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Some remarks on Hadamard matrices

Jennifer Seberry Marilena Mitrouli
CCISR, SCSSE Department of Mathematics

University of Wollongong University of Athens
NSW, 2522 Panepistemiopolis 15784
Australia Greece

June 8, 2010

Dedicated with great respect to Warwick de Launey

Abstract

In this note we use combinatorial methods to show that the unique,
up to equivalence, 5 × 5 (1,−1)-matrix with determinant 48, the unique,
up to equivalence, 6 × 6 (1,−1)-matrix with determinant 160, and the
unique, up to equivalence, 7 × 7 (1,−1)-matrix with determinant 576, all
cannot be embedded in the Hadamard matrix of order 8.

We also review some properties of Sylvester Hadamard matrices, their
Smith Normal Forms, and pivot patterns of Hadamard matrices when
Gaussian Elimination with complete pivoting is applied on them. The
pivot values which appear reconfirm the above non-embedding results.

Key words and phrases: Hadamard matrices, Smith Normal Form, em-
bedding matrices, completely pivoted, determinant, Gaussian elimination

AMS Subject Classification: 05B20, 15A15, 65F40, 62K05

1 Matrices with (1,−1) entries and maximal de-

terminant

An n-dimensional Hadamard matrix is an n × n matrix of 1s and −1s with
HHT = nIn. A Hadamard matrix is said to be normalized if it has its first row
and column all 1s. We can always normalize a Hadamard matrix by multiplying
rows and columns by −1 where needed. In these matrices, n is necessarily 2
or a multiple of 4 [?]. We recall that although orthogonal (1,−1)-matrices are
known as Hadamard matrices, they were in fact first reported by Sylvester in
1867 [?]. Sylvester had noted that if one took a (1,−1)-matrix, S, of order t
whose rows are mutually orthogonal, then

[
S S
S −S

]

(1)
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is an orthogonal (1,−1)-matrix of order 2t. Matrices of this form are called
Sylvester Hadamard matrices, and are defined for all powers of 2.

Two Hadamard matrices H1 and H2 are called equivalent (or Hadamard
equivalent, or H-equivalent) if one can be obtained from the other by a sequence
of row and/or column interchanges and row and/or column negations.

We recall that the original interest in Hadamard matrices stemmed from
the fact that a Hadamard matrix H = (hij) of order n satisfies equality in
Hadamard’s inequality

(det H)2 ≤
n∏

j=1

n∑

i=1

|hij |
2

for elements in the unit circle.
This has led to further study of the maximum determinant problem for

(1,−1)-matrices of any order. This problem was first brought to the attention
of one of us by a 1970 report for the USAF [?] by Stanley Payne at Dayton,
Ohio.

A D-optimal design of order n is an n × n (1,−1)-matrix having maximum
determinant. Like Hadamard matrices, we can always put a D-optimal design
into normalized form. It is well known that Hadamard matrices of order n
have absolute value of determinant nn/2, and thus are D-optimal designs for
n ≡ 0 (mod 4).

It is a simple exercise to show that the matrices

[
1 1
1 −

]




1 1 1
1 − 1
− 1 1











1 1 1 1
1 − 1 −
1 1 − −
1 − − 1







have maximum determinant for n= 2, 3, 4. We call these matrices (or their
Hadamard equivalents) D2, D3, and D4. The following result specifies the exis-
tence of the D-optimal design of order 4 with determinant 16 in every Hadamard
matrix.

Theorem 1 ([?], [?]) Every Hadamard matrix of order ≥ 4 contains a subma-
trix equivalent to







1 1 1 1
1 − 1 −
1 1 − −
1 − − 1







.

Remark 1 Since D2 and D3 are embedded in D4, Theorem ?? implies that
every Hadamard matrix of order ≥ 4 contains submatrices equivalent to D2 and
D3.

In this paper we are interested in embedding D-optimal designs of orders
m = 5, 6, 7 and 8 in Hadamard matrices of order n. We also study some inter-
esting properties of Sylvester Hadamard matrices, such as their sign changes and
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their Smith Normal Form. We present some results concerning the pivot values
that appear when Gaussian Elimination with complete pivoting is applied to
Hadamard matrices. Using the pivot patterns which have been evaluated, we
prove the existence or non existence of specific D-optimal designs.

Notation. Throughout this paper we use − for −1 and 1 for +1. We write
Hj for a Hadamard matrix of order j, Sj for the Sylvester Hadamard matrix of
order j, and Dj for a D-optimal design of order j. The notation Dj ∈ Hn means
“Dj is embedded in some Hn”. Whenever a determinant or minor is mentioned
in this work, we mean its absolute value.

