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Motion Estimation with Adaptive Regularization and
Neighborhood Dependent Constraint

Muhammad Wasim Nawaz, Abdesselam Bouzerdoum, Son Lam Phung
ICT Research Institute, University of Wollongong

Northfields Avenue, NSW 2522, Australia
mwn831,bouzer,phung@uow.edu.au

Abstract

Modern variational motion estimation techniques use to-
tal variation regularization along with the �1 norm in con-
stant brightness data term. An algorithm based on such ho-
mogeneous regularization is unable to preserve sharp edges
and leads to increased estimation errors. A better solu-
tion is to modify regularizer along strong intensity varia-
tions and occluded areas. In addition, using neighborhood
information with data constraint can better identify corre-
spondence between image pairs than using only a point-
wise data constraint. In this work, we present a novel mo-
tion estimation method that uses neighborhood dependent
data constraint to better characterize local image structure.
The method also uses structure adaptive regularization to
handle occlusions. The proposed algorithm has been eval-
uated on Middlebury’s benchmark image sequence dataset
and compared to state-of-the-art algorithms. Experiments
show that proposed method can give better performance un-
der noisy conditions.

1. Introduction

Motion estimation is one of the basic tasks in computer
vision, which can further be used for more complex vision
tasks such as object recognition and scene analysis in im-
age sequences. The two-dimensional motion field, which
is the projection of the three-dimensional motion onto the
image plane of a camera or any other imaging device, is
known as optical flow [6]. Methods to estimate optical flow
can be categorized into four categories: variational (gradi-
ent based) [13, 14, 15, 8, 7, 22, 21], energy based [1, 12],
phase based [10] and region matching based [2]. Current
research in the field focuses on gradient based methods due
to their high accuracy [5].

Horn and Schunck [13] are the first to formulate optical
flow estimation as a variational problem and minimize data

and regularization energy of the form

E(v) = λED(v) + ER(v), (1)

this formulation uses well-known brightness constancy as-
sumption as data term ED (weighted by λ), and a smooth-
ness prior ER is added to regularize the motion field. The
purpose of the regularizer term is to impose smoothness
upon the motion field. The regularizer also updates the re-
gions that has insufficient gradient, which yields a dense
flow field. Horn and Schunck’s variational model uses
quadratic penalization of both data and smoothness con-
straints. Since then, many improvements have been made
in optical flow estimation. Some improved algorithms re-
place quadratic regularization with discontinuity preserving
regularization [15, 16, 19], others penalize data term using
the �1 norm [22, 20, 21].

Traditional optical flow estimation methods use a lin-
earized version of brightness constancy constraint. If the
pixel displacement from one frame to another is large, lin-
earized model can not perform well. Large displacements
can be estimated by constructing Laplacian pyramid of im-
ages and using coarse-to-fine warping techniques [2, 6].

The data term in variational model only enforces point-
wise similarity of intensity across an image pair; it calcu-
lates a normal flow field if a regularizer is not used [11]. Al-
though a regularization term helps identify correspondence
between image pairs, more sophisticated data terms can im-
prove the performance of underlying variational methods
[18]. If neighborhood information of pointwise data term is
integrated, local image structure can be better characterized.

In this paper, we present optical flow estimation method
that uses a neighborhood dependent constraint and structure
adaptive regularization. We show that using intensity infor-
mation from neighboring pixels makes this method more
robust against noise and outliers. The remainder of the
paper is organized as follows. We summarize neighbor-
hood dependent optical flow estimation model in Section
2. Advantages of using structure adaptive regularization are
discussed in Section 3. Experimental results, performance
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evaluation and comparison of the proposed method are pre-
sented in Section 4. The paper ends with concluding re-
marks in Section 5.

2. Optical Flow Estimation with Neighborhood
Dependent Constraint

In most optical flow estimation techniques, it is assumed
that change in image intensity is only due to discrete dis-
placements of pixels from one frame to another. This as-
sumption is also known as brightness constancy; it is used
as data term in most state-of-the-art optical flow estimation
techniques. The brightness constancy assumption is given
by

ED(v) = ρ(|I1(�s)− I2(�s+ �v)|), (2)

where �v = [v1 v2] is the combination of horizontal and ver-
tical velocity components and �s = [x y] is spatial variable.
For simplicity, we omit temporal variable t. Optical flow
estimation algorithms may use either quadratic data term
ρ(z) = z2 or more robust data term of the form ρ(z) = |z|.

