University of Wollongong

Research Online

A note on orthogonal designs

J Hammer
D G. Sarvate
Jennifer Seberry
University of Wollongong, jennie@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers
Part of the Physical Sciences and Mathematics Commons

Recommended Citation

Hammer, J; Sarvate, D G.; and Seberry, Jennifer: A note on orthogonal designs 1987.
https://ro.uow.edu.au/infopapers/1026

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

A note on orthogonal designs

Abstract

We extend a method of Kharaghani and obtain some new constructions for weighing matrices and orthogonal designs. In particular we show that if there exists an $O D(s 1, \ldots, s r)$, where $w=\sum s i$, of order n, then there exists an $O D(s 1 w, s 2 w, \ldots, 8 r w)$ of order $n(n+k)$ for $k \geq 0$ an integer. If there is an $O D(t, t, t, t)$ in order n, then there exists an $O D(12 t, 12 t, 12 t, 12 t)$ in order $12 n$. If there exists an $O D(s, s, s, s)$ in order $4 s$ and an $O D(t, t, t, t)$ in order $4 t$ there exists an $O D\left(12 s^{2} t, 12 s^{2} t, 12 s^{2} t, 12 s^{2} t\right)$ in order $48 s^{2} t$ and an $\mathrm{OD}\left(20 \mathrm{~s}^{2} \mathrm{t}, 20 \mathrm{~s}^{2} \mathrm{t}, 20 \mathrm{~s}^{2} \mathrm{t} 20 \mathrm{~s}^{2}\right)$ in order $80 \mathrm{~s}^{2} \mathrm{t}$.

\section*{Disciplines}

Physical Sciences and Mathematics

\section*{Publication Details}

Hammer, J, Sarvate, DG and Seberry, J, A note on orthogonal designs, Ars Combinatoria, 24, 1987, 93-100.

A Note on Orthogonal Designs

J. Hammer, D.G. Sarvate and Jenni fer Seberry*

ABSTRACT

We extend a method of Kharaghani and obtain some new constructions for weighing matrices and orthogonal designs. In particular we show that if there exists an $O D\left(s_{1}, \ldots, s_{r}\right)$, where $w=\sum s_{i}$, of order n, then there exists an $O D\left(s_{1} w, s_{2} w, \ldots, s_{\mathrm{r}} w\right)$ of order $n(n+k)$ for $k \geq 0$ an integer. If there is an $O D(t, t, t, t)$ in order n, then there exists an $O D(12 t, 12 t, 12 t, 12 t)$ in order $12 n$. If there exists an $O D(s, s, s, s)$ in order $4 s$ and an $O D(t, t, t, t)$ in order $4 t$ there exists an $O D\left(12 s^{2} t, 12 s^{2} t, 12 s^{2} t, 12 s^{2} t\right)$ in order $48 s^{2} t$ and an $O D\left(20 s^{2} t, 20 s^{2} t, 20 s^{2} t 20 s^{2}\right)$ in order $80 s^{2} t$.

1. Introduction.

Let $W=\left[w_{i j}\right]$ be a matrix of order n with $w_{i j} \in\{0,1,-1\}$. W is called a weighing matrix of weight p and order n, if $W W^{T}=W^{T} W=p I_{n}$, where I_{n} denotes the identity matrix of order n. Such a matrix is denoted by $W(n, p)$. If squaring all its entries gives an incidence matrix of a SBIBD then W is called a balanced weighing matrix.

An orthogonal design (OD), A, say, of order n and type $\left(s_{1}, s_{2}, \ldots, s_{t}\right)$ on the commuting variables $\left(\pm x_{1}, \ldots, \pm x_{t}\right)$ and 0 , is a square matrix of order n with entries from $\left(\pm x_{1}, \ldots, \pm x_{t}\right)$ and 0 . Each row and column of A contains s_{k} entries equal to x_{k} in absolute value, the remaining entries in each row and column being equal to 0 . Any two distinct rows of A are orthogonal.

In other words

$$
A A^{T}=\left(x_{1} x_{1}^{2}+\cdots+s_{t} x_{i}^{2}\right) I_{n}
$$

An Hadamard matrix $W=\left[w_{i j}\right]$ is a $W(n, n)$ i.e. it is a square matrix

[^0]ARS COMBINATORIA 24(1987), pp. 93-100.
of order n with entries $w_{i j} \in\{1,-1\}$ which satisfies

$$
W W^{T}=W^{T} W=n I_{n}
$$

OD's have been used to construct new Hadamard matrices. For details see Geramita and Seberry (1979).