2 D-optimal designs embedded in Hadamard ma-

trices

The unique, under Hadamard equivalence operations, D-optimal designs are
given by H. Kharaghani and W. Orrick [?]. We note here:

the 5 × 5 (1,−1)-matrix with maximal determinant 48

D5 =









1 1 1 1 1
1 − 1 − −
1 1 − − −
1 − − 1 −
1 − − − 1









;

the 6 × 6 (1,−1)-matrix with maximal determinant 160

D6 =











1 1 1 1 1 1
1 − 1 − − 1
1 1 − − − 1
1 − − 1 − 1
1 1 1 1 − −
1 − − − 1 −











;

and the 7 × 7 (1,−1)-matrix with maximal determinant 576

D7 =













1 1 1 1 1 1 1
1 1 − − − 1 1
1 − 1 − − 1 1
1 − − 1 1 − 1
1 − − 1 1 1 −
1 1 1 − 1 − −
1 1 1 1 − − −













.

The (1,−1)-matrix with maximal determinant 4096 is the Hadamard matrix of
order 8. Indeed the Hadamard matrix of order n always has maximal determi-
nant n

n

2 .
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2.1 Embedding D5 in H8

Lemma 1 The D-optimal design of order 5 (D5) is not embedded in a Hadamard
matrix of order 8 (H8).

Proof. We attempt to extend









1 1 1 1 1
1 − 1 − −
1 1 − − −
1 − − 1 −
1 − − − 1









to H8. Without loss of generality we choose (1, 6) = (1, 7) = (1, 8) = 1. We
note that rows 2, 3, 4, 5 each contain three −1s and two 1s, so for them to be
orthogonal with the first row each needs to be extended by one −1 and two 1s.
We also note the mutual inner product of rows 2, 3, 4, 5 is +1. It is not possible
to extend them by choosing the single −1 in individual columns, as there are
4 rows and 3 columns. Hence by the pigeonhole principle this is impossible.
Hence D5 does not exist embedded in a Hadamard matrix of order 8.

We note that Edelman and Mascarenhas [?] and Seberry, Xia, Koukouvinos
and Mitrouli [?] have shown that D5 is embedded in H12.

2.2 Embedding D6 in H8

Lemma 2 The D-optimal design of order 6 (D6) is not embedded in a Hadamard
matrix of order 8 (H8).

Proof. We extend partially the 6 × 6 matrix, D6, by adding two columns.
Without loss of generality we may choose h17 = h18 = h27 = −h28 = 1 = h67 =
h68, so we have

Hpartial
8 =











1 1 1 1 1 1 1 1
1 − 1 − − 1 1 −
1 1 − − − 1 h37 h38

1 − − 1 − 1 h47 h48

1 1 1 1 − − h57 h58

1 − − − 1 − 1 1











.

Now the inner product of row 5 with row 1 gives h57 +h58 = −2, while the inner
product of row 5 and row 2 gives h57 − h58 = 0. So h57 = h58 = −1. But now
the inner product of rows 5 and 6 cannot be zero, so D6 cannot be extended to
H8.

2.3 Embedding D7 in H8

Lemma 3 The D-optimal design of order 7 (D7) is not embedded in a Hadamard
matrix of order 8 (H8).
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Proof. To embed D7 in H8 it is merely necessary to note that for H8 we can
choose h18 = 1. Every other row of H8 must have 4 1s and 4 −1s, so we extend
D7 thus:

Dextended
7 =













1 1 1 1 1 1 1 1
1 1 − − − 1 1 −
1 − 1 − − 1 1 −
1 − − 1 1 − 1 −
1 − − 1 1 1 − −
1 1 1 − 1 − − −
1 1 1 1 − − − −













.

But rows 2 and 3 are not orthogonal, so the embedding is not possible.

Remark 2 One of the referees has also pointed out that since all the 7 × 7
minors of the 8×8 Hadamard matrix are equal to 512 (an immediate consequence
of the definition of Hadamard matrix), this also proves Lemma 3.