Because pointwise constraint gives no information about
image structure, it can only calculate motion component
normal to some image structure or edge (parallel to the
intensity gradient)- known as aperture problem. To esti-
mate optical flow, a regularizer such as smoothness prior is
used. However if local image structure is better character-
ized, then using a regularizer can better estimate the optical
flow. Integrating information over a neighborhood can de-
termine the image structure

ED(v) =
∑
�s∈R

W(ρ(|I1(�s)− I2(�s+ �v)|), (3)

where W is a window or region of interest with appropriate
weights which shows explicit dependency upon neighbor-
hood. Note that an appropriate neighborhood size is first se-
lected and then W is computed for every point in data term.
We can also consider data term as �1 distance of bright-
ness constancy constraint, computed over a weighted win-
dow. To simplify the minimization stage and derive Euler-
Lagrange equations, we assume herein W to be a linear
operator.

Interestingly, if a linearized version of quadratic data
term |I1(�s, t) − I2(�s + �v, t + 1)|2 ≈ ∇I(�s, t).�v is used,
along with the average taken over neighborhood W, we get
Lucas and Kanade’s local model [14], which can be solved
by applying least square estimation. Alternatively we can
also use Gaussian or even more sophisticated weights. In
case of a Gaussian kernel, the algorithm’s robustness un-
der noisy conditions is improved. Bruhn et al. attempted to
use Gaussian weights with Horn and Schuncks’s variational
model in a combined local and global (CLG) mothed [8].
They combine advantages from both local and global opti-
cal flow estimation methods. Although their model works

well in noisy situations, it applies quadratic penalty terms
for both data and regularizer terms.

3. Structure Adaptive Regularization

Recently, it has become clear that using a regularizer in-
volving �1 norm is very suitable for image processing tasks.
This type of regularizer can preserve sharp edges, a task
which the �2 norm cannot achieve. Preserving sharp edges
is desirable in optical flow estimation. Therefore it is better
to use total variation as smoothness prior in neighborhood
dependent optical flow estimation model

E(v) =

∫
R

λWρ(|I1(�s)− I2(�s+ �v)|) + |∇�v|d�s, (4)

where |∇�v| = |∇v1| + |∇v2| is the total variation norm.
Although total variation norm gives better results compared
to quadratic regularizer, it is homogeneous in the sense that
it imposes the same amount of regularization everywhere,
resulting in unnecessary smoothing of edges and strong in-
tensity areas.

Discontinuities in the flow field usually occur across oc-
clusions and strong intensity edges; therefore making regu-
larizer adaptive to image intensity can be favorable in pre-
serving discontinuities. Structure and brightness adaptive
regularizer has been used by [15] which uses anisotropic
and inhomogeneous regularization. Here, we add a rel-
atively simple function with total variation regularization
mentioned in [19]. This function helps to control the
amount of regularization across occluded areas

E(v) =

∫
R

λWρ(|I1(�s)−I2(�s+�v)|)+e(−γ|∇I|β)|∇�v|d�s,

(5)
with γ and β are positive constants. The term F =

e(−γ|∇I|β) is a decreasing function that gives regularizer
appropriate weights according to edge strengths. Note that
F has an inverse relation with edge intensity. As a con-
sequence, the regularizer effect is decreased along strong
image edges preserving sharp edges. In low textured areas,
flow field are propagated by strong effect of regularizer. We
name the model given in Equation 5 as neighborhood de-
pendent constraint with adaptive total variation regulariza-
tion (Ad-TV-NDC).