Kharaghani (1985) defined $C_{k}=\left[w_{k i}, w_{k j}\right]$ and with that obtained skew symmetric and symmetric $W\left(n^{2}+2 n, p^{2}\right)$ from $W(n, p)$, where s is any positive integer such that $n+s$ is even. Each C_{k} is a symmetric $\{0,1,-1\}$ matrix of order n. We define C_{k} by the Kronecker product and by extending Kharaghani's method we obtain some new constructions of weighing matrices and orthogonal designs.

2. Some properties of C_{k} 's.

The C_{k} 's can be defined as a Kronecker product of the k th row of W with its transpose, in other words, if R_{k} denotes the k th row of W, then $C_{k}=R_{k} \times R_{k}^{T}$. Similarly, we define C_{k} 's corresponding to the OD, A, as follows:

Let U be a weighing matrix obtained from A by replacing all the variables of A by 1. Let A_{k} and U_{k} denote the k th rows of A and U respectively. Then $C_{k}=A_{k} \times U_{k}^{T}$.

Lemma 2.1. Let V_{i} be the i th row of an $\operatorname{SBIBD}(v, p, \lambda)$. Consider

$$
X=\left[V_{1} \times V_{1}^{T}, \ldots, V_{n} \times V_{n}^{T}\right]
$$

then $X X^{T}=p((p-\lambda) I+\lambda J)$.
Proof.

$$
\begin{aligned}
X X^{T} & =V_{1} V_{1}^{T} \times V_{1}^{T} V_{1}, \ldots, V_{n} V_{n}^{T} \times V_{n}^{T} V_{n} \\
& =p \sum_{i} V_{i}^{T} V_{i} \\
& =p((p-\lambda) I+\lambda J) . \quad
\end{aligned}
$$

Corollary 2.2. Given a balanced $W(n, p)$, based on an $\operatorname{SBIBD}(n, p, \lambda)$, consider

$$
X=\left[C_{1}^{\prime}: C_{2}^{t}: \cdots: C_{n}^{t}\right]
$$

where C_{1}^{t} is obtained from C_{1} by squaring all its entries. Then the inner product of any two distinct rows of X is λp.

Proof. Observe that $C_{i}^{\prime}=V_{1} \times V_{1}^{T}$.

3. A new construction of orthogonal designs.

Many constructions in orthogonal design theory have been expressed in terms of Kronecker products of matrices, for example see GastineauHills (1983) and Gastineau-Hills and Hammer (1983). The Kronecker product of two or more designs is not in general a design since products of variables appear, for example:
$\left[\begin{array}{rr}x_{1} & x_{2} \\ -x_{2} & x_{1}\end{array}\right] \times\left[\begin{array}{rr}y_{1} & y_{2} \\ y_{2} & -y_{1}\end{array}\right]=\left[\begin{array}{rrrr}x_{1} y_{1} & x_{2} y_{1} & x_{1} y_{2} & x_{2} y_{2} \\ -x_{2} y_{1} & x_{1} y_{1} & -x_{2} y_{2} & x_{1} y_{2} \\ x_{1} y_{2} & x_{2} y_{2} & -x_{1} y_{1} & -x_{2} y_{1} \\ -x_{2} y_{2} & x_{1} y_{2} & x_{2} y_{1} & -x_{1} y_{1}\end{array}\right]=\left[\begin{array}{rrrr}z_{1} & z_{2} & z_{3} & z_{4} \\ -z_{2} & z_{1} & -z_{4} & z_{3} \\ z_{3} & z_{4} & -z_{1} & -z_{2} \\ -z_{4} & z_{3} & z_{2} & -z_{1}\end{array}\right]$
(where $z_{1}=x_{1} y_{1}, z_{2}=x_{2} y_{1}, z_{3}=x_{1} y_{2}, z_{4}=x_{2} y_{2}$) is not orthogonal if we take z_{1}, z_{2}, z_{3} and z_{4} as independent. However it is a different matter if we take a Kronecker product of an OD with a weighing matrix.