2.4 Other embeddings

We searched for D-optimal designs of orders m = 5, 6, 7 and 8 embedded
in classes of Hadamard matrices. By selecting m rows and columns of the
Hadamard matrices tested, we checked if the determinants of the m × m sub-
matrices were equal to det(Dm). More specifically, we searched the full list of
Hadamard matrices of orders n = 12, 16, 20, 24 and 28 for this purpose. There
are exactly 1, 5, 3, 60 and 487 inequivalent Hadamard matrices respectively, at
each order. Our findings are summarized in Table ??.

n
m 12 16 20 24 28
5 1 5 3 60 487
6 1 4 3 60 487
7 1 3 3 60 487
8 0 5 3 60 487

Table 1: Number of Hadamard matrices of order n in which the D-optimal
design of order m embeds

By examining Table 1, one notices that

• The D-optimal design of order m = 5 is embedded in all Hadamard ma-
trices of the specific orders we study.

• The D-optimal design of order m = 6 is embedded in almost all Hadamard
matrices of the specific orders we study. It is not embedded in one
Hadamard matrix of order n = 16: the Sylvester Hadamard matrix.
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• The D-optimal design of order m = 7 is embedded in all Hadamard ma-
trices we study, except for two Hadamard matrices of order n = 16, one
of which is the Sylvester Hadamard matrix.

• The D-optimal design of order m = 8 (i.e., the Hadamard matrix of or-
der 8) is embedded in all Hadamard matrices we study except for the
Hadamard matrix of order n = 12.

In Table ?? we summarize the above results, with some extensions and
conjectures added in the last column.

D2 ∈ D4 D2 ∈ H4t ∀ t
D3 ∈ D4 D3 ∈ H4t ∀ t
D4 ∈ H8 D4 ∈ H12 D4 ∈ H16 D4 ∈ H20,H24,H28 D4 ∈ H4t ∀ t
D5 6∈ H8 D5 ∈ H12 D5 ∈ H16 D5 ∈ H20,H24,H28 D5 ∈ H4t ∀ t > 2
D6 6∈ H8 D6 ∈ H12 D6 ∈ H16 D6 ∈ H20,H24,H28 D6 ∈ H4t ∀ t > 2

D6 6∈ S16 D6 ∈ S32, S64

D7 6∈ H8 D7 ∈ H12 D7 ∈ H16 D7 ∈ H20,H24,H28 D7 ∈ H4t ∀ t > 2
D7 6∈ S16 D7 6∈ S32, D7 ∈ S64

D8 = H8 D8 6∈ H12 D8 ∈ H16 D8 ∈ H20,H24,H28

Table 2: Existence and non existence of D-optimal designs in Hadamard matri-
ces

The above results and conjectures posed are indicative of the following the-
orem of Warwick de Launey’s [?].

Theorem 2 For every (1,−1)-submatrix there exists an n0, large enough, such
that the submatrix is embedded in Hn0

.

One of the referees provided a proof for a slightly stronger result than this,
concerning the existence of any (1,−1)-matrix in SN , for large enough N .

Remark 3 Using the same combinatorial methods as used to show that D7 6∈
H8, we can show that Hn 6∈ Hn+4, . . . ,H2n−4.

Question 1. Can we give a bound on the size of Dm that will embed into an
Sn? (Note that D6 6∈ S16 but D6 ∈ S32, S64.)

3 Remarks on Sylvester Hadamard matrices

The first few Sylvester-Hadamard matrices of orders 2p, p = 1, 2, 3, are given
below. We augment each matrix with an additional last column which states
the number of times the sign changes as we proceed from left to right across the
row.
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S2 =

[
1 1 0
1 − 1

]

, S4 =







1 1 1 1 0
1 − 1 − 3
1 1 − − 1
1 − − 1 2







, S8 =















1 1 1 1 1 1 1 1 0
1 − 1 − 1 − 1 − 7
1 1 − − 1 1 − − 3
1 − − 1 1 − − 1 4
1 1 1 1 − − − − 1
1 − 1 − − 1 − 1 6
1 1 − − − − 1 1 2
1 − − 1 − 1 1 − 5















In fact we have

Lemma 4 If a (1,−1)-matrix Sm of order m has all the sign changes 0, 1, . . . ,
m − 1, then its Sylvester matrix S2m of order 2m, constructed from (??), will
have all the sign changes 0, 1, . . . , 2m − 1. The same is true for the columns.