4. Minimization of Energy Functional

Minimization of energy involving �1 and total variation
norm is not a straightforward task because these norms are
non-differentiable at zero. In this paper, we apply the al-
gorithm presented in [9], which uses dual formulation of
Rudin, Osher and Fatemi’s total variation model [17], and
minimizes it by projected gradient descent method. First,
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we modify our model given in Equation (5) and introduce a
coupling variable �w = [w1 w2] [3] as follows

∫
R

2∑
i=1

[
λWρ(|I1(�s)−I2(�s+�w)|)+

(vi − wi)
2

2α
+F |∇�v|

]
d�s,

(6)
where the sum over i represents minimization problem in
more than one dimensions. Note that i = 2 for two-
dimensional optical flow estimation. In the above setting,
α is a small constant; thus, the estimates vi and wi are al-
most equal. Now we solve for vi and wi separately:

∫
R

2∑
i=1

(vi − wi)
2

2α
+ F |∇�v| d�s, (7)

and

∫
R

2∑
i=1

λWρ(|I1(�s)− I2(�s+ �w)|) +
(vi − wi)

2

2α
d�s. (8)

To solve (7) we apply the algorithm given in [9]

2∑
i=1

vi = wi + αdiv(Fpi) (9)

where pi = [pi,1 pi,2] is a dual variable. It is introduced for
every dimension i, and each pi follows∇(αdivpi − wi) =
|∇(αdivpi − wi)|pi. The divergence operator is given as

div(pi) = ∇.pi =
∂pi,1
∂x

+
∂pi,2
∂y

. (10)

The solution to pi can be given by following gradient de-
scent scheme [9]:

2∑
i=1

(pi,1)
n+1 =

2∑
i=1

(pi,1)
n + τ

α
(F∇xwi)

max{1, τ
α
(F |∇xwi|)}

(11)

2∑
i=1

(pi,2)
n+1 =

2∑
i=1

(pi,2)
n + τ

α
(F∇ywi)

max{1, τ
α
(F |∇ywi|)}

(12)

The above dual variable based update scheme converges for
step size τ less than 0.25 [9]. To minimize wi in the sec-
ond part of the model in (8), we derive associated Euler-
Lagrange equations with appropriate thresholding scheme

�wn+1 = �vn+1+

⎧⎨
⎩
−λθW∇I1 ρ(�v) > −λθW|∇I1|

2

λθW∇I1 ρ(�v) < −λθW|∇I1|
2.

−ρ(�v) W∇I1
W|∇I1|2

|ρ(�v)| ≤ −λθW|∇I1|
2

(13)
Upon inspection of Equations (9) and (13), it becomes clear
that this repetitive scheme alternatively updates �v or �w in
every iteration.

Figure 1. (a) Average AAE and (b) Average MEPE over all video
sequences plotted against sigma of Gaussian noise. Note that Ad-
TV-NDC outperform improved-TV-L1 under noisy conditions.

5. Experimental Results

For evaluation of our algorithm, we have used the Mid-
dlebury video sequence database [4] and computed optical
flow from frame 10 to 11 of several video sequences. In all
these experiments, we used a step size τ = 1/6, λ = 100
and α = 0.35. The mean end point error (MEPE) and aver-
age angular error (AAE) are computed as performance mea-
sures for all algorithms:

MEPE =
√
(v1 − v1GT )2 + (v2 − v2GT )2,

AAE = arccos

[
1 + v1v1GT + v2v2GT√

1 + v21 + v22
√

1 + v21GT + v22GT

]
,

where [v1GT v2GT ] is the ground-truth flow. For neighbor-
hood dependent data term, we have selected the Gaussian
kernel of size 5 × 5 and standard deviation 0.5. To ac-
curately estimate larger displacements, we used Laplacian
pyramid with a downsampling factor of 0.7; the maximum
number of pyramid levels is restricted to 30 and 5 warps are
used per level. In this way, coarser estimates are passed on
to finer stages to obtain final optical flow estimation. The
gradients are estimated using the forward difference opera-
tors. Furthermore, the discrete divergence at image indices
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Figure 2. Flow computed on (I) Dimetrodon, (II) Grove3, (III) Rubberwhale, (IV) Urban3 and (V) Venus video sequences respectively
(Each row corresponds to one video sequence). Column (a) shows frame 10 of video sequences. (b) Ground truth flow. (c) Flow computed
by using I-TV-�1. (d) Flow computed by the proposed method Ad-TV-NDC. Note that edges are better preserved by Ad-TV-NDC in the
last video sequence (Venus).

Table 1. Average Angular Error from different algorithms applied on 8 image sequences of Middlebury database.