A construction of Kharaghani can be extended to give the following result:

Theorem 3.1. If there exists an $O D$, A, of type $\left(s_{1}, s_{2}, \ldots, s_{r}\right)$, where

$$
w=\sum_{k=1}^{r} s_{k}
$$

and order n on the variables $\left(\pm x_{1}, \ldots, \pm x_{r}, 0\right)$ then there exist n matrices C_{1}, \ldots, C_{n} of order n satisfying

$$
\begin{aligned}
\sum_{i=1}^{n} C_{i} C_{i}^{T} & =\sum_{k=1}^{n} s_{k} \\
C_{k} C_{j}^{T} & =0, k \neq j
\end{aligned}
$$

Proof. Let $A=\left(a_{i j}\right)$ be the OD. Replace all the variables of A by 1 making it a $(0,1,-1)$ weighing matrix $U=\left(u_{i j}\right)$ of order n and weight w. Write A_{k} and U_{k} for the k th rows of A and U respectively. Form

$$
C_{k}=A_{k} \times U_{k}^{T}
$$

Then

$$
\begin{aligned}
C_{k} C_{j}^{T} & =\left(A_{k} \times U_{k}^{T}\right)\left(A_{j} \times U_{j}^{T}\right)^{T} \\
& =\left(A_{k} A_{j}^{T} \times U_{k}^{T} U_{j}\right)
\end{aligned}
$$

$$
=0 \text { if } k \neq j \text { because } A \text { is an orthogonal design. }
$$

Now

$$
\begin{aligned}
\sum_{k=1}^{n} C_{k} C_{k}^{T} & =\sum_{k=1}^{n}\left(A_{k} \times U_{k}^{T}\right)\left(A_{k}^{T} \times U_{k}\right) \\
& =\sum A_{k} A_{k}^{T} \times U_{k}^{T} U_{k} \\
& =\sum s_{j} x_{j}^{2}\left(\sum U_{k}^{T} U_{k}\right) \\
& =\sum s_{j} x_{j}^{2}\left(w I_{n}\right) \text { by the properties of } U .
\end{aligned}
$$

Example 3.2. Let

$$
A=\left[\begin{array}{rrrr}
-a & b & c & -d \\
b & a & d & c \\
c & -d & a & -b \\
-d & -c & b & a
\end{array}\right] ; \quad U=\left[\begin{array}{rrrr}
-1 & 1 & 1 & -1 \\
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
-1 & -1 & 1 & 1
\end{array}\right]
$$

Then

$$
\begin{gathered}
C_{1^{\circ}}=\left[\begin{array}{rrrr}
a & -a & -a & a \\
-b & b & b & -b \\
-c & c & c & -c \\
d & -d & -d & d
\end{array}\right]^{T}, \quad C_{2}=\left[\begin{array}{llll}
b & b & b & b \\
a & a & a & a \\
d & d & d & d \\
c & c & c & c
\end{array}\right]^{T} \\
C_{3}=\left[\begin{array}{rrrr}
c & -c & c & -c \\
-d & d & -d & d \\
a & -a & a & -a \\
-b & b & -b & b
\end{array}\right], \quad C_{4}=\left[\begin{array}{rrrr}
d & d & -d & -d \\
c & c & -c & -c \\
-b & -b & b & b \\
-a & -a & a & a
\end{array}\right]^{T} .
\end{gathered}
$$

Thus we have:
Theorem 3.3. Suppose there exists an $O D\left(s_{1}, \ldots, s_{r}\right)$, where $w=\sum s_{i}$, of order n. Then there exists an $O D\left(s_{1} w, s_{2} w, \ldots, s_{r} w\right)$ of order $n(n+k)$ for $k \geq 0$ an integer.

Proof. Form C_{1}, \ldots, C_{n} as in the previous theorem. Form a latin square of order $n+k$ and replace n of its elements by C_{1}, \ldots, C_{n} and the other elements by the $n \times n$ zero matrix.

For instance, using Theorem 3.3 we can construct an $O D(4,4,4,4)$ of order $4 n$, for $n \geq 4$. Using inequivalent Latin squares in Theorem 3.3 will
yield inequivalent ODs.
Corollary 3.4. If there is an $O D(t, t, t, t)$ in order $4 t$, then there is an $O D\left(4 t^{2}, 4 t^{2}, 4 t^{2}, 4 t^{2}\right)$ in every order $4 t(4 t+k), k \geq 0$ an integer.

But this construction can be used in other ways.
Example 3.5. Write $1,2,3,4$ for C_{1}, \ldots, C_{4}. Define

$$
A_{1}=\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2 \\
2 & 3 & 1
\end{array}\right], A_{2}=\left[\begin{array}{lll}
4 & 2 & 3 \\
3 & 4 & 2 \\
2 & 3 & 4
\end{array}\right], A_{3}=\left[\begin{array}{lll}
3 & 1 & 4 \\
1 & 4 & 3 \\
4 & 3 & 1
\end{array}\right], A_{4}=\left[\begin{array}{lll}
2 & 1 & 4 \\
1 & 4 & 2 \\
4 & 2 & 1
\end{array}\right] .
$$

Then $A_{k} A_{j}^{T}=A_{j} A_{k}^{T}$. Thus $A_{1}, A_{2}, A_{3}, A_{4}$ can be used to replace the variables of any $O D(t, t, t, t)$.