This is also observed in

S16 =













































1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 15

1 1 − − 1 1 − − 1 1 − − 1 1 − − 7
1 − − 1 1 − − 1 1 − − 1 1 − − 1 8

1 1 1 1 − − − − 1 1 1 1 − − − − 3
1 − 1 − − 1 − 1 1 − 1 − − 1 − 1 12

1 1 − − − − 1 1 1 1 − − − − 1 1 4
1 − − 1 − 1 1 − 1 − − 1 − 1 1 − 11

1 1 1 1 1 1 1 1 − − − − − − − − 1
1 − 1 − 1 − 1 − − 1 − 1 − 1 − 1 14

1 1 − − 1 1 − − − − 1 1 − − 1 1 6
1 − − 1 1 − − 1 − 1 1 − − 1 1 − 9

1 1 1 1 − − − − − − − − 1 1 1 1 2
1 − 1 − − 1 − 1 − 1 − 1 1 − 1 − 13

1 1 − − − − 1 1 − − 1 1 1 1 − − 5
1 − − 1 − 1 1 − − 1 1 − 1 − − 1 10













































.

This property is well known to users of the Walsh functions, but has not been
emphasized in the mathematical literature. This has prompted us to mention
it explicitly here.
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3.1 Smith Normal Form

The following theorem due to Smith [?] has been reworded from the theorem
and proofs in MacDuffee [?, p41] and Marcus and Minc [?, p44].

Theorem 3 If A = (aij) is any integer matrix of order n and rank r, then
there is a unique integer matrix

D = diag(a1, a2, . . . , ar, 0, . . . , 0)

where ai|ai+1 are non-negative invariant integers, such that A can be diago-
nalized to D. The greatest common divisor of the i × i sub-determinants of A
is

a1, a2, . . . , ai.

These invariants are called the invariants of A, and the diagonal matrix D
is called the Smith Normal Form (SNF).

A SNF is said to be in standard form [?, p. 411] for all Hadamard matrices
of order 4t, if it is in the form

diag(1, 2, 2, . . . , 2
︸ ︷︷ ︸

2t−1

, 2t, 2t, . . . , 2t
︸ ︷︷ ︸

2t−1

, 4t).

We note that the SNF of the inverse of a Hadamard matrix is the same (up to
a constant) as that of a Hadamard matrix. In the proof they appear in reverse
order, but to satisfy the divisibility property they must be reordered. This was
observed by Spence [?]. W. D. Wallis and Jennifer Seberry (Wallis) [?] showed
that for a Hadamard matrix, H, of order 4t, where t is square free, the SNF of
H is in standard form. More recently T. S. Michael and W. D. Wallis [?] have
shown that all skew Hadamard matrices have SNF in standard form.

However the powers of 2 are different. Marshall Hall, Jr. [?] gave five
inequivalent classes of Hadamard matrices of order 16: HI, HII, HIII, HIV,
HV = HIV T . These have SNFs

diag(1, 2, 2, . . . , 2
︸ ︷︷ ︸

4

, 4, 4, . . . , 4
︸ ︷︷ ︸

6

, 8, 8, . . . , 8
︸ ︷︷ ︸

4

, 16),

diag(1, 2, 2, . . . , 2
︸ ︷︷ ︸

5

, 4, 4, . . . , 4
︸ ︷︷ ︸

4

, 8, 8, . . . , 8
︸ ︷︷ ︸

5

, 16),

diag(1, 2, 2, . . . , 2
︸ ︷︷ ︸

6

, 4, 4, . . . , 4
︸ ︷︷ ︸

2

, 8, 8, . . . , 8
︸ ︷︷ ︸

6

, 16),

and, for HIV and HV ,

diag(1, 2, 2, . . . , 2
︸ ︷︷ ︸

7

, 8, 8, . . . , 8
︸ ︷︷ ︸

7

, 16).
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The Sylvester Hadamard matrix of order 16 belongs to Marshall Hall, Jr.’s
class HI. It is known that the number of 2s in the SNF of a Hadamard matrix
of order 4t is ≥ log2 4t.

In fact the Sylvester Hadamard matrix of order 2t always has exactly t 2s
in its SNF.

Lemma 5 If the SNF of any matrix, A, is

D = diag(a1, a2, . . . , ar, 0, . . . 0)

then the SNF of

[
A A
A −A

]

is comprised of

(a1, a2, . . . , ar, 2a1, 2a2, . . . , 2ar, 0, . . . 0).

(These may have to be reordered.)

Remark 4 The number of occurrences of 2r in the SNF of the Sylvester matrix
of order 2k is

(
k
r

)
for 0 ≤ r ≤ k.

4 The Growth Problem for Hadamard matrices

During the process of Gaussian Elimination to solve linear equations or to invert
a matrix, the pivots can become very large and so, with rounding errors included,
unstable. This is the origin of the “growth problem”.