Algorithm Dimetrodon Grove2 Grove3 Hydrangea Rubberwhale Urban2 Urban3 Venus
I-TV-L1 4.1511 2.7113 6.2494 2.8037 4.7117 3.3129 6.0434 4.1717

Ad-TV-L1 4.1370 2.7049 6.1369 2.9244 4.5241 3.2494 5.8009 4.1072
TV-NDC 3.4116 2.3195 6.0721 2.6820 4.8273 3.0659 5.3522 3.8662

Ad-TV-NDC 3.3758 2.2024 5.8027 2.7493 4.5483 2.9713 5.0359 3.7050

I-TV-�1=Improved TV-�1,Ad-TV-�1= TV-�1 with Adaptive Regularization, TV-NDC= Neighborhood Dependent Constraint
with Total Variation, Ad-TV-NDC (Neighborhood Dependent Constraint with Adaptive Total Variation Regularization).
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Figure 3. Optical flow evaluation results from Middlebury’s benchmark, note that proposed method ranks 8th in average interpolation error
calculation, among 38 methods evaluated on the same benchmark. For details, refer to http://vision.middlebury.edu/flow/.

Table 2. Mean End Point Error from different algorithms applied on 8 image sequences of Middlebury database.

Algorithm Dimetrodon Grove2 Grove3 Hydrangea Rubberwhale Urban2 Urban3 Venus
I-TV-L1 0.2070 0.1952 0.6048 0.2358 0.1482 0.4586 0.7093 0.2764

Ad-TV-L1 0.2065 0.1943 0.5875 0.2420 0.1438 0.4509 0.7002 0.2884
TV-NDC 0.1762 0.1616 0.6084 0.2282 0.1514 0.4174 0.6217 0.2578

Ad-TV-NDC 0.1743 0.1531 0.5746 0.2308 0.1441 0.4239 0.5968 0.2480

I-TV-�1=Improved TV-�1,Ad-TV-�1= TV-�1 with Adaptive Regularization, TV-NDC= Neighborhood Dependent Constraint
with Total Variation, Ad-TV-NDC (Neighborhood Dependent Constraint with Adaptive Total Variation Regularization).

i and j is estimated as

div(pi,j) =

⎧⎨
⎩

p1i,j + p2i,j if i, j = 1
−p1i−1,j − p2i,j−1 i = M, j = N
p1i,j − p1i−1,j + p2i,j − p2i,j−1 otherwise

where M and N are the height and width of the image re-
spectively.

We have also implemented the improved TV-�1 algo-
rithm with same parameters and compared the performance
of our method with this algorithm. It is clear from the re-
sults in Tables 1 and 2 that using neighborhood dependent
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constraint improves on performance, as compared to the im-
proved TV-�1 algorithm. Quality is further improved by
using structure adaptive total variation regularization. The
algorithm also performs well in the presence of additive
Gaussian noise as depicted in Figure 1. The improved qual-
ity of the method can be seen in high textured region lo-
cated in the middle of Urban3 sequence presented in Fig-
ure 2. Moreover, edges are better preserved in Venus se-
quence compared to improved TV-�1 algorithm. We have
also implemented the proposed method on Middlebury’s
evaluation video datasets. For comparison with existing op-
tical flow estimation methods, we have taken a screenshot
from http://vision.middlebury.edu/flow/eval/results/results-
i1.php, refer to Figure 3. Ad-TV-NDC (proposed method)
outperforms all other methods (refer to numbers under error
results in Figure 3) for high speed camera image sequence
Dumptruck and is ranked second for synthetic image se-
quence Urban. However, the performance of our method
decreases for image sequences containing hidden textures
e.g., Mequon and Schefflera. When an average is taken over
interpolation error calculation of all image sequences, the
proposed method ranks 8th, among 38 methods evaluated
on the same benchmark.

6. Conclusion

In this paper, we presented an optical flow estimation
method that uses neighborhood dependent data constraint
in a variational framework. To better handle occlusions, we
have used inhomogeneous regularization. We have shown
that a neighborhood dependent constraint can better match
intensities across image pairs than traditional data term used
in modern techniques. Experimental results are presented
which show that the proposed method can better identify
correspondence between image pairs compared to methods
based on traditional data constraint and can better preserve
strong edges by using inhomogeneous regularization. It
will be interesting to use data terms with more sophisticated
neighborhood dependency in future work.