Hence we have
Theorem 3.6. Suppose there is an $O D(t, t, t, t)$ in order n. Then there exists an $O D(12 t, 12 t, 12 t, 12 t)$ in order $12 n$.

Proof. Use the $O D(1,1,1,1)$ in order 4 to form C_{1}, \ldots, C_{4} of order 4. Substitute these in A_{1}, \ldots, A_{4} of Example 3.5 to obtain Williamson-type matrices of order 12, on 4 variables each repeated 12 times. Use these to replace the variables of the $O D(t, t, t, t)$ to get the result.

Now if we had started to construct C_{1}, \ldots, C_{40} of order $4 s$ from an $O D(s, s, s, s)$ in order $4 s$ we would have each of 4 variables occurring $4 s^{2}$ times in each row of $\left[C_{1}: C_{2}: \cdots: C_{4 \varepsilon}\right]$. But we can use these to form Williamson type matrices in a number of ways:

Let A_{i}, be a circulant matrix with first row ($i+1, i+2, \ldots, i+s$), $i=0, s, 2 s$, and $3 s$. These four matrices can be substituted in an $O D(t, t, t, t)$. Hence we have:

Theorem 3.7. If there exists an $O D(s, s, s, s)$ in order $4 s$ and an $O D(t, t, t, t)$ in order $4 t$, then there exists an $O D\left(4 s^{2} t, 4 s^{2} t, 4 s^{2} t, 4 s^{t)}\right.$ in order $16 s^{2} t$.

Now if we write i for B_{i} we can proceed exactly as in Example 3.5 so we have:

Theorem 3.8. If there exists an $O D(s, s, s, s)$ in order $4 s$ and an $O D(t, t, t, t)$ in order $4 t$, then there exists an $O D\left(12 s^{2} t, 12 s^{2} t, 12 s^{2} t, 12 s^{2} t\right)$ in order $48 s^{2} t$.

Consider the $O D(5,5,5,5)$ in order 20. The construction gives $C_{1}, C_{2}, \ldots, C_{20}$ of order 20 and hence an $O D(300,300,300,300)$ in order 1200.

Example 3.10. We suppose as before that $1,2,3,4$ are matrices of order n such that $i j^{T}=0$ and $\sum i i^{T}=\sum n x_{i}^{2} I_{n}$.

Define

$$
\begin{array}{ll}
A_{1} & =\left[\begin{array}{rrrrr}
3 & 1 & 2 & -2 & 1 \\
1 & 3 & 1 & 2 & -2 \\
-2 & 1 & 3 & 1 & 2 \\
2 & -2 & 1 & 3 & 1 \\
1 & 2 & -2 & 1 & 3
\end{array}\right], \quad A_{2}=\left[\begin{array}{rrrrr}
1 & 3 & 4 & -4 & 3 \\
3 & 1 & 3 & 4 & -4 \\
-4 & 3 & 1 & 3 & 4 \\
4 & -4 & 3 & 1 & 3 \\
3 & 4 & -4 & 3 & 1
\end{array}\right] \\
A_{3}=\left[\begin{array}{rrrrr}
4 & 1 & 2 & 2 & -1 \\
1 & 2 & 2 & -1 & 4 \\
2 & 2 & -1 & 4 & 1 \\
2 & -1 & 4 & 1 & 2 \\
-1 & 4 & 1 & 2 & 2
\end{array}\right], \quad A_{4}=\left[\begin{array}{rrrrr}
2 & 3 & 4 & 4 & -3 \\
3 & 4 & 4 & -3 & 2 \\
4 & 4 & -3 & 2 & 3 \\
4 & -3 & 2 & 3 & 4 \\
-3 & 2 & 3 & 4 & 4
\end{array}\right] .
\end{array}
$$

Then $A_{i} A_{j}^{T}=A_{j} A_{i}^{T}$ and $\sum A_{i} A_{i}^{T}=\sum 5 x_{i}^{2} I_{5 n}$.
Thus if B_{i} are as described after Theorem 3.7 we have
Theorem 3.11. Suppose there is an $O D(s, s, s, s)$ in order $4 s$ and an $O D(t, t, t, t)$ in order $4 t$. Then there is an $O D\left(20 s^{2} t, 20 s^{2} t, 20 s^{2} t, 20 s^{2} t\right)$ in order $80 s^{2} t$.