Hadamard matrices are related to the well known growth problem. Tradi-
tionally, backward error analysis for Gaussian Elimination (GE), see e.g. [?], on

a matrix A = (a
(1)
ij ) is expressed in terms of the growth factor

g(n,A) =
maxi,j,k|a

(k)
ij |

maxi,j |a
(1)
ij |

,

which involves all the elements a
(k)
ij , k = 1, 2, . . . , n, that occur during the

elimination. Matrices with the property that no row and column exchanges are
needed during GE with complete pivoting are called completely pivoted (CP).
In other words, at each step of the elimination the element of largest magnitude
(the “pivot”) is located at the top left position of every submatrix appearing
during the process. For a CP matrix A we have

g(n,A) =
max{p1, p2, . . . , pn}

|a
(1)
11 |

,

where p1, p2, . . . , pn are the pivots of A.
The following lemma gives a useful relation between pivots and minors and

a characteristic property for CP matrices.

Lemma 6 ([?]) Let A be a CP matrix.
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(i) The magnitude of the pivots which appear after application of GE opera-
tions to A is given by

pj =
A(j)

A(j − 1)
, j = 1, 2, . . . , n, A(0) = 1.

where A(j) denotes the absolute value of the j × j principal minor.

(ii) The maximum j×j leading principal minor of A, when the first j−1 rows
and columns are fixed, is A(j).

From Lemma ?? we see that the calculation of minors is important in study-
ing pivot structures. Moreover, the maximum j × j minor appears in the upper
left j×j corner of A. So, if the existence of a matrix with maximal determinant,
i.e., a D-optimal design, is proved for a CP matrix A, we can indeed assume
that it always appears in its upper left corner.

H-equivalence operations do not preserve pivots, i.e., the pivot pattern is not
invariant under H-equivalence, and many pivot patterns can be observed. So
H-equivalent matrices do not necessarily have the same pivot pattern.

Pivots can also be given from the relation in [?]:

pn+1−k =
nA[k − 1]

A[k]
, k = 1, 2, . . . , n, A[0] = 1.

where A[k] denotes the absolute value of the determinant of the lower right k×k
principal submatrix.

In 1968 Cryer [?] conjectured that the maximum growth at each stage of
Gaussian Elimination is less than or equal to the order of the matrix, and
equals the order only if the matrix is Hadamard.

Gould [?] proved that the first part of the conjecture is not true. He found
matrices as follows

n growth

13 13.02
18 20.45
20 24.25
25 32.99

Thus, the following remains open.

Conjecture [Cryer]. The growth of a Hadamard matrix is its order.

Concerning progress on this conjecture, the pivot patterns of Sylvester Hadamard
matrices are specified in [?], and the pivot patterns of Hadamard matrices of
orders 12 and 16 are specified in [?, ?]. Next, we connect, for the first time, the
values of the pivots appearing to the existence or not of D-optimal designs in
these Hadamard matrices. This will provide another proof of Lemmas 1, 2, 3,
and a reconfirmation of the results in Table 1.
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The pivot structure of H8

The growth of H8 is 8 [?] and its unique pattern is

1 2 2 4 2 4 4 8

Day and Peterson [?] specify that H8(5) = 32, H8(6) = 128 and H8(7) = 512.
From this we can reconfirm Lemmas 1,2 and 3, i.e., D5,D6,D7 /∈ H8.

The pivot structure of H12

In [?] it was proved that the growth of H12 is 12 and its unique pattern was
determined to be

1 2 2 4 3 10

3

18

5
4 3 6 6 12

Lemma 7 The D-optimal design of order 5 appears in the Hadamard matrix of
order 12.

Proof. From the unique pivot pattern of H12 we see that p5 is 3. From Lemma
6 we have that

p5 =
H12(5)

H12(4)
.

According to Theorem 1 and Lemma 6, H12(4) always takes the value 16. Thus
the value of H12(5) will be 48. This means that the D-optimal design of order
5 always appears in the Hadamard matrix of order 12.

Lemma 8 The D-optimal design of order 6 appears in the Hadamard matrix of
order 12.

Proof. From the unique pivot pattern of H12 we see that p6 is 10
3 . From

Lemma 6 we have that

p6 =
H12(6)

H12(5)
.

According to Lemmas 6 and ??, H12(5) takes the value 48; thus the value of
H12(6) will be 160. This means that the D-optimal design of order 6 always
appears in the Hadamard matrix of order 12.

Lemma 9 The D-optimal design of order 7 appears in the Hadamard matrix of
order 12.

