations at a cost of 2T exp' Finding P 
amounts to fmding a prime in (PO + 2krs )-space and the same considerations apply in this case 
as did to the search for r in (2Lt + 1 )-space, namely that we should stan with PO and add 
successive multiples of 2rs until the desired size is reached, then check for primality at each 
subsequent addition. 

Size olp, r, s and t: The time spent searching for primes dominates. We need to search for p, 
of n bits, and for t, r and s, each of roughly n!2 bits. Altogether, ignoring all times except 
those spent searching for primes. the time spent to frod p will average: 

T prime (n ) + 3T prime (n !2) = 19/16T prime (n ) 

= 1.19 x 0.07 cvTn 4 Iw. 

This represents an increase of only 3/16 (=19%) over the time to find a random prime of given size 
n bits. 

An implementation by Gordon 

Using a I MHz clock microcomputer (Apple II) with an efficient arithmetic package (CyMAS) 
Gordon found t with 81 decimal digits, r with 84 decimal digits and s with 84 decimal 
digits which gave an RSA key with 336 decimal digits (1116 bits) in a few hours. 

Ueli Maurer's Algorithm 

At Eurocrypt 1989 Ueli Maurer of Switzerland's ETH gave details of a proposed scheme which 
uses smaller primes to first construct intermediate primes to use to fmd primes for the RSA 
algorithm. No implementation details are currently at hand but this method also promises to be a 
fast, reliable generator of strong primes. 
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