4. Method used to form inequivalent Hadamard matrices.

Construction 4.1. Let H be Hadamard of order n. Form C_{i}, $i=1,2, \ldots, n$, from H as before. Let L and M be Hadamard matrices of order t. Then

$$
\left(L \times C_{i}\right)\left(M \times C_{j}\right)=0, \quad i \neq j
$$

So if H_{1}, \ldots, H_{n} are Hadamard matrices of order t (inequivalent or just dif- . ferent equivalence operations applied to one) then the matrices

$$
H_{i_{1}} \times C_{1}, H_{i}^{2} \times C_{2}, \ldots, H_{i_{n}} \times C_{n}, \quad i_{j} \in\{1,2, \ldots, n\}
$$

can be put into a latin square of order n to form Hadamard matrices of order $n^{2} t$. The method will possibly give many inequivalent Hadamard matrices. The method can be generalized to give weighing matrices and orthogonal designs which are also possibly inequivalent.

5. Method used with coloured designs to form rectangular weighing matrices.

In a recent paper Rodger, Sarvate and Seberry (1987) have studied coloured BIBDs showing every BIBD can be coloured. By definition a coloured BIBD is the incidence matrix of the $\operatorname{BIBD}(v, b, r, k, \lambda)$ whose nonzero entries are replaced by r fixed symbols such that each row and column has no repeated symbol. Consider a coloured symmetric $B I B D(v, k, \lambda)$ and a $W(k, p)$. If we replace the i th symbol by C_{i} for $i=1,2, \ldots, k$ and the 0 entries by the k by k zero matrix, we get $W\left(v k, p^{2}\right)$. In general, if we consider a coloured $B I B D(v, b, r, k, \lambda)$ and there exists a weighing matrix $W(r, p)$ then we form the $C_{i}, i=1, \ldots, r$ and replace the i th colour by C_{i} and zeros by the zero matrix of order r. This matrix, B, has size $v r \times v r, r p$ nonzero elements in each row and $p k$ non-zero elements in each column. Hence we have:

Theorem 5.1. Suppose there is a $B I B D(v, b, r, k, \lambda)$ and a $W(r, p)$. Then there is a $(0,1,-1)$ matrix B with $r p$ nonzero elements in each row and $p k$ nonzero elements in each column such that

$$
B B^{T}=r p I
$$

In particular, if the $B I B D$ is symmetric then we have a $W\left(v k, p^{2}\right)$.
Remark. If we replace entries of an n-dimensional latin cube by suitable C_{i} 's then we will get n-dimensional orthogonal designs.

References.

|1| H.M. Gastinetu-Hills (1983), Kronecker products of systems of orthogonal designs, Combinatorial Mathematies, X, Proceedings, Adelaide 1982, edited by L.R.A. Casse, Lecture Notes in Mathematics, 1036 Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 189-205.
[2] H.M. Gastineau-Hills and J. Hammer (1983), Kronecker products of systems of higher dimensional orthogonal designs, Combinatorial Mathematics X, Proceedings, Adelaide 1982, edited by L.R.A. Casse, Lecture Notes in Mathematics, 1036, Springer-Verlag, Berjin, Heidelberg, New York, Tokyo, 206-216.
[3] A.V. Geramita and J. Seberry (1979), Orthogonal Designs: Quadratic Forms and Hadamard Matrices, Marcel Dekker, New York-Basel.
[4] C.A. Rodger, D.G. Sarvate and Jennifer Seberry (1987), Colourable designs, new group divisible designs and pairwise balanced designs, J. Stat. Planning and Inference, 15, 379-389.
[5] H. Kharaghani (1985), New clesses of weighing matrices, Ars Combinatoria, 19, 69-73.
[6] J. Seberry (1984), Regular group divisible designs and Bhaskar Rao designs with block size three, J. Stat. Planning and Inference, 10, 69-82.

Department of Pure Mathematics
University of Sydney
NSW, 2006, Australia
Department of Mathematics and Computing
University of Papua New Guinea
Papua, New Guinea
Department of Computer Science
University College
Australian Defence Force Academy
The University of NSW
Canberra, ACT, 2600, Australia

[^0]: *Supported in part by an ACRB grant.