References

[1] E. H. Adelson and J. R. Bergen. Spatiotemporal energy mod-
els for the perception of motion. Journal of Optical Society
of America A, 2(2):284–299, Feb. 1985. 1

[2] P. Anandan. A computational framework and an algorithm
for the measurement of visual motion. International Journal
of Computer Vision, 2:283–310, 1989. 1

[3] J. F. Aujol, G. Gilboa, T. Chan, and S. J. Osher. Structure-
texture image decomposition: Modeling, algorithms, and pa-
rameter selection. International Journal of Computer Vision,
67(1):111–136, 2006. 3

[4] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and
R. Szeliski. A database and evaluation methodology for op-
tical flow. Technical report, Microsoft Research Microsoft
Corporation, One Microsoft Way, Redmond, WA 98052, De-
cember 2009. 3

[5] J. L. Barron, D. J. Fleet, and S. Beauchemin. Performance of
optical flow techniques. International Journal of Computer
Vision, 12:43–77, Sep 1994. 1

[6] S. Beauchemin and J.L.Barron. The computation of optical
flow. ACM computing Survey, 27(3):433–467, Sep. 1995. 1

[7] M. J. Black and P. Anandan. A framework for the robust
estimation of optical flow. In Int. Conf. on Computer Vision,
ICCV -93, Berlin, pages 231–236, May 1993. 1

[8] A. Bruhn, J. Weickert, and C. Schnorr. Lucas/kanade meets
horn/schunck: Combining local and global optic flow meth-
ods. International Journal of Computer Vision, 61(3):211–
231, 2005. 1, 2

[9] A. Chambolle. Energy Minimization Methods in Computer
Vision and Pattern Recognition, chapter Total Variation Min-
imization and a Class of Binary MRF Models, pages 136–
152. Springer Berlin / Heidelberg, 2005. 2, 3

[10] D. Fleet and A. Jepson. Computation of component image
velocity from local phase information. International Journal
of Computer Vision, 5:77–104, 1990. 1

[11] D. J. Fleet and Y. Weiss. Mathematical Models in Com-
puter Vision: The Handbook, chapter Optical Flow Estima-
tion, pages 239–258. Springer, 2005. 1

[12] D. Heeger. Optical flow using spatiotemporal filters. Inter-
national Journal of Computer Vision, 1:279–302, 1988. 1

[13] B. K. P. Horn and B. G. Schunck. Determining optical flow.
Artificial Intelligence, vol. 17(8):185–203, August 1981. 1

[14] B. Lucas and T. Kanade. An iterative image registration
technique with an application to stereo vision. In Proc. In-
ternational Joint Conference on Artificial Intelligence, page
674679, Aug 1981. 1, 2

[15] H. H. Nagel and W. Enkelmann. An investigation of smooth-
ness constraints for the estimation of displacement vector
fields from image sequences. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8(5):565–593, Sep 1986.
1, 2

[16] N. Papenberg, A. Bruhn, T. Brox, S. Didas, and J.Weickert.
Highly accurate optic flow computation with theoretically
justified warping. International Journal of Computer Vision,
67(2):141–158, April 2006. 1

[17] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation
based noise removal algorithms. Physica D, 60:259–268,
1992. 2

[18] F. Steinbrucker, T. Pock, and D. Cremers. Advanced data
terms for variational optic flow estimation. In VMV, 2009. 1

[19] A. Wedel, D. Cremers, T. Pock, and H. Bischof. Structure
and motion adaptive regularization for high accuracy optic
flow. In ICCV, 2009. 1, 2

[20] A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers.
An improved algorithm for tv-l1 optical flow. In Dagstuhl
Motion Workshop, volume 4713, pages 214–223, 2008. 1

[21] M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers,
and H. Bischof. Anisotropic huber l1 optical flow. In BMVC,
2009. 1

[22] C. Zach, T. Pock, and H. Bischof. A duality based ap-
proach for real time tv-l1 optical flow. Pattern Recognition,
4713:214–223, 2007. 1

398392


	Motion estimation with adaptive regularization and neighborhood dependent constraint
	Recommended Citation

	Motion estimation with adaptive regularization and neighborhood dependent constraint
	Abstract
	Keywords
	Disciplines
	Publication Details

	Motion Estimation with Adaptive Regularization and Neighborhood Dependent Constraint