Proof. From the unique pivot pattern of H12 we see that p7 is 18
5 . From

Lemma 6 we have that

p7 =
H12(7)

H12(6)
.

According to Lemmas 6 and ??, H12(6) takes the value 160; thus the value of
H12(7) will be 576. This means that the D-optimal design of order 7 always
appears in the Hadamard matrix of order 12.
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Lemma 10 The D-optimal design of order 8 does not appear in the Hadamard
matrix of order 12.

Proof. From the unique pivot pattern of H12 we see that p8 is 4. From Lemma
6 we have that

p8 =
H12(8)

H12(7)
.

According to Lemmas 6 and ??, H12(7) takes the value 576. Thus the value of
H12(8) will be 2309 and not 4096, which is the value of the D-optimal case. This
means that the D-optimal design of order 8 does not appear in the Hadamard
matrix of order 12.

The pivot structure of H16

In [?] it was proved that the growth of H16 is 16, and it was determined that
there are exactly 34 pivot patterns up to H-equivalence as given in Table ??.

Pivot 1st Class (Sylvester Hadamard) 2nd Class 3rd Class 4th Class
1 1 1 1 1
2 2 2 2 2
3 2 2 2 2
4 4 4 4 4
5 2,3 2,3 2,3 2,3
6 4, 83 4, 103 4,83 , 103 4, 103
7 2,4 4, 8

10/3 , 165 4,185 4, 185
8 4,6,8 4,5,6,8 4,92 ,5,6,8 4,5,6,8
9 2,4,83 2,4,83 , 163 , 165 2,4,92 ,83 , 165 2,4,92 , 83

16
5

10 4,8 4,5 4,5, 16
18/5 4,5, 16

18/5

11 4,6,8 4,6, 16
10/3 4,6, 16

10/3 4,6, 16
10/3

12 8, 163 8, 163 8,163 8, 163
13 4,8 4 4 4
14 8 8 8 8
15 8 8 8 8
16 16 16 16 16

Table 3: The 34 pivot patterns of the Hadamard matrix of order 16

An interesting fact is that 8 occurs as pivot p13 only in the Sylvester Hadamard

matrices. Since p13 = nH16[3]
H16[4]

, and since H16[3] equals 4 (the only possible

nonzero value for the determinant of a 3 × 3 matrix with entries in (1,−1)),
in order p13 = 8 we must have that H16[4] takes the value 8 (possible nonzero
values for the determinants of a 4 × 4 matrix with entries in (1,−1) are 8 and
16). This raises the following question.

Question 2. For a CP Hadamard matrix of order 16, can the determinant of
its lower right 4 × 4 principal submatrix only take the value 8 if the matrix is
in the Sylvester Hadamard equivalence class?
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The next open case is the specification of the growth factor of the Hadamard
matrix of order 20.

5 Summary and Conclusions

While we have given some results that are known, it is clear that pushing the
boundaries is generally rewarding. During the talk given by Prof. Seberry at
the ‘International Conference on Design Theory and Applications’ in Galway in
2009 (which was the motivation for this paper), discussion of open questions was
very exciting. A recent abstract of Kharaghani and Tayfeh-Rezaie [?] shows that
there are very nearly 13,680,757 inequivalent matrices of order 32 (and perhaps
a very few more of other types). It was observed that 20 million inequivalent
Hadamard matrices of order 36 are known. All are regular. It was emphasized
that this work was ongoing and much of it seems to be being carried out in
Iran. It was conjectured in Bouyukliev, Fack and Winne [?] that all Hadamard
matrices of order 36 are regular. So we raise four further questions.

Question 3. Although many regular symmetric Hadamard matrices of order
36 are known, not all are: many are not equivalent to their own transposes.
How many regular symmetric Hadamard matrices exist?

Question 4. How many regular symmetric Hadamard matrices of order 36
with constant diagonal, i.e., a nice graph, can be found?

Question 5. We have excellent asymptotic results for the existence of Hadamard
matrices. Indeed, Warwick de Launey [?] makes exciting new claims. He be-
lieves that the full power of the multiplication results of Agaian type has not
yet been exploited [?]. We have asymptotic results for existence of symmetric
Hadamard matrices. Is there an asymptotic result for the existence of skew
Hadamard matrices?

Question 6. Show that Hadamard matrices exist with positive density in the
integers 4t.

Note added in proof. Warwick de Launey [?] indicated that he has found an
asymptotic existence theorem for skew Hadamard matrices.
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